Introduction to Set Theory
Third Edition, Revised and Expanded
by Karel Hrbacek and Thomas Jech

Solutions Manual

by Dan Whitman

September 17, 2019



Copyright
(© 2019 by Dan Whitman

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or
send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

©@O®SO


http://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

5 Cardinal Numbers 1
5.1 Cardinal Arithmetic . . . . . . . . . . 1
5.2 The Cardinality of the Continuum . . . . . . . .. ... .. . 12

6 Ordinal Numbers 17
6.1 Well-Ordered Sets . . . . . . . . . . 17
6.2 Ordinal Numbers . . . . . . . . . . e 23
6.3 The Axiom of Replacement . . . . . . . . . . .. . 26
6.4 Transfinite Induction and Recursion . . . . . . . . . . . .. ... ... 30
6.5 Ordinal Arithmetic . . . . . . . . . . . 33
6.6 The Normal Form . . . . . . . . . . . . 62

7 Alephs 62
7.1 Imitial Ordinals . . . . . . . . . . e 62
7.2 Addition and Multiplication of Alephs . . . . . . . . . . . ... 70

8 The Axiom of Choice 82
8.1 The Axiom of Choice and its Equivalents . . . . . . ... ... ... ... ... ........ 82
8.2 The Axiom of Choice in Mathematics . . . . . . . . . . . . . .. . ... ... .. ... ... 95

9 Arithmetic of Cardinal Numbers 104
9.1 Infinite Sums and Products of Cardinal Numbers . . . . . . . . . . ... ... ... ...... 104

Page 2



Chapter 5 Cardinal Numbers

§5.1 Cardinal Arithmetic
Exercise 5.1.1

Prove properties (a)-(n) of cardinal arithmetic stated in the text of this section. These are

)

JE-Ap)=(-A)p

g k- A+pu)=Kk-A+kK-p
)

k) k + k < k- kK, whenever k > 2
1)/€§I£/\if)\>0
m) A< kM if k> 1

n) If kK1 < ko and A; < Ay, then Iii\l < Kg‘l

Solution:

For solutions (a) through (c) suppose that

K= |K| A= I|L| p=|M|,
where K, L, and M are mutually disjoint sets.
(a)

Proof. Tt is obvious that
k+A=|KUL|=|LUK|=X+&

since K UL = LUK and K and L are disjoint. O
(b)
Proof. First we note that clearly

KU(LUM)=KULUM=(KUL)UM.

Now suppose that there isan x € KN(LUM) so that z € K andz € LUM If x € L thenz € KNL
and if x € M then x € K N M, either of which is a contradiction since all three sets are mutually
disjoint. Hence K and LU M are disjoint. A similar argument show that K U L and M are disjoint.
Thus we have the following:

K+ +p)=|K|+|[LUM|=|KU(LUM)| =|(KULYUM|=|KUL|+|M| = (k+\) +

as desired. O
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(c)

Proof. Define the function f : K — K UL by simply the identity f(k) = k for any k € K. Obviously
this is an injective function so that k = |K| < |[KUL| =k + \. O

(d)
Proof. Suppose that
51:|K1| I€2:|K2| )\1:|L1| )\2:|L2|

for sets K1, Ko, Ly, and Ly where K1 N Ly = @ and Ky N Ly = &. Also suppose that k1 < Ko
and A1 < Ag. Thus |Ki| = k1 < kg = |Ka| so that there is an injective function f from K to
K. Similarly there is an injective function g : Ly — Lo since |L1| = A1 < Ay = |La|. Now define

h:KyUL; — KoU Lg by
hiz) = {f(:):) r € K,
glx) xel.
We show that h is injective so consider x and y in K7 U Ly where x # y.
Case: x € K1,y € K1. Then
h(z) = f(z) # f(y) = h(y)
since f is injective and = # y.
Case: z € L1,y € L1. Then
h(z) = g(z) # g(y) = h(y)
since ¢ is injective and = # y.

Case: © € K1, y € L. Then we have h(z) = f(z) € Ky and h(y) = g(y) € Lo so that h(z) # h(y)
since Ky and Lo are disjoint. Note that this is the same as the case in which x € L; and y € K3
since we simply switch x and y.

Since these cases are exhaustive and h(z) # h(y) in each this shows that h is injective. Hence we
have demonstrated that

K1+ A =K1 UL | <|KyULg| =Ky + Ao
as desired. O

For solutions (e) through (h) suppose that
5= 1A A=IB w=Icl

for sets A, B, and C.
(e)

Proof. First we show that |A x B| = |B x A| by constructing a bijection f: A x B — B x A. For
(a,b) € A x B define
fla,b) = (bja) € Bx A,

which is clearly a function. Then for (a,b) € A x B and (¢,d) € A x B where f(a,b) = f(c,d) we
have

f(a,b) = (b,a) = f(c,d) = (d,¢)
so that b = d and a = ¢. Hence (a,b) = (¢, d) so that f is injective. Now consider any (b,a) € B x A
so that clearly f(a,b) = (b,a), noting that (a,b) € A x B. Clearly this shows that f is surjective.
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Hence f is bijective so that
K-A=|AXB|=|Bx A=\ kK

as required. O
(f)

Proof. Similar part (e) above, it is trivial to find a bijection from A x (B x C) to (A x B) x C so
that
B0 ) = A x (BXC)| = |(Ax B)x C| = (- )) -

as desired. 0O
(&)

Proof. Here suppose additionally that BNC = &. First we note that since B and C' are disjoint that
Ax B and A x C are also disjoint. Suppose that this is not the case so that there is an (a,b) € Ax B
where (a,b) € A x C also. Then clearly b € B and b € C, which is a contradiction since they are
disjoint. Now, it is also trivial to show the equality

Ax(BUC)=(AxB)U(AxC(C).
Hence we have that
k-A+pu)=rk-|BUC|=|AXx (BUC)| =|(AXxB)UAXC)|=|AXxB|+|AxC|l=k-A+K-p
as desired. O
(h)

Proof. Here suppose that A > 0 so that B # &. Here we construct a bijection f: A — A x B, from
which it follows that
k=|Al<|AXxB|=k-A\.

Since B # @ there exists a b € B. So for any a € A define
f(a) = (a,b),
which is clearly a function. So for a1,as € A where a; # ay we have that
flar) = (a1,b) # (az,b) = f(a2)
so that f is injective. O
(i)
Proof. Suppose that
k1 = |A1] Ko = |As| A1 = | By A2 = | By|

for sets Ay, Aa, By, and By where k1 = |A1| < |As| = ko and Ay = |B1| < |Ba| = A2. Hence there
is an injective function f : A7 — A, and injective function g : By — By. We shall construct an
injective function h : A1 X By — As X Bs so that it immediately follows that

Hl')\1:|A1XB1‘§|A2XB2‘:I€2-)\2
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as required. So for (a,b) € A; x B; define

h(a,b) = (f(a),g(b))

Suppose then (a,b) € Ay x By and (¢,d) € Ay x By where (a,b) # (¢,d). If a # c then f(a) # f(c)
since f is injective so that

h(a,b) = (f(a),g(b)) # (f(c),9(d)) = h(c,d)
Similarly if b # d then g(b) # g(d) since g is injective. Hence again
h(a,b) = (f(a),g(b)) # (f(c),9(d)) = h(c,d)
Thus in all cases h(a,b) # h(c,d) so that h is injective. O

(j) This is adequately proven in the text.
For solutions (k) through (m) suppose that

k= |A] A= |B|
for sets A and B.
(k)
Proof. Suppose here that x > 2. Then 2 < x and k < k so that by property (i) we have
2-k<K K.

Then by property (j) we have
k+Kk=2-k<K-K

as desired. 0
O]

Proof. Here suppose that A = |B| > 0 so that B # &. Hence there exists a b € B. We shall
construct an injective f : A — AB, from which it follows that

h=A < AP =

So for any a € A define f(a) = g where g : B — A is a function defined by ¢g(b) = a for all b € B,
noting that g # & since B # .

Now consider any aj,as € A where a1 # as so that for any b € B we have

fla1)(b) = a1 # az = f(az)(b).
From this it follows that f(a1) # f(a2) so that f is injective. O
(m)

Proof. Here suppose that k = |A| > 1 so that there are a1, as € A where a1 # as. We shall construct
an injective function f : B — AP so that

A= [B| < 47| = .
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So for any b € B define f(b) = g where g: B — A is a function defined by

_Ja c=1b
9(0)—{a2 e b

for ¢ € B. Now suppose that by, by € B where by # by. We then have

f(b1)(b1) = a1 # az = f(b2)(b1)
since by # by. From this it follows that f(b1) # f(b2) so that f is injective. O

(n)
Proof. Suppose that
K1 = |A1‘ Ro = |A2| )\1 = |Bl| )\2 = |BQ‘

for sets Ay, As, By, and By where k1 = |A1] < |Ag| = ke and Ay = |By| < |Ba| = As.

The theorem as presented in the text is actually not true in full generality. As a counterexample
suppose that Ay = Ay = By = @ so that k1 = ko = A\ = 0 and By = 1 so that A\ = 1. Then
certainly the hypotheses above are true but we also have

kY1 =0"=1>0=0"= Ky

where we have used the results of Exercises 5.1.2 and 5.1.3.

However, if we add the restriction that ko > 0 then it becomes true. To prove this first note that
this implies that Ay # @ so that there is an as € Ay. Also there is an injective function f: A3 — Ao
and an injective function g : By — By. We shall construct an injective F : AjlB t— A2B 2 from which
it follows that

Rt = AT < 1492 = Ry

So for any hy € Afl define F'(h1) = hy where hq € AQB2 is defined by

ha(b) = {i(}h(gl(b))) Z ; 11::2 EZS

for any b € Bs, noting that g~! is a function on ran (h1) since g is injective. Clearly F is a function

but now we show that it is injective.

So consider any hi, ho € Afl where hq # ha. Then there is a by € By such that hi(b1) # ha(b1). So
let by = g(b1) so that clearly by € ran (g) and by = g~!(b2). Hence we have

F(h1)(b2) = f(h1(g™" (b2))) = f(h1(b1)) # f(h2(b1)) = f(ha(g™" (b2))) = F(h2)(b2)

since hy(b1) # hao(by) and f is injective. It thus follows that F(hy) # F'(ha) so that we have shown
that F' is injective. 0

Exercise 5.1.2

Show that k9 = 1 and k! = & for all k.
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Solution:

Proof. Suppose that k = |A| for a set A.
We claim that A? = {@} =1 so that clearly

=A% =1 =1.

First consider any f € A?. Suppose that f # & so that there is a (b,a) € f C @ x A. But then
b € @, which is a contradiction. Hence f = @&. So if there are any f € A? then f = @ but are there
any f € A?? Clearly the empty set is a function from @ to A since it is vacuously true that for
every b € & there is a unique a € A such that (b,a) € @. Hence @ € A? so that A? = {g} =1.

We also claim that |A'| = |A] so that
W= A = 14] = 5.

To this end for any f € A! define F(f) = f(@), noting that 1 = {@}, so that clearly F : A* — A.
Now consider any f,g € A" where f # g. Then it has to be that

F(f) = f(@) # 9(2) = F(g)

so that F is injective. Now consider any a € A and define f € A' by f() = a. Then clearly

so that F' is surjective. Hence we’ve shown that F' is bijective. O

Exercise 5.1.3

Show that 1% =1 for all x and 0® = 0 for all kK > 0.

Solution:

Proof. Suppose that xk = |A| for a set A.
Note first that if kK = 0 then by Exercise 5.1.2 it follows that

1"=1"=1.
In the case where £ > 0 we claim that there is a unique f € 14 so that clearly then
1" =14 =1.

For existence define f : A — 1 by f(z) = @ for all 2 € A so that clearly f € 14. For uniqueness
consider any f1, fo € 14. Since 1 = {@} it has to be that fi(z) = fo(z) = @ for all z € A. Hence
Ji=fa
Now suppose also that k > 0 so that A # &. Hence there is an a € A. We claim that in this case
that @4 = @ so that

0" = |o| = || =0.

So suppose that @4 # @ so that there is an f € @“. Then it’s true that for every a € A there is a
unique b € & such that f(a) = b. But since there is an a € A this implies that there is also a b € &,
which is a contradiction. Hence there can be no f € @4 so that @4 = @. O
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Exercise 5.1.4

Prove that g < 2%'%,

Solution:
Proof. Suppose that k = |A| for a set A. Then we construct an injective F': A4 — 24%4 5o that
K = |AA‘ < |2A><A| _ ‘2|\A><A| — 9K

So for any f € A4 define F(f) = g where g € 24%4 is defined by

-y

for (a1,as) € A x A. To show that F is injective consider any f,g € A4 where f # g. Then there
is an a € A such that f(a) # g(a). Now let a1 = f(a) and as = g(a) so that

fla) = a1 # az = g(a).

Since f(a) = ay it follows by definition that F(f)(a,a;) = 1. Similarly since g(a) = ag # a; it
follows that F'(g)(a,a1) = 0. Hence we have

F(f)(a,a1) =1#0=F(g)(a,a1)

so that clearly F'(f) # F(g). Thus F' is injective. O

Exercise 5.1.5

If |A| < |B| and if A # &, then there is a mapping of B onto A. We later show, with the help of the
Axiom of Choice, that the converse is also true: If there is a mapping of B onto A, then |A| < |B].

Solution:

Proof. Suppose that |A| < |B] for sets A and B where A # @&. Then there is an a € A. There is
also an injective f : A — B so that f~! is a function from ran (f) — A. So let g be a mapping from
B to A defined by

B f71(b) beran(f)
g(b)_{a b¢ran(f).

To show that g is onto consider any = € A and let b = f(a). Thus b € ran (f) so that

g(0) = f71(b) = f71(f(a)) = a.

Hence g is onto since a was arbitrary. O

Exercise 5.1.6

If there is a mapping of B onto A, then 214! < 215!, [Hint: Given g mapping B onto A, let f(X) = ¢~ '[X],
for all X C A.]
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Solution:

Proof. Suppose that f is a mapping from B onto A. We shall construct an injective F : 24 — 28
so that
2141 241 = [24] < 2] = 2181 = 2181,

So for any g € 24 let F(g) = h where h € 25 is defined by

for b € B. To show that F is injective consider any g;,gs € 24 where g; # go. Then there is an
a € A such that ¢1(a) # g2(a). Since f : B — A is onto there is a b € B such that f(b) = a. Thus
we have

F(g1)(b) = g1(f(0)) = g91(a) # ga2(a) = g2(f (b)) = F(g2)(b)
so that F(g1) # F(g2). Thus F is injective. O

Exercise 5.1.7

Use Cantor’s Theorem to show that “the set of all sets” does not exist.

Solution:

Proof. Suppose that X is the set of all sets. Consider any Z € P (X). Since clearly Z is a set
we have Z € X. Thus since Z was arbitrary it follows that P (X) C X so that by Exercise 4.1.3
|P(X)]| < |X|. However, this contradicts Cantor’s Theorem, according to which [P (X)| > |X|.
Thus X cannot be the set of all sets. O

Exercise 5.1.8

Let X be a set and let f be a one-to-one mapping of X into itself such that f[X] C X. Then X is
infinite.

Solution:

Proof. For a set X suppose that f : X — X is injective. Also suppose that ran (f) is a proper
subset of X.

Now suppose that X is finite so that there is an n € IN such that there is a bijective g : n — X. We
also note that clearly g=! : X — n is also a bijection. Now define a function h : n — n by

h(k) = (97" o fog)(k) =g~ (f(g(k))

1

for any k € n. Since g, f, and g~ are all injective it follows from Exercise 2.3.5 that h is also

injective.

We now claim that ran (h) is proper subset of n. First we note that for any m € n we have

g(h(m)) = g(g~"(f(g(m)))) = f(g(m))

since ¢ is a function. Now, since ran (f) C X there is an x € X such that x ¢ ran(f). So let
k = g~!(z) so that g(k) = z. Now suppose that there is an m € n such that h(m) = k. Then per
the above we have
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which is impossible since « ¢ ran (f). So it must be that there is no such m so that k ¢ ran(h)
Hence since k € n it follows that ran (g) C n.

Now clearly h is a surjective mapping from n to ran (h). But since h is also injective it is thus a
bijection from n to ran (n). However, according to Lemma 4.2.2 there is no bijective mapping from
n to ran (n) since ran (h) C n. We have thus arrived at a contradiction so that, if the hypotheses
hold, then X cannot be finite. Hence by definition X is infinite. O

Exercise 5.1.9

Every countable set is Dedekind infinite.

Solution:

Lemma 5.1.9.1. If sets X and Y are equipotent (i.e. |X|=1Y|) and Y is Dedekind infinite then
X is also Dedekind infinite.

Proof. Since X and Y are equipotent there is a bijective f : X — Y so that f~! is also bijective.
Also since Y is Dedekind infinite there is a Z C Y such that there is a bijective g : Y — Z so that
g~ ! is also bijective. So since Z C Y there is ay € Y such that y ¢ Z. Solet S = X — {f’l(y)}
Clearly since f~1(y) € X it follows that S C X since f~1(y) ¢ S. Now define h : X — S by

h(z) = (fHogo f)(x) = f(g(f(2))))

for z € X. Since f is a function this implies that

which is impossible since y ¢ Z but ran (g) C Z. Hence there is no such x so that h really is a map
from X to S (as opposed to X to X).

Now, since f~!, g, and f are all injective it follows from Exercise 2.3.5 that h is injective as well.
Then consider any s € S and let z = f~1(g71(f(s))), noting that g=!(f(s)) exists since s # f~1(y).
Then we have

h(z) = U (FH g NN = FHglg™ (F())) = fH(f(s) =5

so that h is surjective since s was arbitrary. Hence h is a bijective map from X to .S, and since
S C X this means that X is Dedekind infinite. O

Lemma 5.1.9.2. N is Dedekind infinite.

Proof. Let N = N —{0} so that clearly N is proper subset of N. Then we define themap f: N — N
by
Fn) =n+1

for n € N. Consider any n,m € IN where n # m. Then clearly

n#m
n+l#m+1
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f(n) # f(m)

so that f is injective. Now consider any n € N so that clearly f(n —1) = (n — 1) + 1 = n, noting
that since n # 0 we have n > 1 so that n—1 > 0. Hence n—1 € N. This shows that f is surjective.
Hence f is a bijection from IN onto a proper subset N so that by definition IN is Dedekind infinite.

O

Main Problem.

Proof. Suppose that X is a countable set. Then by definition X is equipotent to IN. Hence since
N is Dedekind infinite (Lemma 5.1.9.2) it follows that X is as well by Lemma 5.1.9.1. O

Exercise 5.1.10
If X contains a countable subset, then X is Dedekind infinite.

Solution:

Proof. Suppose that X is a set with a countable subset Y. Then by Exercise 5.1.9 Y is Dedekind
infinite so that there is a Z C Y C X such that there is a bijective f : Y — Z. So define the

following g : X — X by
) flx) weY

for any € X. Now since Z C Y thereis a y € Y such that y ¢ Z, noting that since Y C X,y € X.

First we claim that y ¢ ran (g). So suppose that it is so that there is an x € X such that g(x) = y. If
x € Y then by definition g(x) = f(z) = y, but this is a contradiction since f : Y — Z but y ¢ Z. On
the other hand if ¢ Y then we have g(z) = x = y, which is also a contradiction since y =z € Y.
Since a contradiction follows in either case it must be that there is no such = so that y ¢ ran(g).
Hence ran (g) C X.

Clearly g is a surjective map from X to ran (g) so we now show that it is injective. So consider any
x1,x9 € X where z1 # xs.

Case: 1 € Y and 29 € Y. Then

g(z1) = f(x1) # f(22) = g(22)
since f is injective.
Case: 1 ¢ Y and x5 ¢ Y. Then

g(x1) = 21 # 22 = g(22) .

Case: 1 € Y and 22 ¢ Y. Then g(x1) = f(x1) € Z but g(x2) = 22 ¢ Y so that xo ¢ Z either since
Z C Y. Hence f(x1) # x2 so that

g(x1) = f(x1) # 22 = g(z2) .

Thus in all cases g(x1) # g(x2) so that g is injective since 1 and x5 were arbitrary.

Therefore we have shown that g is a bijective map from X to ran(g) C X so that X is Dedekind
infinite by definition. O
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Exercise 5.1.11

If X is Dedekind infinite, then it contains a countable subset. [Hint: Let z € X — f[X]; define o = x,
x1 = f(x0)y -+, Tny1 = f(xn), ... . The set {z,, | n € N} is countable.]

Solution:

Proof. Suppose that X is a Dedekind infinite set. Then there is a Y C X such that there is a
bijective f : X — Y. Since Y C X there is an z € X such that ¢ Y. So first define zp = = and
then for n € N define z, 1 = f(x,).

We claim that x,, # x,, for any n,m € N where n # m, from which it clearly follows that
Z={x,|neN}

is a countable set. So consider any n,m € IN where n # m Without loss of generality we can
assume that n < m. Suppose that x,, = x,,. We now show by induction that =, _; = x,,_ for all
n >k > 0. If k=0 then we clearly have

Tn—k = Tn—0 = Tn = Tm = Tm—0 = Tm—k -
Now suppose that x,,_r = ;. We then have
f@n—e1) = f(@n-p1) = Tnk = Tk = f(@m-t-1) = f(Tm—(kt1))

Since f is injective this implies that x,_(441) = Tym—(k+1) s0 that inductive proof is complete. So
since this holds for £k = n we have that

o = Tp—n = Tm—n = f(‘rmfnfl) 5

Noting that m —n—1>0sincem >n+1. But zg =2 ¢ Y and f(z—n—1) € Y since f: X =Y
so that we have a contradiction. So it must be that z, # z,,. Hence Z is countable. Since also
clearly Z C X the proof is complete. O

Exercise 5.1.12
If A and B are Dedekind infinite, the AU B is Dedekind infinite. [Hint: Use Exercise 1.11.]

Solution:

Proof. Suppose that sets A and B are both Dedekind infinite. Then A contains a countable subset
C by Exercise 5.1.11. Clearly C C A U B so that C' is a countable subset of A U B. Hence by
Exercise 5.1.10 AU B is Dedekind infinite. [

Exercise 5.1.13
If A and B are Dedekind infinite, then A x B is Dedekind infinite. [Hint: Use Exercise 1.11.]

Solution:

Proof. Suppose that A and B are both Dedekind infinite. Then A contains a countable subset C'
by Exercise 5.1.11. Also since B is Dedekind infinite it is not finite by Exercise 5.1.8. Hence B # @&
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so that there is a b € B. Clearly then the set
D ={(a,b)|aeC}

is a countable subset of A x B so that A x B is Dedekind infinite by Exercise 5.1.10. O

Exercise 5.1.14

If A is infinite, then P (P (A)) is Dedekind infinite. [Hint: For each n € N, let S, = {X C A | |X]| =n}.
The set {S,, | n € N} is a countable subset of P (P (A)).]

Solution:

Lemma 5.1.14.1. If A is an infinite set then for any n € N there is a B C A such that |B| = n.

Proof. Suppose that A is an infinite set and consider any n € IN. Then Ry < |A| so that there is an
injective f : N — A. Now n € N but also n C IN. So define the set

B={f(k)[ken}.

Clearly B C A and we show that |B| = n by defining a mapping g : n — B by

for £k € n. Since f is injective clearly g is. Now consider any b € B. By definition then there is a
k € n such that f(k) =b. Hence g(k) = f(k) = b so that g is surjective. Hence since g is bijective
|B| = n as desired. O

Main Problem.
Proof. Suppose that A is infinite. Then for any n € N define
S, ={XeP(A)||X|=n},

noting that S, # @ by Lemma 5.1.14.1. We also note that for n,m € IN where n # m we have
S, # S since for any X € S, and Y € S,,, we have

(X[ =n#m=]Y]|
so that X # Y. From this it follows that
S={S,|neN}

is a countable set. Also, for an S,, € S we have that each X € S, is in P (4) so that S,, C P (4).
Hence each S, € P (P (A)). Thus S C P (P (A)). Since S is countable it then follows that P (P (A4))
is Dedekind infinite by Exercise 5.1.10. O

§5.2 The Cardinality of the Continuum

Exercise 5.2.1

Prove that the set of all finite sets of reals has cardinality 2¥¢. We remark here that the set of all
countable sets of reals also has cardinality 2%°, but the proof of this requires the Axiom of Choice.
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Solution:

Proof. Let F denote the set of all finite sets of reals. First we construct an injective f : F — R
So consider any A € F. Then |A| = n for an n € N so that there is a finite sequence (ay | k € n)
where ran (a) = A. Now we define an infinite sequence of reals & € RN by

. ar ken (e 0<k<n)
ar =
¥ ap k¢n(ie k>n)

so that clearly we have ran(a) = A as well. Note that this only works if A # & since otherwise
there is no ag. In the case where A = @ we set a = k for kK € N so that ran (@) = N. In any case
we set f(A) = a.

Now we claim that f is injective. So consider any A, B € F' where A # B. If one of them is the
empty set, say A, then since B is finite m = max([max(B)] + 1,0) exists so that clearly m ¢ B.
Hence m ¢ ran(f(B)) = B. However m € ran(f(A4)) = N since m € N. It thus follows that
ran (f(B)) # ran (f(A)) so that f(A) # f(B). On the other hand if neither A nor B is the empty
set (but still A # B) then there is an a € A where a ¢ B or vice versa. Without loss of generality
we need only consider the first case. Clearly then a € ran (f(A)) = A but a ¢ ran(f(B)) = B so
that again f(A) # f(B). Hence in all cases we’ve shown that f is injective.

Thus we have that
|F| < |RN|=2%,

where the last equality was shown in Theorem 5.2.3d. Now define
E={{z}|z¢cR}
so that clearly E C F' and |E| = |R|. Hence we have
2% = |R| = |E| < |F|

by Exercise 4.1.3. Thus by the Cantor-Bernstein Theorem |F| = 2% as required. O

Exercise 5.2.2

A real number z is algebraic if it is a solution of some equation
™ + ap12" 4 +ax+ag=0,

where ag,...,a, are integers. If x is not algebraic, it is called transcendental. Show that the set of
algebraic numbers is countable and hence the set of all transcendental numbers has cardinality 2%°.

Solution:

I did not prove this here as I have already done so when studying Rudin’s Principles of Mathematical
Analysis, Exercise 2.2.

Exercise 5.2.3

If a linearly ordered set P has a countable dense subset, then |P| < 2%o.
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Solution:

Note that the countable dense subset is dense in P and not just in itself as explained in the errata
list.

Proof. Suppose that (P, <) is our linearly ordered set and R is the countable dense subset of P. We
construct an f : P — P (R) by defining

flx)={yeR|y<uz}

for any € P. Clearly for such 2 we have that f(z) C R so that f(x) € P (R).

Now we claim that f is injective. So consider any z,y € P such that x # y. Without loss of
generality we can assume that © < y. Since R is dense in P there is a z € R where x < z < y.
From this it follows that z € f(y) but that z ¢ f(x) since it is not true that z < z. Hence clearly
f(z) # f(y) so that we have shown that f is injective.

Thus we have
|P|<|P(R)| =2l = 2%,

where we have used Theorem 5.1.9. O

Exercise 5.2.4

The set of all closed subsets of reals has cardinality 2%0.

Solution:

Proof. Let C denote all the closed subsets of R and O the open sets. We form a mapping f : C — O
defined by
J(A)=R- 4

for A € C. Clearly by definition f(A) is open for every A € C since A is closed.

Now consider any A, B € C where A # B. Then there is an a € A such that a ¢ B or vice versa.
Without loss of generality we can assume the former. Then since a € A it follows that a ¢ R — A.
But also since a ¢ B (but a € R) we have that « € R — B. Thus

f(A)=R—-A# R-B= f(B)

so that f is injective.
Now consider any B € O and let A= R — B.

fA)=R-A=R-(R-B)=1B
so that f is also surjective. Hence we have that
IC| = 0| = 2%

by Theorem 2.6b. O

Exercise 5.2.5

Show that, for n > 0, n- 22" = R, - 22" — oNo . 92%0 _ 92" g2% _ (22‘*°)n - (22“°)N° - (22“0)
92"

Page 14

2%o




Solution:
Lemma 5.2.5.1. For any cardinal number K

l-k=~k.
Proof. Suppose that k = |A] for a set A. We define f: A — 1 x A by

fla) =(0,a)
for a € A, noting that 1 = {0}. Clearly by simple inspection this is bijective so that
1-k=|1xAl=|Al =k

as desired. O
Main Problem.
Proof. First we note that clearly since Ry < 280 we have

Mo < 92"

by property (n) in section 5.1. So consider any cardinal n € N where n > 0 so that 1 < n. We then
have

22" —1.92" (by Lemma 5.2.5.1)
<n 2270 <Ry 220 < oRo . 920 < g2%0 92 (repeated property (i) of 5.1)
= (22N0)2 (by property (o) of 5.1)
— 922" (by Theorem 5.1.7b)
=22 (by Theorem 5.2.2b)

We also have

1
92" _ (22%) (by Exercise 5.1.2)
n R 2%o
< (22%) < (22N0) ’ < (22%) (repeated property (n) of 5.1)
— g2t0-2t (by Theorem 5.1.7b)
2%o
=92 (by Theorem 5.2.2b)
Clearly these together with the Cantor-Bernstein Theorem shows the desired result. O

Exercise 5.2.6

The cardinality of the set of all discontinuous functions is 22" [Hint: Using Exercise 2.5, show that
‘RR — C| = 22" whenever |C| < 280 ]

Solution:
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Lemma 5.2.6.1. If B is a set with |B| = 22" and A is a subset of B with |A| < 2% then
1B — A] =22,

2%o

Proof. The proof is analogous to that of Theorem 5.2.4. So suppose that C' is a set with |C] =22 ".
Let B = C x C so that by Exercise 5.2.5 we have

IB| = |C x C| = 22" . 22" = 92"
Also suppose that A C B where |A| = 2%, Now define a set
P={zeC|IyelC((z,y cA}.

Clearly then |P| < |A| = 2% Since also |C| = 22"° but P C C it follows that there is an zg € C
where x¢ ¢ P. If we let X = {2} x C then any (z,y) € X is not in A so that (z,y) e CxC— A =
B — A. Hence X C B — A but also since there is an obvious bijection between X and C we have

22 =|C| = |X| < |B- 4]
Since also clearly B — A C B we also have that
IB—A| < |B|=22".
Hence by the Cantor-Bernstein Theorem |B — A| = 22" a5 desired. O
Main Problem.

Proof. By Lemma 5.2.7 \RR| =22 Also by Theorem 5.2.6a the set C' of all continuous f : R - R
has cardinality of 2%°. Thus clearly the set of all discontinuous functions from R — R is simply

D=R"-C.
But then by Lemma 5.2.6.1 above we have that
|D| = |R%| =22

as desired. ]

Exercise 5.2.7

Construct a one-to-one mapping of R x R onto R. [Hint: If a,b € [0,1] have decimal expansions
0.a1aza3 - -+ and 0.b1babs - - -, map the ordered pair (a,b) onto 0.a1byazbeagbs - -+ € [0,1]. Make adjust-
ments to avoid sequences where the digit 9 appears from some place onward.]

Solution:

Skipping this problem due to the obviousness of it in principle but the fact that the details are
tedious, and I have proved similar problems when studying Rudin’s Principles of Mathematical
Analysis.
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Chapter 6 Ordinal Numbers

§6.1 Well-Ordered Sets

Exercise 6.1.1

Give an example of a linearly ordered set (L, <) and an initial segment S of L which is not of the form
{z |z < a}, for any a € L.

Solution:
We claim that L = R and S = {z € L | < 0} with the usual order meet the criteria.

Proof. First, clearly L = R is a linearly ordered set. So consider any a € S and any x < a so that
we have
r<a<0.

Hence = € S also so that by definition S is an initial segment of R. Now suppose that .S does have

the form
S={zel|z<a}

for some a € L. Since 0 < 0 clearly 0 € S by the original definition so that by the above 0 < a. But
now consider a/2, which is clearly in L = R. By the above a/2 < a since a > 0 so a/2 € S but we
also have 0 < a/2 (hence it is not true that a/2 < 0) since 0 < a so that by the original definition
a/2 ¢ S. Since we have a contradiction it must be that S cannot be expressed in such a form. [

Exercise 6.1.2

w + 1 is not isomorphic to w (in the well-ordering by €).

Solution:

Proof. Since w = N and w+ 1 = w U {w} clearly w is a proper subset of w + 1 (since w ¢ w but
w € w+1). Now consider any a € w = N and any z < a. Then clearly also z € N so z € w. Thus
w is an initial segment of w + 1. Then, since it has already been shown that both w and w + 1 are
well-ordered sets, it follows from Corollary 6.1.5a that they cannot be isomorphic. O

Exercise 6.1.3

There exist 2% well-orderings of the set of natural numbers.

Solution:

Lemma 6.1.3.1. Suppose that A is a subset of N (including A = N ). Then every initial segment
of A with the standard ordering is finite.

Proof. Consider any initial segment S of (A, <). Then by Lemma 6.1.2 there is an n € A C N such
that S = {k€ A |k <n}. So consider any k € S so that k € A C N and k < n. Then by the
definition of < we have that k € n. Since k was arbitrary this shows that S C n so that |S| < n.
From this it clearly follows that S is finite since n is. O
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Main Problem.

Proof. Throughout the following let < denote the standard well-ordering on IN and let R be the set
of all well-orderings defined on INV.

First we construct an injective F : R — NV, So for any <€ R we have that (IV, <) and (N, <) are
two well-orderings of N. Consider then Theorem 6.1.3. We show that (¢) cannot be the case, i.e.
that an initial segment of (N, <) cannot be isomorphic to (IN, <). So suppose that this is the case
so that f is an isomorphism from an initial segment S of (N, <) to (N, <). Then by Lemma 6.1.3.1,
S is finite whereas IN is infinite, but since f is a bijection this is impossible since it would imply
that |S| = |IN| = Rg. Hence it must be that (a) (N, <) is isomorphic to (IN, <) or (b) the former
is isomorphic to an initial segment of the latter. In either case such an isomorphism f is unique by
Corollary 6.1.5¢c. So define F(<) = f, noting that clearly f € N™V.

Now we show that F' is injective by considering two <1, <2€ R where <;#~<5. Without loss of
generality we can the assume that there is an (n,m) €<; where (n,m) ¢<2. Thus n <1 m but
since <4 is a linear, strict ordering and —(n <3 m) it has to be that m <3 n since n # m. Now let
fi = F(=<1) and fy = F(<2). Since both f; and f, are bijective there are k1,1, k2,12 € N such that

fi(k1) =n fa(k2) =n
fillh) =m fa(l2) =m
Since f; is an isomorphism and fi(k1) =n <1 m = fi(l1) it follows that
ko <ly
and similarly since fy is an isomorphism and fa(l3) = m <o n = fo(ke) it follows that
ly <kso.

Now we claim that either fi(k1) # fa2(k1) or fi(l1) # f2(l1). Either case shows that F'(<1) = f1 #
fo = F(<2) so that F' is injective. To this end suppose that fi(ki) = f2(k1) = n = fa(k2). Then
since fo is injective it follows that kq = ko. Hence with the above we have

lo <kys =k <l
so that m = fo(la) <2 f2(l1) and hence m # f5(l1). Thus we have f1(l1) = m # f2(l1) so that the
disjunction is shown (since =P — @ = PV Q) and F is injective.

Hence since F : R — N7 is injective we have that
RIS NN = 8™ = 2

by Theorem 5.2.2c.

Now suppose that B is the set of all bijections from N to IN. We then construct an injective
G : 2N — B. So for any infinite sequence a € 2N we define an f € N» by

2n a, =0 2n+1 a,=0
2n) = on+1) =
f(2n) {2n+1 a, =1 f@n ) {Qn a, =1.

for n € N, i.e we swap 2n and 2n + 1 if a,, = 1 and leave them alone if a,, = 0. We then assign
G(a) = f. It is trivial but tedious to show that f is bijective so that indeed f € B.

Now consider any a,b € 2V where a # b and let f = G(a) and g = G(b). Since a # b there is an
n € N where a,, # b,. Without loss of generality we can assume that a,, = 0 # 1 = b,,. Then we

have
f(2n) =2n #2n+1 = g(2n)
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since a; = 0 but b, = 1. Hence f # g so that G is injective, from which it follows that [2IV]| < |B].
Lastly we construct an injective H : B — R. So for an f € B define

<= {(f(n), f(m)) [ (n,m) € N x N An <m}

and set H(f) =<. Clearly by definition since f is bijective it is an isomorphism from (N, <) to
(N, <). This means that (N, <) is isomorphic to (IN, <) so that clearly < is a well-ordering since
< is. Hence indeed H(f) =<€ R.

Now we show that H is injective. So consider f1, fo € B where <1= H(f1) = H(f2) ==<2. Then
ffl o fo is an isomorphism from (IN,<7) to (IN,<3) But since <;== these are the same well-
ordered set so that it follows from Corollary 6.1.5b that the only isomorphism between them is the
identity in. Hence f; Yo fo = in, from which it follows that f; = fo. Therefore H is injective so
that |B| < |R|.
Putting this together results in

2% = |2V| < |B| < |R.

It then follows from the Cantor-Bernstein Theorem that |R| = 2%° as desired. O

Exercise 6.1.4

For every infinite subset A of N, (4, <) is isomorphic to (N, <).

Solution:

Proof. Let A be an infinite subset of N. Then (A, <) (where < is the standard well-ordering of V)
is a well-ordering since any B C A is also a subset of N and therefore has a least element. Hence
by Theorem 6.1.3 either:

1. (A, <) and (N, <) are isomorphic,
2. An initial segment of (4, <) is isomorphic to (IV, <), or

3. (4, <) is isomorphic to an initial segment of (N, <)

We show that they must be isomorphic (1) by showing that (2) and (3) lead to contradictions.

Suppose (2), i.e. that an initial segment S of (A, <) is isomorphic to (N, <). Then since A C N
it follows from Lemma 6.1.3.1 that S is finite. But since this is isomorphic to IN it means that
|S| = |IN| = Rg, which is a contradiction!

Now suppose (3) so that (A, <) is isomorphic to an initial segment S of (N, <). Again Lemma 6.1.3.1
tells us that S is finite whereas A is infinite. But since they are isomorphic this implies that
|S| = |A| = R, which is again a contradiction!

Hence it has to be that (A4, <) and (IV, <) are isomorphic. O

Exercise 6.1.5

Let (W7,<;) and (Wa, <2) be disjoint well-ordered sets, each isomorphic to (N, <). Show that the
sum of the two linearly ordered sets (as defined in Lemma 4.5 in Chapter 4) is a well-ordering, and is
isomorphic to the ordinal number w + w ={0,1,2,...,w,w+ L, w+2,...}.
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Solution:

Proof. Suppose that (W, <) is the sum and associated order as defined in Lemma 4.4.5. By that
lemma < is a linear ordering but we must show that it is also a well-ordering.

First we note that clearly W7 and W5 are both well-orderings since they are both isomorphic to
(N, <). So consider any non-empty subset of A of W = W;UWs. Let A1 = ANW; and As = ANW,
so that clearly they are disjoint since W; and W5 are and A; C W7 and A C Ws. Also since A is
not empty either A; or As (or both) are also not empty. If A; is not empty then since A; C W,
and (W71, <1) is a well-ordering there is a least element a € A;. Otherwise if A; is empty then As
is not and it has a least element a since it is a non-empty subset of the well-ordered (W3, <2). Now
consider any b € A so that also b € W. If b € W; then b € A; so that A; is not empty. In this case
since a is the least element of A; we have a <; b so that by definition a < . On the other hand if
b€ W5 then b € Ay. If A; was empty then a is the least element of As and b € A, so that again
a <5 b, hence by definition a < b. If A; is not empty then a € A; C W so that by the definition of
the sum (W, <) we have that a < b since b € W5. Hence also a < b. Thus in all cases a < b so that
a is the least element of A since b was arbitrary.

Now we show that (W, <) is isomorphic to (w + w,<). First, since (W7,<;) and (Wa, <3) are
both isomorphic to (N, <) let f; : Wi — N and fy : Wy — N be isomorphisms. Now we define
g: W = w+w by
W
g(w) = i) we
w+ fa(w) we W,

for w € W = W3 U Wy, noting that ¢ is well defined since W7 and Wj are disjoint. Clearly since
ran (f1) = ran (f2) = N we have that g(w) € w4 w for all w € W.

Consider any k € w + w so that K € N or £k = w+ n for some n € IN. In the former case let
w = f; ' (k), which exists since f is bijective. Thus w € W so that by definition g(w) = f(w) = k.
In the latter case let w = f{l(n), which exists since fy is bijective. Thus w € Ws so that by
definition g(w) = w + fa(w) = w4+ n = k. This shows that g is surjective.

Now we show that ¢ is an increasing function. So consider any wy,ws € W where wy < ws.

Case: wi,ws € Wi. Then since w; < wy we have that w; <; ws. It then follows that g(w;) =
flwr) < fwz) = g(wz) since f; is an isomorphism.

Case: wy,wy € Wy, Then since wy < ws we have that wy <o we. It then follows that fo(wq) <
fa(ws) since fy is an isomorphism. Hence we clearly then have g(wi) = w + fo(w1) < w + fo(wsy) =
g(w2).

Case: wy; € Wp and wy € Wa. Then we have that g(wy) = f1(w1) € N and g(ws) = w + fa(ws) so
that clearly g(w1) < w < g(ws) since fa(ws) € N.

Case: wy € W7 and wy € Wy. If this were the case then by the definition of < we would have that
wg < w1, which contradicts the established hypothesis that w; < ws. Hence this case is impossible.

Hence in all cases g(w;) < g(ws) so that g is increasing. Therefore it is also injective and an
isomorphism (since we’ve shown that it is surjective as well). Thus we’ve shown that W is isomorphic
to w 4 w as desired. O

Exercise 6.1.6

Show that the lexicographic product (IN x N, <) (see Lemma 4.6 in Chapter 4) is isomorphic to w - w.
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Solution:

Proof. Suppose that < is the lexicographic ordering of N x N. Now we define f: N X N = w-w
by
fn,m)=w-n+m

for any (n,m) € N x N. Clearly f(n,m) € w X w.

First we show that f is surjective. So consider any k € w - w so that there are n,m € N where
k = w-n+m. Then we clearly have that f(n,m) =w-n+m = k. Since clearly (n,m) € N x N it
follows that f is surjective.

Now we show that f is an increasing function. To this end consider any (n1,m1), (ng,m2) € N x N
where (n1,m1) < (n2, ma).

Case: n1 = ng. Then since (n1,m1) < (n2,m2) it must be that m; < mg. Hence we have that
flri,m)) =w-n1+mp =w-ng+my <w-ng +ma = f(ng, ma).

Case: ny # na. Then since (ny,my) < (ng,mg) it must be that n; < ny. Hence we have that
fni,m) =w-ni +my <w-ny <w-ng+mg = f(ng,my).

Thus in all cases f(n1,m1) < f(n2,ma) so that f is increasing. It then follows that f is injective
and isomorphic. Hence (N x N, <) is isomorphic to w - w. O

Exercise 6.1.7

Let (W, <) be a well-ordered set, and let a ¢ W. Extend < to W = W U {a} by making a greater than
all x € W. Then W has a smaller order type than W".

Solution:

This problem is looking ahead to future sections where order types and how to compare them are
defined.

Proof. Suppose that « is the order type of W and that f : W — « is the isomorphism. Now let
B =8(a) = aU{a}. We then claim that W’ is isomorphic to 8. So define a g : W/ — 8 by

) fw) weW
g(w)—{a wé W

for w € W’. Clearly we have that g(w) € § for any w € W’.

Now consider any x € . If z = o then set w = a ¢ W so that g(w) = o = x. If x # o then z € a so
set w = f~1(x) so that then w € W. We then have that g(w) = f(w) = f(f~'(z)) = z. Therefore
g is surjective.

Now consider any wy,ws € W' where wy < wo

Case: wy,ws € W. Then since f is an isomorphism and w; < ws we have that g(w;) = f(w1) <
fwa) = g(wa).

Case: wy € W and wy = a. Then g(w) = f(w1) € a and we ¢ W so that g(wz) = a. Hence
g(wi) € g(wz) so that by the definition of < we have that g(wy) < g(ws).

Note that these cases are exhaustive since it can’t be that wy = we = « since wy < ws (and therefore
wy # wsg). It also cannot be that wy € W but w; = a since then it would be that wy < w; since a
is the greatest element of W', which contradicts w; < we. Thus in all cases g(wi) < g(w2) so that
g is increasing, and therefore injective and an isomorphism.

Hence 8 is the order type of W', « is the order type of W, and a < 8 since a € §. O
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Exercise 6.1.8

The sets W = N x{0,1} and W' = {0, 1} x N, ordered lexicographically, are nonisomorphic well-ordered
sets. (See the remark following Theorem 4.7 in Chapter 4.)

Solution:

Proof. Let < be the lexicographic ordering of W = N x {0,1} and <’ be the lexicographic ordering
of W' ={0,1} x N.

First we define f : W — w by
f(n,m)=2n+m
for (n,m) € W. Clearly each f(n,m) € N = w.

Now consider any k¥ € w = N. If k is even then k = 2n for some n € N so set w = (n,0) € W.
Then clearly f(w) = f(n,0) = 2n = k. On the other hand if k is even then k = 2n 4 1 for some
n € N so set w = (n,1) € W. Then clearly f(w) = f(n,1) = 2n+ 1 = k. This shows that f is
surjective.

Now consider any wy = (n1,m1) and we = (n2,m2) in W where wy < ws.

Case: ny = ng. Then since wy < wo it has to be that m; < mq, and since my, ms € {0, 1} it has to
be that m; = 0 and my = 1. From this it follows that

f(wr) = f(n1,m1) = f(n1,0) =2ny < 2n1 +1=2ny+1= f(ne,1) = f(ne, me) = f(wa).

Case: n1 # ns. Then since wy < wy it has to be that ny < ng. Then n; + 1 < no and since also
my < 2 we have

f(wl) = f(nl,ml) = 2711 +my < 2711 + 2= 2(711 + 1) S 2712 S 277,2 + meo = f(nl,mg) = f(IUQ) .

Hence in all cases f(w;) < f(ws) so that f is increasing and therefore injective and isomorphic.
Therefore W is isomorphic to w.

Now we define g : W/ — w + w by

(n,m) = m n=>0
gi, N w+m n=1

for (n,m) € W'. Clearly since m € N we have that g(n,m) € w4 w for all (n,m) € W'.

Now consider any o € w+w. If &« € w = N then (0,) € W’ and ¢g(0, @) = . On the other hand if
a = w+m for some m € N then (1,m) € W and ¢g(1,m) = w + m = «. Therefore g is surjective.

Now consider any wy = (ny,m;) and wy = (ng, mg) in W’ where wy <" ws.

Case: n; = ny. Then since w; <’ ws it has to be that m; < ma. If n; = ng = 0 then
g(w1) = g(n1,m1) = g(0,m1) = my <mz = g(0,mz) = g(nz,m2) = g(ws).
On the other hand if n; = ne = 1 then
g(wi) = gny,my) =g(l,my) =w+my <w+mg = g(1,ms) = g(na, ms) = g(ws) .

Case: ny # ng. Then since wy <" wq it has to be that n; < ny. Moreover since ny,ng € {0,1} it
has to be that nqy = 0 and ny = 1 so that

g(wi) = g(ni,m1) = g(0,m1) = my <w+ma = g(1,mz2) = g(na2, ma) = g(wa).
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Hence in all cases g(w1) < g(ws) so that g is increasing and therefore injective and an isomorphism.
Therefore W’ is isomorphic to w + w.

Now, since w € w+w we have that w < w+w and so are distinct ordinals. Therefore by the remarks
following Theorem 6.2.10 w and w + w are not isomorphic. If W and W’ were isomorphic with h as
the isomorphism then g o h o f~! would be an isomorphism from w to w + w, which is impossible.
So it must be that W and W’ are not isomorphic. O

§6.2 Ordinal Numbers

Exercise 6.2.1

A set X is transitive if and only if X C P (X).

Solution:

Proof. (—) Suppose that X is a transitive set and consider any x € X. Then 2 C X since X is
transitive. Thus z € P (X) so that, since « was arbitrary, X C P (X).

(+-) Now suppose that X C P (X) and consider any x € X. Then also x € P (X) so that z C X.
Hence, since x was arbitrary, X is transitive by definition. O

Exercise 6.2.2

A set X is transitive if and only if | JX C X.

Solution:

Proof. (—) Suppose that X is transitive and consider any y € |J X. Then there is an = € X such
that y € z. Since X is transitive and x € X we have that z C X so that y € X as well. Since y was
arbitrary this shows that [J X C X.

(+) Now suppose that | J X C X and consider any x € X. If z = & then clearly  C X. So suppose
that © # @ and consider any y € x. Then since z € X it follows that y € |J X so that also y € X.
So since y was arbitrary it follows that £ C X. Since x was arbitrary by definition X is transitive.

O

Exercise 6.2.3

Are the following sets transitive?
(a) {2,{2}.{{2}}},

(b) {2, {2}, {{2}}.{2,{a}}},
(c) {2, {{z}}}.

Solution:
(a) We claim that X = {@, {@},{{@}}} is transitive.
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Proof. Suppose x € X. If v = & then obviously z C X. If z = {@} then z C X since @ € X.
If © = {{@}} then z C X since {@} € X. Thus since the cases are exhaustive we’'ve shown that
x C X so that X is transitive by definition. O

(b) We claim that X = {@,{@},{{2}},{2,{g}}} is transitive.

Proof. For x € X the three cases in part (a) above have the same results and, if z = {@, {&}}, then
x C X since @ € X and {@} € X. Hence again X is transitive by definition. O

(c) We claim that X = {@, {{@}}} is not transitive.

Proof. If x = {{@}} we have that z is not a subset of X since {@} € x but {@} ¢ X. Hence X is
not transitive. O

Exercise 6.2.4

Which of the following statements are true?

(a) If X and Y are transitive, then X UY is transitive.

(b) If X and Y are transitive, then X NY is transitive.

(¢) f X €Y and Y is transitive, then X is transitive.

(d) If X CY and Y is transitive, then X is transitive.

(e) If Y is transitive and S C P (Y'), then Y U S is transitive.

Solution:
(a) We claim that this is true.
Proof. Consider any x € X UY. If x € X then x C X since X is transitive. Since also X C X UY

we clearly have that x C X € X UY. We can make the same argument if it is the case that z € Y.
Hence since x was arbitrary this shows that X UY is indeed transitive. O

(b) We claim that this is true.

Proof. Consider any x € X NY. Then z € X and z € Y. Since X and Y are transitive this means
that x C X and x C Y. So consider any y € = then y € X and y € Y so that y € X NY. Hence
since y was arbitrary it follows that x C X N'Y so that X NY is transitive since = was arbitrary.

O

(¢) We claim that this is not true.

Proof. Tt was shown in Exercise 6.2.3 part (a) that Y = {@,{@},{{o}}} is transitive. So let
X = {{@}} so that clearly X € Y. If then z = {@} then z € X but z is not a subset of X since
@ ¢ X. Hence the original hypothesis is not true. O

(d) We claim that this is not true.

Proof. Again Y = {@,{@},{{2}}} is transitive so let X = {{@},{{D}}} so that clearly X C Y.
Then if x = {@} then € X but z is not a subset of X because @ ¢ X. Thus the original hypothesis
is false. 0

(e) We claim that this is true.
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Proof. Consider any z € Y US. If x € Y then since Y is transitive z C Y. Hence x CY C Y US.
On the other hand if € S then € P (Y) since S C P(Y) Hence z CY C Y US. Since in all
cases * C Y U S and = was arbitrary this shows that Y U S is transitive by definition. O

Exercise 6.2.5

If every X € S is transitive, then | J S is transitive.

Solution:

Proof. Consider any x € |JS. Then there is an X € S where 2 € X. Since X is transitive it follows
that « C X. So consider any y € z so that also y € X. Thus also y € |J S since X € S. Since y
was arbitrary this shows that z C |JS. Since x was arbitrary this shows by definition that |J.S is
transitive. O

Exercise 6.2.6

An ordinal « is a natural number if and only if every nonempty subset of a has a greatest element.

Solution:

Proof. (—) Suppose that n is a natural number and consider any nonempty subset A of n. Since
A C n it follows that |A| < |n| = n so that A is finite. Thus A is a finite set of natural numbers and
so has a greatest element. This can be proven by a trivial inductive argument.

(+) We show this by contrapositive. Suppose that « is an ordinal such that a ¢ N. Then
a ¢ w = N so that a £ w, from which it follows that « > w Hence o = w or a > w, in which
case w € «a so that w C « since « is transitive. Thus in either case N = w C «. Clearly IN has
no greatest element (since if n were such a greatest element then n+1 € N but n < n+ 1). Thus
there is a nonempty subset A of « such that A has no greatest element. O

Exercise 6.2.7

If a set of ordinals X does not have a greatest element, then sup X is a limit ordinal.

Solution:

Lemma 6.2.7.1. If o and B are ordinals and o < 8 then a+ 1 < 3.

Proof. To the contrary, suppose that « +1 > 3. Then by the definition of < we have that § €
a+1=aU{a} and since S # « it has to be that 5 € a. But then 5 < a, which is a contradiction.
O

Lemma 6.2.7.2. If a and B are ordinals and o < 8+ 1 then a < .

Proof. Since aw < 8+ 1 we have that « € f+ 1= U {B}. Hence o« € § or &« = 8. Thus o < 3 or
a=pfie. a<f. [

Main Problem.
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Proof. Suppose that X is a set of ordinals with no greatest element. Let § = sup X = |JX. Then
by the remarks following the proof of Theorem 6.2.6 8 ¢ X since X has no greatest element. Now
also suppose that S is a successor so that there is an ordinal « such that 8 = o + 1.

If @ € X then since X has no greatest element there is a v € X such that a < . Then by
Lemma 6.2.7.1 8 = a4+ 1 <. It cannot be that v = ( since v € X but S ¢ X so it must be that
B < . But then since § is an upper bound of X it follows that - is also. However, since v € X this
would make ~y the greatest element of X, which is a contradiction.

On the other hand if o ¢ X then consider any v € X. Then v < 8 = a+1 so that by Lemma 6.2.7.2
v < «. Since 7y was arbitrary this shows that « is an upper bound of X. However, since a < 3 this
contradicts the definition of 8 as being the least upper bound of X, according to which o > .

Since all cases lead to a contradiction it cannot be that 5 = sup X is a successor and therefore by
definition is a limit ordinal. O

Exercise 6.2.8

If X is a nonempty set of ordinals, then (] X is an ordinal. Moreover () X is the least element of X.

Solution:

Proof. Suppose that X is a set of ordinals. Then by Theorem 6.2.6d X has a least element . We
shall show that o = [ X, which simultaneously shows that (] X is an ordinal and the least element
of X.

Consider any 8 € X. Since « is the least element o < 8 so that « = S or a < 8. Clearly « C aa = 8
in the former case. In the latter case we have o € 8 so that o C 8 as well since f is transitive (since
it is an ordinal). Since 8 was arbitrary any = € « is also in every § € X so that € (| X so that
a C (X since z was arbitrary.

Now consider any z € (] X. Then clearly « € « since a € X so that (| X C « since x was arbitrary.

Thus we have shown that o = [ X as desired. O

§6.3 The Axiom of Replacement

Exercise 6.3.1

Let P(x,y) be a property such that for every x there is at most one y for which P(z,y) holds. Then for
every set A there is a set B such that, for all x € A, if P(z,y) holds for some y, then P(z,y) holds for
some y € B.

Solution:

Proof. Define a property R(z,y) such that R(xz,y) holds if and only if

1. P(z,y) holds, or

2. y = @ and there is not a z such that P(z, z) holds.

Clearly this property is such that for every x there is a unique y for which R(z,y) holds.
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Now consider any set A. Then by the Axiom Schema of Replacement there is a set B such that,
for every x € A, there is a y € B for which R(x,y) holds. Consider any z € A. Then by the above
there is a y € B such that R(z,y) holds. Now suppose that P(x, z) holds for some z. Then option
2 above cannot be the case so that, P(x,y) holds (option 1) since R(z,y) does. Thus P(z,y) holds
for some y € B as we were required to show. O

Exercise 6.3.2

Use Theorem 6.3.6 to prove the existence of

(a) The set {@,{a}, {{a}} {{{z}}},...}.

(b) The set {N,P (N),P(P(N)),...}.

(c) Theset w+w=wU{w,w+1,(w+1)+1,...}.

Solution:

(a)

Proof. Define the operation G(z,n) for set a  and n € N by
G(z,n) = {z} .

Then by Theorem 6.3.6 there is a unique sequence (a, | n € N) where

ag =
ant1 = Glan,n) = {a,}
for all n € N. Clearly the range of (a,) is the set we seek. O

(b)
Proof. Similarly define the operation G(z,n) for a set  and n € N by
G(xv n) =P (.CC) )

noting that this set exists by the Axiom of Power Set. Then by Theorem 6.3.6 there is a sequence
(an | n € N) defined by

apg = N
an+1 = Glan,n) =P (an) ,

noting that ap = IN exists by the Axiom of Infinity. Clearly then the range of (a,) is the set we
seek. O

()

Proof. Define the operation G(z,n) for a set x and n € N by
G(z,n) = S(zx) =z U{z},

Then by Theorem 6.3.6 there is a sequence {(a,, | n € N) defined by

apg = w
ant1 = Glan,n) = S(a,) =a, +1,

noting that ap = w = NN exists by the Axiom of Infinity. Clearly then the range of (a,) is A =
{w,w+1,w+2,...}. Tt then follows that w 4+ w = w U A is the set we seek. O
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Exercise 6.3.3
Use Theorem 6.3.6 to define
Vo = &
Vi =P(Va)  (new);

V, = Uvn.

Solution:
Proof. Define the operation G(z,n) for a set  and n € N by
G(z,n) =P (),

noting that this set exists by the Axiom of Power Set. Then by Theorem 6.3.6 there is a sequence
(V| n € N) defined by

Vo=09

Vn+1 = G(Vna n) =P (Vn) )

noting that Vj = @& exists by the Axiom of Existence. Then we let

Vo = UVna

new

noting that w = IN. This set exists by the Axiom of Union. O

Exercise 6.3.4
(a) Every x € V,, is finite.
(b) V,, is transitive.

(¢) V,, is an inductive set.

Solution:
(a)

Proof. First we show by induction that every V,, is finite (for n € IN). For n = 0 we have V,, =
Vo = @, which is clearly finite. Now suppose that V,, is finite then we have V.11 = P (V,,), which is
finite by Theorem 4.2.8.

Now consider any = € V,, = UnEw V,, so that there is an n € w such that x € V,,. We note that n # 0
since V) = & so it cannot be that z € Vo = &. Hence V,,_; is a set and moreover V;, = P (V,,_1).
So since x € V,, it follows that € P (V,,—1) so that & C V,,_;. Thus it follows that |x| < |V,,—1] so
that clearly z is finite since V,,_1 is (shown above). O

(b)

Proof. Consider any = € V,,. Then by the same argument as in part (a) above it follows that x € V,
where n # 0. Hence again V,,_; is a set and V,, = P (V,,_1) so that z C V,,_y. Then for any y € x
we have that y € V,,_1, from which it follows that clearly y € (J,, Vx = Vi,. Hence since y was
arbitrary x C V,,, and since x was arbitrary this shows that V,, is transitive by definition. O
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(c)

Proof. First we show by induction that each V;, (where n € w) is transitive. For n = 0 we have
V., = Vo = @, which is clearly vacuously transitive. Now suppose that V,, is transitive and consider
any ¢ € V41 = P (V,,) so that « C V,,. Now consider any y € x so that also y € V,,. But since V,, is
transitive y C V,, so that y € P (V,,) = V,,41. Hence since y was arbitrary this shows that  C V41
and since z was arbitrary this shows by definition that V,,11 is transitive, thereby completing the
inductive proof.

Now we show that V,, is inductive. So first note that V3 = P (Vp) = P (&) = {@} so that 0 = & € V4.
From this is clearly follows that 0 € Vo =V,.

Now suppose that n € V,, = [J,c,, V& so that there is an m € w such that n € V,,,. Since it was
shown above that V,, is transitive we have that n C V;,, as well. So consider any x € n+1 = nU{n}.
If 2 € n then also z € V,, since n C V,,. On the other hand if € {n} then z = n € V,,. Since
x was arbitrary this shows that n +1 C V,, so that n +1 € P (V,,) = Vj41. From this it clearly
follows that n + 1 € (J,c,, V& = V... This shows that V,, is inductive by definition. O

new

Exercise 6.3.5

(a) If z € V,, and y € V,, then {z,y} € V.

b)) X eV, then UX €V, and P (X) € V.

(¢c) If A€V, and f is a function on A such that f(z) € V,, for each x € A, then f[X] € V.
(d) If X is a finite subset of V,,, then X € V,.

Note that part (c) differs slightly from the book; see the Errata List.

Solution:
(a)

Proof. First we show that if z € V,, for some n € w then = € V,,, for all m > n. We show this by
induction on m. So for m = n clearly x € V,, = V,,,. Now suppose that x € V,,,. Then it was shown
in Exercise 6.3.4 part (c) that V,, is transitive so that x C V,,. Hence = € P (V,,,) = Vin41, thereby
completing the inductive proof.

Now suppose that z,y € V,,. Then there are n,m € w such that x € V,, and y € V,,,. Without loss
of generality we can assume that n < m (since if this is not the case then we simply reverse the roles
of z and y). So since m > n it follows from what was shown above that « € V,,, as well. Hence we
have that clearly {x,y} C V;, since both z € V,,, and y € V,,,. Then {z,y} € P (Vi) = Vi1 from
which it clearly follows that {z,y} € U,c, V& = V- O

(b)

Proof. Suppose that X € V,, = [J,c,, V&- Then there is an n € w such that X € V,,. It was shown
in Exercise 6.3.4 part (c) that V,, is transitive so that X C V,,.

First we show that |JX € V,,. So consider any = € |J X so that there is a Y € X such that z € Y.
Then since X C V,, we have that Y € V,,. Since again V,, is transitive we have that Y C V,, so that
x € V, since z € Y. Since x was arbitrary it follows that |JX C V,, so that |JX € P (V,,) = V41.
From this it clearly follows that (J X € (¢, Vi = Vio-

Next we show that P (X) € V,,. So consider any Y € P (X) so that ¥ C X. Now consider any
y € Y so that also y € X. Since X C V,, we have that y € V,,. But since y € Y was arbitrary
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it follows that Y C V,, so that Y € P(V,,)) = V,41. Then since Y € P (X) was arbitrary it
follows that P (X) C V41 so that P(X) € P(Viq1) = Viyo. From this it clearly follows that
P(X) € Upew Vi = Vi O

(c)

Proof. Note the issue with this part in the errata list. Since A € V,, we have by Exercise 6.3.4 part
(a) that A is finite. Then by Theorem 2.2.5 it follows that f[A] is finite. Also clearly f[A] is a subset
of V,, and hence is a finite subset. Therefore by part (d) below f[A] € V,. O

(d)

Proof. Consider any finite X C V,,. Suppose then that |X| = n for some n € IN. Then for each
rr € X, where k € n, we have that x;, € V, = Umew Vin so that there is an my € w where z, € V. .
Now let m = maxyc,, mg, which exists since n is finite. Then, for any k € n, by what was shown in
Exercise 6.3.5 part (a) we have zj, € V,, since z, € V,,,, and m > my,. Hence it follows that X C V,,
so that X € P (V;,) = Ving1. Clearly then X € U, ., Vi = V. O

§6.4 Transfinite Induction and Recursion

Exercise 6.4.1

Prove a more general Transfinite Recursion Theorem (Double Recursion Theorem): Let G be an opera-
tion in two variables. Then there is an operation F such that F(«, 8) = G(F | (8 x «)) for all ordinals
B and «. [Hint: Computations are functions on (8 + 1) x (o + 1).]

Solution:

Proof. Since in these Recursion Theorems the arguments of interest of the given operation G are
typically functions, we assume that G still takes a single variable despite what the text says. Hence
for each x there is a unique y such that y = G(z). It just happens that in this case the variables of
interest are functions of two variables.

For ordinals v and § we let f, g be the isomorphism from the ordinal (5 + 1) - (o + 1) to the
lexicographic ordering of (a + 1) x (8 4 1), which exists by Theorem 6.5.8. We also note that
according to Exercise 6.5.2 we have

B+ -(a+)=@B+1)-a+B+1)-1=FB+1)-a+@B+1)=[B+1)-a+p]+1
so that (84 1) - (a+ 1) is a successor ordinal. Then for v < (84 1) - (v + 1) define

Xapy:{(6,8) € (@+1) x (B+1) | (6,€) < fa,s(7)}

Then for v < (B+1) - (a+1) we say that ¢ is a computation of length  if ¢ is a transfinite sequence
whose domain is 7 + 1 and such that t(6) = G(t o (f;lﬁ I Xa,,6)) for all § <. We note that since
(B+1)-(a+1)is asuccessor that y+1 < (8+1) - (a+1).

Now we define the property P(z,y, z) such that P(z,y, z) holds if and only if

1. z and y are ordinal numbers and z = t(f;;

(with respect to G), or

(z,y)) for some computation ¢ of length (y+1)-z+y
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2. x or y is not an ordinal and z = &.

We prove that P defines an operation. Hence we have to show that for any z and y there is a unique
z such that P(z,y, z) holds. So consider any sets o and 8. If « or § is not an ordinal than clearly
P(a, 8,9) holds and & is unique. So suppose that both « and § are ordinals. Then it suffices to
show that there is a unique computation of length (y + 1) -« 4+ y (with respect to G) since this will

make z = t(f(;};(a, B)) unique. We show this via transfinite induction.

So consider any ordinal v < (8+1)- (a+1) so that v < (y+ 1) -z +y and assume that for all § < v
that there is a unique computation of length § and we show that there exists a unique computation
of length v, which completes the proof that P defines an operation.

Ezistence. First define a property R(z,y) such that R(z,y) holds if and only if

1. z is an ordinal where z < 7 and y is a computation of length « (with respect to G), or
2. x isis an ordinal and x > v and y = @, or

3. z is not an ordinal and y = @ .

Clearly by the induction hypothesis this property has a unique y for every z. Hence we can apply
the Axiom Schema of Replacement, according to which there is a set T such that for every § € ~
(so that 0 < «y) there is a ¢ in T such that R(6,¢) holds. That is

T = {t| t is the unique computation of length § for all § < v}

Now, T is a system of transfinite sequences (which are functions) so define t = [J7T and let 7 =
FU{(1. G0 (J7h T Xapa))]-

Claim 1: dom (1) = v+ 1. So consider any € € dom (7). Clearly if € = v then € € v+ 1. On the
other hand if ¢ € dom (¢) then there is a ¢t € T such that ¢ € dom (¢). But since ¢ is a computation
of length § and § < ~ it follows that ¢ <6 < v < y+1 so that € € v+ 1. Hence since € was arbitrary
dom (1) C v+ 1.

Now consider any € € v+ 1 so that ¢ < . If ¢ = ~ then clearly by definition ¢ € dom (7). On the
other hand if € # « then € < . So consider the ¢ € T' where ¢ is the unique computation of length
¢ (which exists since € < ). Then clearly € € dom (¢) so that € € dom (¢). From this it follows that
clearly € € dom (1) so that v+ 1 C dom (7) since ¢ was arbitrary. This proves the claim.

Claim 2: 7 is a function. Consider any € € dom (1) = v + 1 so that again ¢ < . If ¢ = 7 then
clearly 7(e) = 7(y) = G(to (f;é I Xa,8,7)) is unique since G is an operation. On the other hand if
€ < -y then 7 is a function so long as t is, and this is the case so long as T is a compatible system of

functions since ¢ = |JT. We show this presently.

So consider any arbitrary ¢1,to € T where t; is the computation of length €1 and ¢5 is the computation
of length eo. Without loss of generality we can assume that €1 < 5. We must show that ¢1(6) = t2()
for all § < 7. This we show by transfinite induction. So suppose that ¢; (k) = ta(k) forallk < § < €.
Then clearly ¢1 [ § = t2 [ §, from which it follows that ¢; o (f(;}i I Xa,8,5) =t20 (f;}a I Xo6) and
since G is an operation we have ¢1(§) = G(t1 o (f(;}a ' Xaps)) = G(tz 0 (f;lﬁ ' Xop.6)) = t2(9).
This completes the proof of the claim.

Claim 3: 7(6) = G(1 o (f;lﬁ I Xop,5)) for all § < . So consider any such §. If § = v then
since 7 | v = t we clearly have 7(§) = 7(v) = G(t o (f;}; I Xag~)) = G(ro (f(;}g I Xagq)) =
G(ro (f(;}g I Xo,8,6)). On the other hand if 6 < 7 then let ¢ € T be the computation of length §
(which exists since § < ). Then 7(8) = t(8) = G(to (f15 | Xaps)) = G(ro (foﬁg I Xa.5,6)) since

o,
t is a computation (with respect to G) and clearly ¢ C 7.
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Claims 1 through 3 show that 7 is a computation of length v and hence that such a computation
exists.

Uniqueness. Now let o be another computation of length v. We show that ¢ = 7, which proves
uniqueness. Since both o and 7 are functions with dom(c) = v+ 1 = dom (7) it suffices to
show that o(6) = 7(d) for all § < 4. We show this once again by using transfinite induction.
So suppose that o(e) = 7(¢) for all e < § < . It then follows that ¢ | § = 7 | § so that

oo (f;é | Xaps) =To0 (fa,% I Xop,6). Then since o and 7 are computations we have that

o(6) = G(o o (f;/lﬁ I Xaps)) =G(ro (f;}j I Xa,8,5)) = 7(3), thereby completing the uniqueness
proof.

This completes the proof that P defines an operation.

So let F be the operation defined by P. The last thing we need to show to complete the proof of
the entire theorem is that F(«, 8) = G(F | (a x 3)) for all ordinals o and /3, noting that we are
treating F as a function even though it is an operation. Thus, for any set X, F [ X denotes the
set {(z,F(z)) | + € X}, which forms a function with domain X. The range of this function is a set
whose existence is guaranteed by the Axiom Schema of Replacement since F is an operation.

So consider any ordinals o and 8 and the unique computation ¢ of length (8+1)-«a+ . Then clearly
for any v < (8 + 1) - o + 8 we have that ¢, =t | (y+ 1) is a computation of length ~. Since this
computation is the unique computation of length ~, by the definition of F' as it relates to P we have
F(f(v)) = ty(y) = t(7). Since v was arbitrary this shows that F [ (a x ) =t [ (6+1)-a+ 3. Then
clearly we have F(a, 8) = t((8+1)-a+8) = G(to (/74 | Xas (311 ass)) = Gt [ (A+1)-a+8) =
G(F | (o x 8)) by what was just shown above. O

NOTE: This is a very nasty exercise and there may be a simpler way to do this.

Exercise 6.4.2

Using the Recursion Theorem 6.4.9 show that there is a binary operation F such that
(a) F(z,1) = 0 for all x.
(b) F(x,n 4+ 1) = 0 if and only if there exist y and z such that z = (y, z) and F(y,n) = 0.

We say that x is an n-tuple (where n € w, n > 0) if F(z,n) = 0. Prove that this definition of n-tuples
coincides with the one given in Exercise 5.17 in Chapter 3.

Solution:

Proof. Note that there is no such operation that can exactly satisfy both conditions as they actually
contradict each other. To see this suppose there is such an operation F. Then define the set x = @
and n = 0 Then by (a) we have that F(z,n + 1) = F(z,1) = 0. It then follows from (b) that there
are a y and z such that = = (y, z), but clearly this is not the case for x = @&. Hence a contradiction.

To remedy this we simply add a condition to (b), which when restated becomes
(b) n > 0 and F(x,n+1) = 0 if and only if there exists y and z such that = = (y, 2) and F(y,n) = 0.
Now, define an operation G by z = G(z, y,,) if and only if either

1. gy, is a function with parameter u, dom (y,) =1, and z = 0, or

2. y, is a function with parameter u, dom (y,) = « + 1 for some ordinal «, there are p and ¢
where z = (p,q), yp(a) =0, and z =0 or

3. None of the above hold and z = 1.
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Then by Theorem 6.4.9 there is an operation F such that F(z,a) = G(z,F, | «) for all ordinals o
and sets .

Then for any set « we have that clearly F [ 1 is a function with domain 1 (and parameter x) so that
by definition
F(z,1) =G(z,F; [ 1) =0.

This shows (a).
To show (b) consider any ordinal n and set x.

(—) Suppose that n > 0 and F(z,n + 1) = 0 so that clearly (3) above cannot be the case. Also (1)
cannot be the case since F(z,n+ 1) = G(z,F, [ n+ 1) and dom (F, [ n+ 1) =n+ 1 > 1. Hence
(2) is the case so that there are y and z such that = (y,2) and (F, [ n+ 1)(n) = 0. Hence it
follows that F'(y,n) = 0.

(+) Now suppose that there are y and z such that x = (y,2) and F(y,n) = 0. Then F(y,n) =
G(y,Fy [n)=0.

So if n = 0 then dom (F, | n) = dom (F, [ 0) = 0 # 1 so (1) cannot be the case. Also since 0 is
not a successor ordinal (2) cannot be the case either (since dom (F, | 0) # a+ 1 for any ordinal c).
Hence (3) must be the case, but this implies that F'(y,n) = 1, which is a contradiction. So we must
have that n # 0 so n > 0.

Since F(y,n) = 0 clearly we have that (F, [ n+ 1)(n) = 0. Since also dom (F, [n+1) =n+1 we
find that (2) holds for G(z,F, [ n+1). From this it follows that F(z,n+1) = G(z,F, [ n+1) = 0.

This completes the proof. O]

86.5 Ordinal Arithmetic

Exercise 6.5.1

Prove the associate law (a- 8) -y =« (8-7).

Solution:

Lemma 6.5.1.1. 0-a =0 for all ordinals «.

Proof. We show this by transfinite induction on «. For « = 0 we have 0 - = 0-0 = 0 by
Definition 6.5.6a. Now suppose that 0 -« = 0 so that we have

0-(a+1)=0-a+0=0+0=0

by the induction hypothesis, Definition 6.5.6b, and Definition 6.5.1a. Lastly, suppose that o # 0 is
a limit ordinal and that 0 - 8 = 0 for all 5 < a. Then by Definition 6.5.6¢c we have that

O-a=sup{0-8|B8<a}l=sup{0]| B <a}=sup{0} =0
by the induction hypothesis. This completes the proof. O
Lemma 6.5.1.2. Ordinal o is a limit ordinal if and only if B+ 1 < « for every ordinal 8 < «.

Proof. (—) We show this by contrapositive. So suppose that there is a 8 < « such that 5+ 1 > «.
Then by Lemma 6.2.7.1 we have also that 4+ 1 < «, from which it follows that o = 4 1 so that
« is a successor ordinal and not a limit ordinal.
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(+) Suppose that 8+ 1 < « for every 5 < «. Suppose also that & = v+ 1 is a successor ordinal.
Then clearly v < v+ 1 = « so that also v+ 1 < «, which is an immediate contradiction. Hence it
must be that « is a limit ordinal.

Note that the bi-conditional is vacuously true for a = 0. O

Lemma 6.5.1.3. Suppose that a # 0 is an ordinal and 5 # 0 is a limit ordinal. Then o - B is a
limit ordinal and o - B # 0.

Proof. Since o # 0 we have that a > 1. Now consider any v < a - 8. We claim that v < « - § for
some d < 3. Suppose to the contrary that v > « - § for all 6 < 5. Then ~ is an upper bound of the
set {a-d|d < f}. But from this it follows that

y>sup{a-d|d<f=a-p5

by Definition 6.5.6¢, which contradicts the definition of 7. Hence the claim is true so that v < « - ¢
for some 0 < 3. Then we have by Lemma 6.5.4a and the fact that 1 < « that

y+1l<a-d+1<a-dt+a=a-(0+1)<a-p

by Exercise 6.5.7a since §+1 < [ since § is a limit ordinal. Note that we also used Definition 6.5.6b.
Thus since 7+ 1 < « - § and ~ was arbitrary it follows from Lemma 6.5.1.2 that « - 8 is a limit
ordinal.

We also have that @ # 0 and 0 < 8 (since 0 # ) so that by Exercise 6.5.7a above and Defini-
tion 6.5.6a
0=a-0<a-p.

Thus « - 8 # 0. O
Main Problem.

Proof. We show this by transfinite induction on ~.
First for v = 0 we have
(a-B)y=(a-p)0=0=a-0=a-(8-0)=a-(8:7),

where we have used Definition 6.5.6a repeatedly. Now suppose that («-8)-v = «-(8-~) for ordinal
~. Then

(@-B)-(y+1) =(a-B)-v+a-p (by Definition 6.5.6b)
=a-(f-v)+a-p (by the induction hypothesis)
=a-[B-v+p0] (by the distributive law, see Exercise 6.5.2)
=a-[B-(y+1)]. (by Definition 6.5.6b)

Now suppose that v # 0 is a limit ordinal and (a-38)-0 = a-(8-9) for all § < ~. First if 8 = 0 then

(@-B)y=(a-0)-7y=0-y=0=a-0=a-(0-7)=a-(B-7)

where we have used Definition 6.5.6a and Lemma 6.5.1.1. So assume that 8 # 0. Then we have
(a-B)-y=sup{(a-p)-§|d<~v}=sup{a-(8-96)]|d <~} by Definition 6.5.6c and the induction
hypothesis. Then, since 8 # 0, by Lemma 6.5.1.3 we have that (- is a limit ordinal and 3 -y # 0.
From this and Definition 6.5.6¢ we have that

(a-B)-y=sup{a-(B-9)|d<~}=sup{a-d|6<B-y}=a (B-7)

as desired. This completes the inductive proof. O
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Exercise 6.5.2

Prove the distributive law a- (8+7) =a- S+« - 7.

Solution:

Proof. We show this by transfinite induction on . So for v = 0 we have

a-B+y)=a-(B+0)=a-f (by Definition 6.5.1a)
=a-6+0 (by Definition 6.5.1a)
=a-f+a-0 (by Definition 6.5.6a)
=a-f+a-7.

Now suppose that a- (8 + ) = a- 8+ « - for ordinal y. We then have

a [B+(v+D]=a-[(B+7)+1] (by Definition 6.5.1b)
=a-(B+7) +a (by Definition 6.5.6b)
=(a-B+a-v)+a (by the induction hypothesis)
=a-B+(a-v+a) (by the associativity of addition, Lemma 6.5.4c)
=a-B+a-(y+1). (by Definition 6.5.6b)

Lastly, suppose that v # 0 is a limit ordinal and that «- (8+0) =a-f+a-dforall d <~v. fa =0
then we have

a-B+v)=0-B+7)=0=0+0=0-8+0-y=a-B+a-7,

where we have used Lemma 6.5.1.1 above. So suppose that o # 0 so that a > 1. Now, if £ < S+
then & < f+¢ for some § < . Then by Lemma 6.5.4 we have that £+1 < (84+0)+1 =+ (d+1) <
B + ~ since « is a limit ordinal. Hence 5 + v is a limit ordinal so that by Definition 6.5.6¢c we
have a- (8 +7v) = sup{a-& | < B +~}. But then by Definition 6.5.1c we have that § + v =
sup{B + 6 | 6 <~}. It then follows that

a-(B+7)=sup{a-{|E<B+v}=sup{a-(B+6)[d<v}=sup{a-B+a-0]d<7v}

by the induction hypothesis. Then by Definition 6.5.6¢ we have that sup {a- 0 | § < v} = -y since
v is a limit ordinal. It then follows from Lemma 6.5.1.3 that « -~ is also a limit ordinal and a-y # 0
since o # 0. From this and Definition 6.5.1c we have that

a-(B+7y)=sup{a-B+a-0|d<y}=sup{a-f+i|d<a-y}=a-B+a vy

as desired. This completes the inductive proof. O

Exercise 6.5.3
Simplify

(a) (w+1) 4+ w.
(b) w + w?.

(c) (w+1)-w?
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Solution:

(a) By Lemma 6.5.4c we have

(w+HH)+w=w+(14w) =wtw=w-2.

(b) We simply have
wtwW=w-ltww=w - 14+w) =w w=w?

()

Lemma 6.5.3.1. (w+1)-n=w-n+1 for alln € w where n > 0.

Proof. We show this by standard (as opposed to transfinite) induction on n. For n =1 we have
(w+l) n=(w+) - l=w+l=w-1+1=w-n+1.

Now suppose that (w+1)-n =w-n+ 1 so that we have

(w+l)-n+)=w+1) - n+(w+1) (by Definition 6.5.6b)
=w-n+1)+(w+1) (by the induction hypothesis)
=w-n+(1+w)+1 (by the associativity of addition)
=w-n+w+l
=w-(n+1)+1. (by Definition 6.5.6b)

This completes the inductive proof. O

Lemma 6.5.3.2. (w+1) w=w?
Proof. Since w is a limit ordinal we have by Definition 6.5.6¢
(w+1l) - w=sup{(w+1) - n|new}=sup{w-n+1|necw}

by Lemma 6.5.3.1. Now, since we have

wnt+tl<(wn+l)tw=w-n+(1l4+w)=w-nt+w=w-(n+1)
it is clear that we have

(w+1) - w=sup{w-n+l|ncwl=supfw-n|ncw}=w w=uw?
by Definition 6.5.6c. O

Main Problem.

We have
w+1) W =W+ (ww=[(w+1) w -w=w?w=w?T=uw,

where we have used Lemma 6.5.3.2 and Definition 6.5.9b.

Exercise 6.5.4

For every ordinal «, there is a unique limit ordinal 5 and a unique natural number n such that o = f+n.
[Hint: S =sup{y < a | 7 is limit}.]
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Solution:

Lemma 6.5.4.1. If a and 8 are ordinals and B # 0 is a limit ordinal then o+ B is a limit ordinal.

Proof. First we note that since § # 0 we have 1 < . Consider any v < a + 5. If 7 < « then
y+1<a<a+1l<a+ . On the other hand if v > « then by Lemma 6.5.5 there is an ordinal
0 such that o + 6 = . Then since a +§ = v < a + § it follows from Lemma 6.5.4a that § < £,
and so by Lemma 6.5.1.2 we have that § + 1 < f since 8 is a limit ordinal. Therefore we have
y+l=(a+d)+1=a+(+1) < a+ B by Lemma 6.5.4 parts ¢ and a. Hence in all cases
v+ 1< a+ B so that a + S is a limit ordinal by Lemma 6.5.1.2 since v was arbitrary. O

Lemma 6.5.4.2. If « is a limit ordinal and B is another ordinal such that < a then B+ n < «
for any natural number n.

Proof. We show this by normal (not transfinite) induction on n. For n = 0 we clearly have 8 +n =
£+ 0= < a. So suppose that § + n < a so that we have

B+(n+1)=F+n)+1l<a

by Definition 6.5.1b. The inequality follows from Lemma 6.5.1.2 and the induction hypothesis since
« is a limit ordinal. This completes the inductive proof. O

Main Problem.
Proof. Ezxistence. First for any ordinal « let
B={y€a+1]~is a limit ordinal}

and define 8 = sup B.

First we show that 8 is a limit ordinal. To this end consider any § < 8. Then since S is the least
upper bound of B it follows that ¢ is not an upper bound of B so that there is a v € B such that
d < 7. Since v € B it is a limit ordinal so that also § + 1 < v by Lemma 6.5.1.2. Then since /3 is an
upper bound of B we have that § +1 < v < 8 so that § is a limit ordinal by Lemma 6.5.1.2 since ¢
was arbitrary.

Now, since each v € B is in a+ 1 we have that v < a+1 so that v < a. Hence « is an upper bound
of B, and since 3 is the least upper bound of B it follows that § < «. Because of this there is a
unique ordinal £ such that 8+ £ = a by Lemma 6.5.5.

We claim that ¢ < w so that £ is a natural number. To the contrary, suppose that £ > w. It then
follows from Lemma 6.5.4 that §+w < + & = . Also, § + w is a limit ordinal by Lemma 6.5.4.1
above since w is so that 4+ w € B since also f+w € a4+ 1 (since f+w < a). Then f+w < 8
since 3 is an upper bound of B, but this is a contradiction since clearly 8 = 4+ 0 < § 4+ w by
Lemma 6.5.4a since 0 < w. Hence it must be that £ < w.

Thus a = 8 + £ for a limit ordinal S and natural number &, thereby proving existence.

Uniqueness. Suppose that a = 81 +n; = B3 + ny where 31 and B are limit ordinals and ny and ng
natural numbers. First suppose that 8; # 82 so that without loss of generality we can assume that
1 < Pa. It then follows from Lemma 6.5.4.2 that 81 + n1 < Po as well since 35 is a limit ordinal
and nq is a natural number. But then we have 81 +n; < 85 = 82 + 0 < 85 + ns, which contradicts
the fact that 8y +n; = @ = B + no. So it must be that in fact 51 = B2. But then it follows from
Lemma 6.5.4b that n; = n9 also, which shows uniqueness. O

Exercise 6.5.5

Page 37



Let a < 8. The equation £ + a = 8 may have 0, 1, or infinitely many solutions.

Solution:

Lemma 6.5.5.1. If o and § are ordinals and n a natural number then o < B if and only if
a+n<pB+n.

Proof. (—) We show this by induction on n. So for n = 0 and any ordinals & and 8 where a < 8
we clearly have
a+n=a+0=a<p=04+0=0F+n.

Now suppose that o +n < 4+ n for any ordinals o and g where a < 3. Suppose that o and 3 are
such ordinals so that by Lemma 6.2.7.1 we have a +1 < § < 8+ 1. Hence o« + 1 and 8+ 1 are
ordinals such that o +1 < 8+ 1. It then follows from the induction hypothesis that

a+(n+l)=a+Q+n)=(a+)+n<B+1)+n=0+1+n) =4+ (n+1),

noting that clearly natural numbers commute with respect to addition. This completes the proof
by induction.

(+) Suppose that « + n < 8+ n for ordinals « and 8 and natural number n. It cannot be that
B < « for then it would follow that 5 + n < a + n by what was just shown. Nor can it be that
« = [ since then clearly a +n = 8 + n. Hence by the linearity of the ordinal ordering it follows
that o < . O

Corollary 6.5.5.2. If a and B are ordinals and n a natural number then o = B if and only if
a+n=p+n.

Proof. This follows directly from Lemma 6.5.5.1 in the same way as the proof of Lemma 6.5.4b.
O

Lemma 6.5.5.3. If o > w is an ordinal and n a natural number then n + a = «.

Proof. For any natural number n we show this by transfinite induction on . So if « = w then as
explained in the text we have n+a = n+w = w = a. Now suppose that n + a = a so that we have
n+(a+1)=(n+a)+1=a+1. Lastly, suppose that & > w is a limit ordinal and that n 4+~ =+
for all v < a. We then have by Definition 6.5.1c that

n+a=sup{n+y|y<a}=sup{y|[y<a}=a

by the induction hypothesis and comments in the text after Theorem 6.2.10. This completes the
inductive proof. O

Main Problem.

Proof. In what follows suppose generally that « = v+ n and 8 = § + m where v and § are limit
ordinals and n and m are natural numbers. Note that o and 8 can be expressed in this way uniquely
by Exercise 6.5.4.

Case: 8 = 0. If @ = 0 then clearly £ = 0 is the only solution since for any other £ # 0 we have
E+a=E6+0=¢#0= L. On the other hand if a # 0 then there is no solution since for any & we
have by Lemma 6.5.4 that £ + o« > &+ 0=¢ > 0= so that £ + a # 3.

Case: fis a successor. From this it follows that clearly m = 0 since otherwise 5 =d4+m =90+0=9
would be a limit ordinal.

Now, if @ = 0 then clearly £ = § is the only solution so that { + a =+ 0=¢ = .
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If « is a successor then similarly n # 0. Suppose that v = 0 so that since a < S we have
0+n=n<d+m=p0. Then if n <m then £ = § + (m — n) is a solution since then

E+a=[0+(m—-n)]+n=56+[(m—n)+n]=0+m=20.
Moreover clearly this is the only solution since if £ # ¢ + (m — n) then
E+a=E4nA+(m—n)+tn=30+m=p

by Corollary 6.5.5.2. On the other hand if n > m then for any ordinal £ = € 4+ k where ¢ is a limit
ordinal and k is a natural number, we have that k +n > 0 +n = n > m so that clearly k + n # m.
From this it follows that

Et+a=(e+k)+n=c+(k+n)#d+m=p

since both the limit ordinal and the natural number part of ordinals must be equal for the overall
ordinals to be equal. Hence this case has no solutions. Now suppose that v # 0. Then if n # m
then there are no solutions since for any ordinal £ we have

E+a=E+(v+n)=E+y)+n#d+m

since n # m and £ + v is a limit ordinal by Lemma 6.5.4.1. On the other hand if n = m then since
y+n=a<p=5§+m=J+n it follows from Lemma 6.5.5.1 and Corollary 6.5.5.2 that v < J, and
since v # 0 we have that 0 < vy <.

Then we have that £ is a solution if and only if £ + v = §. For, supposing that £ + v = §, we have
Eta=(+(v+n)=E+Y)+n=0+n=56+m=_

and if it is not the case then
Eta={+(y+n)=E+7)+tn#d+n=6+m=0

by Corollary 6.5.5.2. Since v and § are both nonzero limit ordinals it then follows from the final

case below (where both o and § are nonzero limit ordinals) there are either zero or infinite such &.

If v is a nonzero limit ordinal then clearly there are no solutions since, for any ordinal £, Lemma 6.5.4.1
tells us that £ + « is a limit ordinal whereas /3 is a successor so that it has to be that £ + « # 5.

Case: [ is a nonzero limit ordinal.
If @ = 0 then clearly £ = 3 is the only solution since £ + o« =&+ 0 = &.

If «v is a successor ordinal then n # 0 and for any ordinal £ we have that £+a = £+(v+n) = (§+7)+n,
which is a successor ordinal as well since £ + 7 is a limit ordinal again by Lemma 6.5.4.1. Hence
there are no solutions since S is a limit ordinal and £ was arbitrary.

Lastly, suppose that « is also a nonzero limit ordinal. Suppose that there at least one solution &
such that £ + a = 8. Now consider any natural number k so that we have

E+k)+ta=E+(k+a)=¢+a=p

by Lemma 6.5.5.3 since « is a nonzero limit ordinal and therefore clearly @ > w. Hence £ 4 k is also
a solution and so there are an infinite number of solutions since k& was arbitrary. Thus there are
either zero solutions or an infinite number of solutions (since a nonzero number of solutions implies
an infinite number of solutions). This completes the case structure.

These results are summarized in the following table:
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I} « Other | Other Solutions
0 0 1(=0)
>0 0
0 1L(=0)
n<m|1({E=0+m-—n)
7=0
n>m 0
Successor | Successor
>0 L? *m 0
v n=m 0 or oo
Limit > 0 0
0 1(£=5)
Limit > 0 | Successor 0
Limit > 0 0 or oo
Since this case structure is exhaustive the result follows. O

Exercise 6.5.6

Find the least o > w such that £ + a = a for all £ < a.

Solution:

Definition 6.5.6.1. We call an ordinal o an additive ordinal if it has the property that 8+ a = «
for all B < a.

Lemma 6.5.6.2. If a is a limit ordinal and B is any ordinal then o - B is a limit ordinal.

Proof. We show this by transfinite induction on 5.
So for 8 = 0 we clearly have a - 8 = « - 0 = 0, which is a limit ordinal.

Now suppose that « - S is a limit ordinal. Then we have o+ (8+ 1) = a - § + a by Definition 6.5.6b.
Ifa=0thena-(B+1)=a-f+a=a-8+0=c«-f, which is a limit ordinal by the induction
hypothesis. On the other hand if @ # 0 then by Lemma 6.54.1 o- (8+ 1) = a- 8+ « is a limit
ordinal since « is.

Lastly suppose that § is a limit ordinal and that « -« is a limit ordinal for all v < 5. Let A =
{a -~ |7 < B} so that by Definition 6.5.6b we have a - § = sup A. Consider any § < « - 3 so that
0 is not an upper bound of A. Hence there is a v < 8 such that § < a - y. Then by the induction
hypothesis « - 7 is a limit ordinal so that § + 1 < « -+ by Lemma 6.5.1.2. But then we have
d+1<a-v<supA = «a-f. Thus by Lemma 6.5.1.2 this shows that a - 3 is also a limit ordinal,
which completes the inductive proof. O

Lemma 6.5.6.3. An ordinal o = w - n for a natural number n if and only if o is a limit ordinal
and o < w?.

Proof. (—) Suppose that o = w-n for natural number n. Then by Lemma 6.5.6.2 « is a limit ordinal

since w is. Also clearly by Exercise 6.5.7aa =w -n <w-(n+1) <sup{w-k |k <w}=w -w=w?

(+) Now suppose that « is a limit ordinal and o < w?. We have a < w? = w-w = sup{w-n | n < w}
so that « is not an upper bound of {w-n |n < w}. Hence there is a k < w such that a < w - k.
It therefore follows that the set A = {n € w | a < w-n} is nonempty. Since A is nonempty set of
natural numbers (which are well-ordered) it follows that A has a least element n. If n = 0 it follows
that a =0 =w -0 since « <w-n=w-0= 0 and 0 is the only ordinal for which this is true. Then
if n > 0 we have that n — 1 is a natural number and moreover it follows that w - (n — 1) < « since
otherwise n — 1 would have been the least element of A.
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Thus we have that w-(n—1) < a <w-n. Butsincew-n=w-[(n —1) + 1] =w- (n — 1) + w clearly
any ordinal v where w- (n —1)+0=w-(n—1) <y<w-n=w-(n — 1)+ w must have the form
w-(n—1)+m for a natural number m > 0. From this it clearly follows that + is a successor ordinal.
Since « is a limit ordinal it can thus not be such a ~ so that it cannot be that o < w - n. But since
we have established that o < w - n (since n € A) it has to be that o = w - n. O

Lemma 6.5.6.4. An ordinal o = w - n + k for natural numbers n and k if and only if a < w?.

Proof. (—) Suppose that a« = w - n + k for natural numbers n and k. We then have

a=w-n+k=(w-n+k)+0

<(w-n+k)+w (by Lemma 6.5.4a since 0 < w)
=w-n+(k+w) (by the associative property)
=w-n+w (by Lemma 6.5.5.3)
=w-(n+1) (by Definition 6.5.6b)
<sup{w-m|m < w}

—w-w (Definition 6.5.6¢)
= w? (by Example 6.5.10a)

as desired.

(+) Now suppose that a < w?. By Exercise 6.5.4 we have that a = 3+ k for a unique limit ordinal
B and natural number k. We also have by Lemma 6.5.4 that 3+0 < f4+k = a < w? since obviously
0 < k. Hence 8 is a limit ordinal such that 8 < w? so that by Lemma 6.5.6.3 there is a natural

number n such that 8 = w-n, thereby proving the result since this means that « = f+k = w-n+k.
O

Main Problem.

We claim that w? is the first additive ordinal after w.

Proof. To see this we first show that w? is a limit ordinal. So consider any a < w? so that by
Lemma 6.5.6.4 there are natural numbers n and k£ such that o« = w -n + k. We then have a + 1 =
(w-n+k)+1=w-n+(k+1) < w? again by Lemma 6.5.6.4 since k + 1 is a natural number. Hence
w? is a limit ordinal by Lemma 6.5.1.2.

Next we show that w? is an additive ordinal. So again consider a < w? so that by Lemma 6.5.6.4
there are natural numbers n and k such that « = w-n + k. We then have
at+wr=(w-n+k)+P=w-ntk+o)=w-nt+iP=w-ntu-w=w - M+tw) =w w=w?
since k + w? = w? and n + w = w by Lemma 6.5.5.3.

Lastly we show that if w < o < w? then « is not an additive ordinal. Clearly by Lemma 6.5.6.4
there are natural numbers n and k such that « = w-n + k. Now let 8 = w so that clearly g < a.
We then have that

bta=w+tw - nt+k=w-l4w-n+k=w-14+n)+k=w-(n+1)+k.

We also clearly have

n<n+1
wn<w-(n+1) (by Exercise 6.5.7a)
wnt+k<w-(n+1)+k (by Lemma 6.5.5.1)
a<f+a
so that 8 4+ a # «a. Since 8 < « this shows that « is not an additive ordinal. O
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Exercise 6.5.7

(a) If a1, e, and S are ordinals and § # 0, then oy < ag if and only if - a3 < 8- as.
(b) For all ordinals a1, ag, and S #0, 8- a1 = - «as if and only if a3 = .

Solution:
(a)

Proof. (—) We show this by transfinite induction on as. So suppose and that «; < ¢ implies that
B-ap < B0 for all 6 < as and that a; < as. If as is a successor ordinal then as = § + 1 for some
ordinal § where oy < § since oy < ag. Then we have

B-ap <B-6 (by the induction hypothesis if a3 < ¢ and trivially if oy = )
<pB-6+0 (by Lemma 6.5.4a since 0 < j3)
=B-(6+1) (by Definition 6.5.6b)
= 6 cQg .

On the other hand if ag is a limit ordinal then oy + 1 < ag since a; < . Then we have that
Brar <fB-(a;+1) (by the induction hypothesis since a3 < a3 + 1 < )
< sup B-6 (since the supremum is an upper bound)
0<as
=3 a. (by Definition 6.5.6¢)

This completes the inductive proof.

(+) For this we assume that 5-a3 < - as. If it were the case that a3 > as than it would follow
by the implication already shown that 8- «a; > - a2, which is a contradiction. Similarly if a7 = o
then 8- a; = B - as, another contradiction. Hence by the linearity of the order < it must be that
a1 < ag as desired. O

(b)
Proof. This follows from part (a) in the same way as the proof of Lemma 6.5.4b but is repeated for
completeness.

(—) We prove this part by contrapositive, so suppose that a; # as. Then either a1 < ag or a7 > as.
In the former case then part (a) implies that §-a3 < 8-z so that 3-a; # - as. In the latter case
part (a) similarly implies that 5 - oy > 8- a2 so that again 8- a1 # 8 - as.

(+) If a; = a then we trivially have 8- a3 = 5 - ao. O

Exercise 6.5.8

Let a, 8, and v be ordinals, and let @ < 5. Then
() a+y<B+7

(b) a-y<B-7.

Solution:

(a)
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Proof. We show this by transfinite induction on . For v = 0 we clearly have
aty=a+0=a<fB=+0=0F+7
so that o + v < B 4 v is true. Now suppose that a + v < 8+ v so that we have
at(v+)=(a+)+1<@B+y)+1=5+0+1)

by Lemma 6.5.5.1 and Corollary 6.5.5.2 since a++ < ++ (induction hypothesis) and 1 is a natural
number.

Lastly, suppose that 7 is a nonzero limit ordinal and that o + 6 < g+ § for all § < . Let
A={a+46|d <~} and tentatively suppose that « +v > S+ ~. Then 8+ < a+ v =sup A so
that 5 + ~ is not an upper bound of A. Hence there is a § < 7 such that 8+ v < a4+ J. We then
have that

B+oé<sup{f+ec|le<y}=08+y<a+9d,

but this contradicts the induction hypothesis since § < . So it has to be that a +v < 5+ v as
desired. This completes the inductive proof.

Furthermore we give an example that shows that the < cannot be replaced with < in the conclusion.
Let a =1, 8 =2, and v = w. Then clearly a =1 < 2 = 8 but we also have

a+y=1l4+w=w=24+w=0+7

so that clearly oo + v < 8 + v is not true since they are equal.

Note also that clearly if « = 8 then aa +v = 8+ v so that a + v < 8 + v is still true. Hence the
conclusion is also true in the slightly more general case of a < . O

(b)
Proof. We also show this by transfinite induction on . For v = 0 we clearly have
a-y=a-0=0=3-0=0 v

so that o -y < -y is true. Now suppose that a -y < - so that we have

a-(y+tl)=a- v+« (by Definition 6.5.6b)
<a-y+8 (by Lemma 6.5.4 since a < f3)
<B-~v+p8 (by part (a) and the induction hypothesis)
=83-(v+1) (by Definition 6.5.6b again) .

Lastly, suppose that 7 is a nonzero limit ordinal and that a-§ < 8- ¢ for all § < . The argument
is analogous to that in part (a). Let A = {«a-4d|d <~} and tentatively suppose that a-vy > 5 - ~.
Then 8-+ < a -7 = sup A so that £ -~ is not an upper bound of A. Hence there is a § < v such
that 5 -y < a-J. We then have that

B-d<sup{f-ele<y}=p-yv<a-d,

but this contradicts the induction hypothesis since § < . So it has to be that a-y < -~ as desired.
This completes the inductive proof. O

A case in which oo < 8 but -y = - is clearly provided when v = 0 so that < in the conclusion
cannot be replaced with <. Similarly here if « = 8 then av- v = -y so that a- v < § -7 is still
true. Hence the conclusion is also true in the slightly more general case of a < 3.
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Exercise 6.5.9

Show that the following rules to not hold for all ordinals «, £, and ~:
(a) If a+~ =0+ then a =p.

(b) Ify>0and a-y= -7, then a = .

(€ (B+7) a=F-at+y

Solution:

Lemma 6.5.9.1. Ifn > 0 is a natural number then n - w = w.

Proof. By Definition 6.5.6 we have that n-w = sup{n-k |k <w} but clearly n - k is a natural
number for any k < w so that n-w=sup{n -k |k <w}=sup{k |k <w}=w. O

Main Problem.
(a) Let a =1, 8 =2, and v = w so that

at+vy=1l+w=w=24+w=0F0+7y

by Lemma 6.5.5.3 but « =1 < 2 = so that a # (.
(b) Again let « =1, 8 =2, and v = w so that v = w > 0 and

avy=1lw=w=2-w=0 v

by Lemma 6.5.9.1. Clearly though a =1 < 2 = 3 so that a # .
(c) Here let « =w, f =1, and v = 2. Then we have

B+7)-a=014+2) w=3 - w=w
by Lemma 6.5.9.1, whereas
Ba+y-a=1lw4+2 w=wtw=w-2,

where we have used Lemma 6.5.9.1 here as well as Example 6.5.7b. That (8+7) - a=w=w-1#
w-2=/p a4+ afollows from Exercise 6.5.7b.

Exercise 6.5.10

An ordinal « is a limit ordinal if and only if « = w - 8 for some S.

Solution:

Lemma 6.5.10.1. If a is an ordinal then o < o+ w and o + w is the next limit ordinal after o,
i.e. every ordinal B such that o < B < a4 w s a successor ordinal.

Proof. Consider any ordinal a. First we note that clearly @« = o+ 0 < a+w by Lemma 6.5.6a since
0 < w. It also clearly follows from Lemma 6.5.4.1 that a 4+ w is a limit ordinal.

Now suppose that § is any ordinal such that o < 8 < a + w. Since a < 3 there is a unique ordinal
~ such that o + v = 8 by Lemma 6.5.5. Now, since « +0 = o < 8 = « + 7y it follows again from
Lemma 6.5.6a that 0 < . Similarly we have o + v = 8 < a 4+ w so that by the same lemma v < w.
Hence 0 < 7 < w so that « is a nonzero natural number. In particular v > 1 so that n = v — 1 is
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also a natural number and v = n + 1. We then have that S =a+vy=a+(n+1) =(a+n)+1so
that clearly (8 is a successor ordinal. O

Main Problem.

Proof. (—) Suppose to the contrary that not every limit ordinal is equal to w - 3 for some 3. Then
let o be a limit ordinal such that o # w -« for every ordinal . Now let 8 be the set of ordinals ¢§
such that w -0 < «, noting that it could potentially be the empty set. We claim that 5 is an ordinal
number and that moreover it is a limit ordinal.

Clearly if 8 = @ = 0 then it is a limit ordinal, so assume that 8 # &. Then consider any § € 3 so
that w -0 < a. Also consider any = € ¢ so that x is also an ordinal number by Lemma 6.2.8 and
moreover that z < §. It then follows from Exercise 6.5.7a that w-x < w-6 < a. Hence we have that
x € B so that 6 C 8 since x was arbitrary. Since § was also arbitrary this shows that g is transitive.
Also since ( is nonempty set of ordinals it follows from Theorem 6.2.6d that 3 is well-ordered. Thus
by definition § is an ordinal number.

Now consider any § < /8 so that 6 € £ so that w-J < a. By Lemma 6.5.10.1 we have that
w-d+w=w-(d+1) is the next limit ordinal after w - (i.e. there are no limit ordinals between
them) so it has to be that w - (§ + 1) < « since otherwise o would be a limit ordinal between w - §
and w - (0 +1). But since o # w - 7 for all ordinals « it cannot be that & = w - (§ +1). Thus it must
be that w- (0 + 1) < a so that § +1 € 8 so that § + 1 < 8. This shows that § is a limit ordinal by
Lemma 6.5.1.2.

Now we claim that w - 8 = «, which is of course is a contradiction that proves the desired result. To
see this let A = {w-J |4 < B} so that by Definition 6.5.6¢ we have that w - 8 = sup A since g is a
limit ordinal. Now since § < 8 means that § € 8 so that w - § < «a by the definition of 3, clearly «
is an upper bound of A so that w- 8 = sup A < a. However, if it were the case that w - § < a then
we would have by definition that 8 € 8 which contradicts Lemma 6.2.7 since we have shown that 3
is an ordinal. Thus the only possibility is that w - 8 = «, which gives rise to the contradiction.

Moreover, we can show that S is unique. To see this, consider 8; and (2 where a = w - 81 and
a = w - Ps. Then clearly w- 51 = w - B2 so that 81 = 2 by Exercise 6.5.7b since clearly w # 0.

(+) Suppose that a = w - § for some ordinal 8. Then the result that « is a limit ordinal follows
immediately from Lemma 6.5.6.2 since w is a limit ordinal. O

Exercise 6.5.11

Find a set A of rational numbers such that (A, <g) is isomorphic to (o <) where

a) o =w+1,
b)a=w-2,
¢)a=w-3,
d) a =w¥,
e)a=c¢

[Hint: {n —1/m | m,n € N —{0}} is isomorphic to w?, etc.]

Solution:

Lemma 6.5.11.1. If 8 is an initial segment of an ordinal o then B is also an ordinal.

Proof. By Lemma 6.1.2 there is an a € « such that § = {x € a | z < a}. Also, since a € o and « is
an ordinal, a is an ordinal as well by Lemma 6.2.8. Finally, by the comments after Theorem 6.2.10, 8

Page 45




is simply the ordinal a since 8 = {z € o | < a} and each x in that set is an ordinal (by Lemma 6.2.8
since each # € a and « is an ordinal). O

Lemma 6.5.11.2. If A is a set of ordinals then ordinal o = sup A if and only if « is the least upper
bound of A, i.e. ais an upper bound of A and [ is not an upper bound of A for any B < a.

Proof. (—) First suppose that & = sup A. Then by the remarks following the proof of Theorem 6.2.6
in the text « is an upper bound of A and if § is an upper bound of A then o < . This last statement
is simply the contrapositive of the statement that 8 < « implies that 5 is not an upper bound of A
and hence is logically equivalent.

(+) We show that an ordinal @ with the least upper bound property for A is unique, which suffices

to show the result since if § has this property then 5 = sup A since sup A does as well (by what was
just shown above) and the ordinal having this property is unique.

So suppose that ordinals o and 8 both have the least upper bound property for A but that « # S.
Without loss of generality we can assume then that o < 5. But then, since 8 has the least upper
bound property, o cannot be an upper bound of A, which contradicts the fact that « also has the
least upper bound property! Hence it has to be that o = 3, which shows the uniquness. O

Next we need to build up a little theory.

Definition 6.5.11.3. For an ordinal o we call a set E, an embedding of « if it has the following
properties:

1. E, is a subset of Q).
2. E, is order isomorphic to a under the usual ordering of the rationals.

3. For some a and b in Q, a < x < b for every x € E,. We denote this by saying a < E, < b or
that E,, is an embedding in [a,b).

We call U, a unit embedding of « if it is an embedding of « in [0,1).

Theorem 6.5.11.4. If E,, is an embedding of o in [a,b) then for each x € E, there is a Ax € QT
such that x + Az < b and if y € Q and x < y < x + Ax then y is not in E,. That is, x is not a
limit point from the right.

Proof. Consider any x € F,, noting that = < b.

If  is the greatest element of E, then let Ax = b — x, noting that Az > 0 since b > . We also
have
c+Ar=x+b—2x=0<b.

Then consider any y € Q where x < y < z + Az so that clearly y ¢ E, since otherwise 2 would not
be the greatest element of F,,.

On the other hand if z is not the greatest element of E, then let f be the isomorphism between «
and E, and let 3 = f~!(z). It follows that 3 is not the greatest element of o so that 8+ 1 € «
as well. Then let Az = f(8 4 1) — z, noting that Az > 0 since f(S+ 1) > f(8) = x since f is an
isomorphism. We also have

z+Arx=a+f(f+1)—z=f(B+1) <D

since f(8+ 1) € E,. Now consider any y € Q where f(8) =z <y <z + Ax = f(f+1). If it were
the case that y € E, then we would have that 8 < f~!(y) < 8+ 1 since f is an isomorphism, which
is impossible since § is an ordinal. So it must be that y ¢ F,, as desired. O
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Corollary 6.5.11.5. If E,, is an embedding and x and y are in E, where x <y then x + Ax < y,
where Az € Q" is that guaranteed by Theorem 6.5.11.4.

Proof. If it were the case that x + Az > y then we have that z < y < x 4+ Az, which is in direct
contradiction to Theorem 6.5.11.4 since y € F,. O

For an embedding E, consider p € QT and ¢ € Q. We define a set denoted by pE, + ¢ to be the
set {px+q|z € Ey}.

Theorem 6.5.11.6. If E,, is an embedding in [a,b) then F, = pE, + q is also an embedding of «
for any p € QT and q € Q. Moreover pa + q < F, < pb+ q.

Proof. So first consider any y € F,, so that y = px + g for some = € E,. Since F, is an embedding
x € Q so that clearly y = pr + q € Q as well since p,q € Q. Hence since y was arbitrary we have
that F,, C @ so that (1) is satisfied.

Now consider the mapping f : E, — F, defined by f(z) = px + ¢ for z € E,. Clearly F, =
{f(z) | x € E4} so that f is onto. Consider then x,y € E, where z < y so that we have

T <y
pr < py (since p > 0)
pxr+q <py-+q
flx) < fy).
Hence f is an isomorphism. Thus F,, is isomorphic to E, so that clearly it is also isomorphic to «
since E, is, thereby showing (2).
Lastly for any y € F,, we have y = px + ¢ for some = € F,. We then have

a<z<b

pa < pr < pb (since p > 0)
pa+q<pr+q<pb+gq
pat+q<y<pb+gq.

This shows both (3) and the last statement. O

For an embedding F, in [a,b) and a unit embedding Up for ordinals o and 8 we define the product

E.-Us= |J (Az-Us+ua),
el

where Az € Q" is that guaranteed to exist by Theorem 6.5.11.4.

Theorem 6.5.11.7. For an embedding E,, in [a,b) and a unit embedding Ug the product E,, - Ug is
an embedding of 5 - « in [a,b).

Proof. First consider any y € E, - U so that there is an z € E, such that y € Az - Ug + 2. Since
y € Az -Ug + z is an embedding by Theorem 6.5.11.6 it follows that y € Q, which shows (1) since
y was arbitrary.

Now since FE, is an embedding of a there is an isomorphism f : a« — E,. Similarly there is an
isomorphism g : § — Upg since Ug is an embedding of 3. Consider a x 3 with lexicographic ordering
~<. Then define a mapping h: a x f — E,, - Ug by

h(d,) = Af(9) - g(e) + f(9)
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for (d,¢e) € a x 8, noting that Af(4) is that guaranteed by Theorem 6.5.11.4 since f(8) € E,,.

First we claim that h is surjective. So consider any z € E, - Ug so that there is an = € E, such that
z € Az - Ug + x. By definition then there is a y € Ug such that z = Az -y +z. Now let § = f~!(z)
and ¢ = g~ *(y) so that z = f(§) and y = g(), which can be done since f and g are bijections. We
then have that

h(d,e) = Af(6) - g(e) + f(0) =Az-y+a =2z,
which shows that h is surjective since z was arbitrary.

We also claim that h is an isomorphism and therefore also injective. So consider any (d1,¢1) and
(02,€2) in a x B where (01,e1) < (d2,e2). By the definition of lexicographic ordering we have the
following:

Case: 01 < 3. Then since f is an isomorphism f(§1) < f(d2), and also by Corollary 6.5.11.5 it
follows that f(d1) < f(01) + Af(61) < f(d2). We also have that

Af(61) - g(er) + f(61) < Af(d1) + f(d1)

by Theorem 6.5.11.6 since g(e1) € Ug and Ug is a unit embedding. Also since g(e2) > 0 (since
g(e2) € Ug) and Af(d2) > 0 (by Theorem 6.5.11.4) that

f(02) < Af(d2) - g(e2) + f(J2)

Combining all this results in
h(d1,e1) = Af(d1) - gler) + f(61) < Af(61) + f(61) < f(b2) = h(2,¢2).

Case: 01 = 02 and €; < e3. Then obviously f(61) = f(d2) so that Af(d1) = Af(d2) but also
g(e1) < g(e2) since g is an isomorphism. We then have

g(e1) < g(e2)
Af(61) - g(e1) <Af(61) - g(e2) (since Af(81) > 0)
)-g(er) + f(01) < Af(d1) - g(e2) + f(61)
~gle1) + f(01) < Af(82) - g(ea) + f(2)  (since Af(6y) = Af(d2) and f(6;) = f(d2))
h(d1,e1) < h(d2,e2).

Af(dr +f
Af(61)-gler) + f
Thus in all cases h(d1,e1) < h(d2,e2), which shows that & is an isomorphism since (01,¢1) and (02, €2)

were arbitrary. Hence E,, - Ug is isomorphic to the lexicographic ordering of o x 3 and therefore also
to 8-« by Theorem 6.5.8. This shows part (2) of the embedding definition.

Lastly consider any z € E, - Ug so that there is an x € E, such that z € Az - Ug + z. Then since
Us < 1 we have that z < Az + 2z < b by Theorems 6.5.11.6 and 6.5.11.4. Also since 0 < Upg it

follows from Theorem 6.5.11.6 that a < x < z since a < E,. Since z was arbitrary this shows that
a < E, -Ug < b, which shows (3). This completes the proof. O

Theorem 6.5.11.8. Suppose that o is a limit ordinal and that {a,} is a sequence (n € w) of nonzero
ordinals in «. Also suppose that E,, is an embedding of w in [a,b) and U, is a unit embedding of
oy, for eachn € w. Suppose further that a = sup,,c,, an and that a, + o1 = apq for everyn € w,
noting that clearly n + 1 € w as well. Lastly, suppose that f is the isomorphism from w to E,,. Let

An=Af(n) Uy, + f(n)

EQZUA,L

necw

forn € w. Then the set

is an embedding of « in [a,b).
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Proof. First consider any n and m in w where n # m. We can assume without loss of generality n <
m. Then f(n) < f(m) since f is an isomorphism and, moreover, it follows from Corollary 6.5.11.5
that Af(n) + f(n) < f(m). Hence by Theorem 6.5.11.6 we have that

An = Af(n) - Ua, + f(n) <Af(n) + f(n) < f(m) < Af(m) - Ua,, + f(m) = Am

since U,, and U,,, are unit embeddings. Hence all the A,, are disjoint and moreover Ay < A; <
As < .... Also clearly by Theorem 6.5.11.6 each A,, is isomorphic to a,, since U, is.

Now for p,q € Q let [p,q) = {x € Q| g <x<q}. We then claim that E, N [a, f(n + 1)) for
any n € w is isomorphic to «,, which we shall show by induction on n. For n = 0 we clearly
have that a < Ay < Af(0) + f(0) < f(1) < A, for any m > 1. From this it follows that
E,Nla, f(n+1)) = E,N]a, f(1)) = Ap, which is isomorphic to oy = v, by what was shown above.

Now suppose that E, N [a, f(n + 1)) is isomorphic to «,. We clearly have E, N [a, f(n + 2)) =
[Eo Na, f(n+1)]U[EyN[f(n+1), f(n+2))] and that E, N [f(n+ 1), f(n +2)) = Ap41, which
is isomorphic to a,41 by what was shown above. Then E, N [a, f(n + 2)) is the sum of E, N
clopa, f(n+1) and E, N [f(n + 1), f(n +2)) = A,41 so that by Theorem 6.5.3, the induction
hypothesis, and the given property of {c,} it is isomorphic to ay,, + apt1 = ane1. This completes
the inductive proof.

We also show that E, N[a, f(n+1)) is an initial segment of E,, for any n € w. So consider any such
n, any ¢ € E,NJa, f(n+1)), and any y € E, where y < z. Since a < E,, clearly a < y. We also have
y<zx < f(n+1) (since z € [a, f(n+1))). Hence y € [a, f(n+1)) so that alsoy € E,N[a, f(n+1)),
which shows that E, N[a, f(n 4 1)) is an initial segment of E,, by definition.

Now we claim that E,, is a well-ordered set. So consider any nonempty subset B of E,. Then there is
some x € B and since x € E,, there is an n € w such that € A,,. Then clearly z € BNla, f(n+1)]
so that B N [a, f(n + 1)] is a nonempty subset of E, N [a, f(n + 1)). It was shown above that
E, Na, f(n 4+ 1)) is isomorphic to «, so that it is a well-ordered set. Hence B N [a, f(n + 1)]
has a least element y. We claim that this is the least element of B, so consider any z € B. If
z < f(n+1) then clearly z € BN|a, f(n+1)) so that obviously y < z since y is the least element of
BnNla, f(n+1)). On the other hand if z > f(n+ 1) then y < f(n+ 1) < z (since y € [a, f(n+1)))
so that again y < z. Since z was arbitrary this shows that y is in fact the least element of B. Since
B was an arbitrary subset of E,, this shows that E, is well-ordered.

Since E, is a well-ordered set it is isomorphic to some ordinal v by Theorem 6.3.1. We then
claim that v = a. Letting C = {a, | n € w}, we show this by showing that ~ is the least upper
bound of C, which shows that v = « by the least upper bound property (Lemma 6.5.11.2) since
«a = sup C by definition. So first consider any «,, € C'. It was shown above that «,, is isomorphic to
E,NJa, f(n+1)), and this was shown to be an initial segment of E,,, which itself is isomorphic to
~. Thus it follows that that «,, < 7 so that a,, <~ is true. Since a,, was arbitrary this shows that
v is an upper bound of C.

Now consider any ordinal § <  so that § € 7. Let g be the isomorphism from v to F, since it
has been shown that they are isomorphic. Then since g(d) € E, so that there is an n € w such
that g(d) € A,. Then also g(6) € Ey Na, f(n +1)). Since Ey N [a, f(n + 1)) is an initial segment
of E, (just shown above) it follows that g='[E, N [a, f(n + 1))] is an initial segment of . Since
7 is an ordinal it follows from Lemma 6.5.11.1 that g=[E, N [a, f(n + 1))] is an ordinal. Since
g7t | Eo NJa, f(n+ 1)) is an isomorphism (since g is) and E, N [a, f(n + 1)) is isomorphic to ay,
(shown above), it follows that g~ [E,N[a, f(n+1))] is in fact a,! Then, since g(§) € E,N[a, f(n+1))
we have that § € g7'[E, N|a, f(n+1))] = ay, so that § < a,,. Hence § is not an upper bound of C'.
Since § was arbitrary this shows that « is in fact the least upper bound of C' so that v = a.

Parts (1) and (3) of the definition of an embedding are trivial to show by the same arguments as
those used in the proof of Theorem 6.5.11.7. Hence E, is an embedding of « in [a, b). O
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Main Problem.

(a) Define f: w — Q by
1 n
= 1 — =
f(n) n+l n+1
for n € w. Then let U, = {f(n) | n € w}. We claim that U, is a unit embedding of w.

Proof. Clearly U, C @ so that (1) is satisfied. To show (2) let g : w — U, be defined by g(n) =
f(n) =1—=1/(n+1), which is clearly onto based on the definition of U,. We also claim that g is an
isomorphism. To this end consider any n,m € w where n < m. We then have

n<m
n+l<m+1
n—+1

m-+1
1 < 1
m+1 n—+1
1 - 1
m+1 n+1
1 1
>1-—
m+1 n—+1
g(m) > g(n)

g(n) < g(m).

Hence g is an isomorphism so that U, is indeed isomorphic to w, which shows (2).

<1 (since m+1>1> 0 since m > 0)

(since n+1>1> 0 since n > 0)

Lastly consider any x € U,, so that z = f(n) =1 —1/(n + 1) for some n € w. Then we have

n>0>-1
n+1>1>0
1>

“n+1

1
-1<—-——<0
n+1

>0 (sincen+1>1>0)

0<1 -

1

<1
n-+1
0<xr<l1.

Since x was arbitrary this shows that 0 < U,, < 1 so that (3) holds and U, is a unit embedding.

Now let E; = {1}. Clearly this is an embedding of the ordinal 1. Moreover we have 0 < U, < 1 <
E; < 2 so that U, and F; are disjoint. Then clearly U, U E; is the sum of U, and F; so that it
is isomorphic to w + 1 by Theorem 6.5.3 and thus an embedding of w + 1 since it is trivial to show
that 0 < U, U FE; < 2. O

(b) Now consider the same U,, from part (a) and let E, = 1-U, + 1 so that by Theorem 6.5.11.6
this is another embedding of w and 1 < F, < 2. Hence we have that 0 < U, < 1 < E, < 2 so
that U, and E,, are disjoint. Also clearly E,.o = U, U E,, is the sum of U, and E, so that it is
isomorphic to w + w = w - 2 by Theorem 6.5.3. Hence since also 0 < E,,.o < 2 (it is trivial to show)
it is an embedding of w - 2 as desired.

(c) Considering the same E,,.o from part (b) let F,, = 1-U,,+2 so that it is yet another an embedding

of wand 2 < F, < 3 by Theorem 6.5.11.6. Then by the same arguments as in part (b) it follows
that E,.o U F, is an embedding of w-2+w=w:-24+w-1=w-(2+ 1) =w- 3 as desired.
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(d) We first aim to construct a unit embedding of w™ for any n € w. We do this recursively. For
n = 0 clearly Uy = {0} is a unit embedding of w® = 1. We have also already constructed U,
as a unit embedding of w in part (a). Now suppose we have constructed U,n, a unit embedding
of w™. Then we let Ugnt1 = U, - Uyn so that Ugni1 is a unit embedding of w” - w = w"*! by
Theorem 6.5.11.7.

Clearly then {w"} is a sequence of ordinals in w* and by definition w* = sup,,¢,, w". We also have
in hand the embedding U,, and Uy~ for each n € w as just constructed recursively. Now consider
any n € w so that we have we have

Wwt =0 1wt w =0 (14 w) =" w =W

We can therefore apply Theorem 6.5.11.8 to construct a unit embedding U, of w”.

(e) Here we use the operation of tetration, which we define recursively for all ordinals. So for all
ordinals 5 we define:

1.98=1
2. atlg = 36 for all «
3. *B=sup{"8 | v < a} for all limit o # 0 .

3 w®

2w=wY, 3w =w

Thus we have 'w = w,
definition.

, etc. 'We then have that ¢ = “w = sup,, ., "w by

Despite working and thinking about this problem for weeks I have been unable to come up with
a way to embed £. To be sure we can easily construct embeddings of ordinals larger than w®,
for example we can embed w® - w¥ = w¥tY = wW¥? by simply applying Theorem 6.5.11.7 to our
just-constructed embedding of w*. However, I could think of no way to get to ¢ easily using this
approach. Ideally what we would have is a way to construct an embedding of w® for any ordinal
« for which we already have an embedding. This would easily lead to an embedding of ¢ using
Theorem 6.5.11.8 after constructing the embeddings for "w recursively. However, I was unable to

think of how to construct this and eventually had to admit defeat and move on.

Exercise 6.5.12
Show that (w - 2)? # w? - 22,

Solution:

Proof. We have

(W-2)P?=(w-2) (w-2) (by Example 6.5.10a)
=w-(2-w)]-2 (by the associativity of multiplication)
=(w-w)-2 (by Lemma 6.5.9.1)
=w?.2

whereas
w?-22=w? -4
so that the two are clearly not equal by Exercise 6.5.7b since 2 # 4 and w? # 0. O
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Exercise 6.5.13
(a) Bt =af ..

(b) (045)7 =af.

Solution:

Lemma 6.5.13.1. Suppose that « is an ordinal, 8 # 0 is a limit ordinal, and {vs} for § < a+
is a non-decreasing transfinite sequence of ordinals. Then

SUD 75 = SUD Ya+s -
d<a+p 3<p

Proof. First we note that a+f is a nonzero limit ordinal by Lemma 6.5.4.1 Let A = {5 | 6 < o + 3}

and

7 = SUPYa+s -
5<p

We show that v is the least upper bound of A, which shows the result by the least upper bound
property (Lemma 6.5.11.2). First consider any s in A so that 6 < o+ 3.

If 0 < a then 75 < Y4 = Ya+o < 7y since the sequence is non-decreasing and 0 < S. On the other
hand if § > « then by Lemma 6.5.5 there is a unique ordinal ¢ such that o + ¢ = §. Then, since
d=a+e < a+ p it follows from Lemma 6.5.4a that ¢ < 8. Hence by the definition of v we have
that 75 = 7q4e < . Thus in all cases vs < 7y, which shows that « is an upper bound of A since ~;
was arbitrary.

Now consider any € < . Then by the definition of « it follows that there is a § < 8 such that
€ < Yats since € is not an upper bound {y44¢ | ( < f}. Thus again by Lemma 6.5.4a we have that
a+ 9 < a+ f so that v,4s € A. Hence since € < v, it cannot be that € is an upper bound of A.
Since € < « was arbitrary this completes the proof that v = sup A as desired. O

Lemma 6.5.13.2. If o is an ordinal such that o > 0 then 0% = 0. Otherwise if a = 0 then
0 =0"=1.

Proof. First if a = 0 then clearly 09 = 0° = 1 by Definition 6.5.9a. Then if o > 0 we show the
result by transfinite induction on «. First if a = 1 then we have

0°=0'=0""1=0".0=1-0=0,
where we have used Definitions 6.5.9b and 6.5.6a. Now suppose that 0% = 0 so that we have
09t =0*.0=0,

where we again have used the same two definitions. Lastly suppose that « is a nonzero limit ordinal
and that 07 = 0 for all 8 < o. Then we have by Definition 6.5.9¢ that

0% =sup 0% = sup0 =0,
B<a B<a

where we have used the induction hypothesis. O

Lemma 6.5.13.3. If « is an ordinal then 1¢ = 1.

Proof. We show this by transfinite induction on «. First for « = 0 we have 1* = 1° = 1 by
Definition 6.5.9a. Now assume that 1% = 1 so that 1°+! = 1%.1 = 1® = 1 by Definition 6.5.9b and
the induction hypothesis.

Page 52



Lastly suppose that « is a nonzero limit ordinal and that 17 = 1 for all 5 < o. We then clearly have
by Definition 6.5.9¢ that
1“=supl®’ =supl=1.
B<a B<a

This completes the inductive proof. O

Lemma 6.5.13.4. If o, 3, and v are ordinals where o > 0 and B < ~ then o < 7.

Proof. Clearly if 8 = v then o® = a” so that the conclusion holds. So assume that 5 < .
Case: @ = 1. Then by Lemma 6.5.13.3 we have

f=1=1=1"=a".

Case: o > 1. Then it follows from Exercise 6.5.14b that o < a”.

Hence in either case o? < a7 is true. ]

(a)

Proof. We show this by transfinite induction on . First for v = 0 we have

Pty = P10

=a” (by Definition 6.5.1a)
=a’1 (by Example 6.5.7a )
=af.a° (by Definition 6.5.9a)
=a’ . a”.

Now assume that a7 = of - & so that we have

PO — B+ (by Definition 6.5.1b)
= o™ (by Definition 6.5.9b)
= (ozﬁ o) (by the induction hypothesis)
=ad? (& -a) (by the associativity of multiplication)
=af att. (by Definition 6.5.9b)

Lastly suppose that ~ is a nonzero limit ordinal and that o®+% = o - a? for all § < 7. First if a =0
then ot = 0%t = 0 by Lemma 6.5.13.2 since 3 4 v > 0 since v > 0. Hence we have

T =0=0°-0=07-0"=0a"a",
where we have used Definition 6.5.6a and the fact that 07 = 0 by Lemma 6.5.13.2 since v > 0.
On the other hand if a > 0 then we have by Definition 6.5.9c that

P = sup .

< B+

It then follows from Lemma 6.5.13.4 that {a‘s} for 6 < B+ v is a non-decreasing sequence since
« > 0. Thus we can apply Lemma 6.5.13.1 so that

P = sup o =supa’t? =sup (aB . a‘s)
0B+ <y 6<y
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by the induction hypothesis. It then follows from statement (6.6.1) in the text that

Pt = sup (aﬁ . a‘;) =af -supa5 =ad? . o
§<y o<y

by Definition 6.5.9c. This completes the transfinite induction. O

(b)

Proof. We show this by transfinite induction on v as well. First for v = 0 we have

(aﬁ)v = (aﬂ)o =1 (by Definition 6.5.9a)
=a (again by Definition 6.5.9a)
= a0 =P, (by Definition 6.5.6a)

Next suppose that (aﬁ)’y = a7 so that we have

(aﬂ)w_l = (a’B)7 o’ (by Definition 6.5.9b)
=af7. P (by the induction hypothesis)
= P th (by part a)
= o0+ (by Definition 6.5.6b)

Lastly, suppose that v is a nonzero limit ordinal and that (aﬁ )(S =af9 for all § < 7.
Case: a = 0. Then if 8 = 0 we have

(@) = (@)

=17 (by Definition 6.5.9a)
=1 (by Lemma 6.5.13.3)
=0° (by Definition 6.5.9a)
=077 (by Lemma 6.5.1.1)
—af.

On the other hand if § > 0 then first we note that 0 = -0 < -~ by Definition 6.5.6a and
Exercise 6.5.7a since both 8 # 0 and 0 < y. We then have

(a”)" = (07)"

=0 (by Lemma 6.5.13.2 since 5 > 0)
=0 (by Lemma 6.5.13.2 again since 7y > 0)
=07 (by Lemma 6.5.13.2 yet again since 8 -y > 0 as shown above)
— B

=al"7.

Case: o > 0. Then we have

5
(0/3)7 = sup (aﬁ) (by Definition 6.5.9¢)
o<y
= supa®? (by the induction hypothesis)
o<y
= SWPs<y B0 (by statement (6.6.1) in the text since a > 0)
= a7 (by Definition 6.5.6¢)
Since these cases are exhaustive this completes the inductive proof. O
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Exercise 6.5.14
(a) If @ < B then o < §7.
(b) If & > 1 and if B < 7, then o < a”.

Solution:

Lemma 6.5.14.1. Suppose that -y is a nonzero limit ordinal and {«, } and {B,} for v <~ are two
transfinite sequences. Also suppose that o, < 3, for every v < . Then

sup a,, < sup f3, .
vy vy

Proof. First let A = {ay, |v <~} and B = {8, | v < v} be the ranges of the sequences so that we
must show that sup A < sup B. Now consider any « € A so that « = o, for some v < . We then
have that

a=qa, <, <supB

so that sup B is an upper bound of A since o was arbitrary. It then follows from the least upper
bound property that sup A < sup B as desired. O

Main Problem.
(a)

Proof. We show this by transfinite induction on . So first suppose that a < 8. Then for v = 0 we
clearly have

a’Y:aO:l:BO:B’Y’
where we have used Definition 6.5.9a twice. Then a” < 87 clearly holds.

Now suppose that a” < 87 so that we have

Tl =a" (by Definition 6.5.9b)
<p-a (follows from Exercise 6.5.8b and the induction hypothesis)
<p7-pB (follows from Exercise 6.5.7 since o < 3)
= prtt, (by Definition 6.5.9b)

Lastly suppose that ~ is a nonzero limit ordinal and that a® < 8% for all § < . We then have

o =supa’ (by Definition 6.5.9¢)
o<y
< sup 3’ (by Lemma 6.5.14.1 and the induction hypothesis)
o<y
=p7, (by Definition 6.5.9¢ again)
which completes the transfinite induction. O

(b)

Proof. Suppose that a > 1. We then show the result by transfinite induction on  similarly to the
proof of Exercise 6.5.7a. Suppose that 3 < ¢ implies that o® < a for all § < v and that 8 < ~.
Case: 7 is a successor ordinal. Then v =6 + 1 for an ordinal § and § < § since B <y=40+ 1. We

then have

of <al (by the induction hypothesis if § < § and trivially if 3 = §)
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<a®-a (by Exercise 6.5.7a since 1 < o and a® # 0)
= %! (by Definition 6.5.9b)
a”

Case: -y is a limit ordinal. Here we have that § + 1 < -y as well since 8 < . We then have

of < aftt (by the induction hypothesis since 8 < 8+ 1 < 7)
< supo’ (since the supremum is an upper bound)
o<y
=a”. (by Definition 6.5.9c¢)
Thus in either case o < a7, thereby completing the transfinite induction. O

Exercise 6.5.15

Find the least £ such that

(a) w+&=¢.

(b)w-E=¢ E£0.

(0) w* =¢.

[Hint for part (a): Let £ =0, &1 = w + &n, E =sup{&, | n € w}]

Solution:

Lemma 6.5.15.1. Suppose that o and vy are a nonzero limit ordinals, that {as} is a transfinite
sequence indexed by vy, and that
a=supag.
o<y

Also suppose that Bs is another non-decreasing transfinite sequence indexed by . Then

sup fs = sup fa, -
< <y

Proof. First,let A={as|0 <}, B={8s| <a},and C = {fq; | § <~} so that @ = sup A and

we must show that sup B = sup C. We show this by showing that sup C' has the least upper bound

property of B.

So first consider any s € B so that § < «. It then follows that § is not an upper bound of A so
that there is a § <  such that § < a¢. From this we have that 35 < 8., < supC since {fs} is
a non-decreasing sequence and ., € C. Since 35 was arbitrary this shows that sup C' is an upper
bound of B.

Now consider any § < supC. Then § is not an upper bound of C so that there is a £ < v such
that 6 < B4,. And since £ < v we have that ag € A so that ag < sup A = « since « is a limit
ordinal. Thus 3,, € B. Since we have that § < (., this show that ¢ is not an upper bound of B.
Hence since 0 was arbitrary this concludes the proof that sup B = sup C' by the least upper bound
property (Lemma 6.5.11.2). O

Main Problem.

(a) We claim that the least such ordinal here is & = w?.
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Proof. That this has the desired property (i.e. that w + & = &) was shown in Exercise 6.5.3b.

Now we show that any ordinal o < w? does not have this property. So consider any such a so that
by Lemma 6.5.6.4 there are natural numbers n and k such that « = w - n + k. Thus we have

wta=wtw-n+k=w-l14w-n+k=w-1+n)+k=w-(n+1)+k
We then have that

a=w-n+k=(w-n+k)+0

<(w-n+k)+w (by Lemma 6.5.4a since 0 < w)
=w-n+ (k+w) (associativity of addition)
=w-ntw=w-n+w-1
=w-(n+1) (distributive law)
=w-(n+1)+0
<w-(n+1)+k (by Lemma 6.5.4 since 0 < k)
=w+ta«a
so that clearly w + a # a. Since o < w? was arbitrary this shows our result. O

(b) We claim that £ = w* is the first nonzero ordinal to have this property.

Proof. First we have
wlb=w-w=ww =t = =¢

where we have used Exercise 6.5.13a. Thus ¢ = w? has the desired property.

Now consider any 0 < o < w®. Since by Definition 6.5.9c we have that w* = sup,, ., w™ it follows
from the least upper bound property (Lemma 6.5.11.2) that there is an n < w such that a < w" since
« is not an upper bound of {w" | n < w}. From this is follows that the set A = {k € w | a <wF}
is not empty. Since this is a set of natural numbers (which is well-ordered) it has a least element
m. Note also that it has to be that m > 0 since were it the case that m = 0 then we would have
o < w™ = w? = 1, which implies that o = 0, which contradicts our initial supposition that 0 < «.
Thus m > 1 so that m — 1 is still a natural number.

m—1

Since m is the least element of A it follows that a@ > w since otherwise m — 1 would be the least

element of A. Hence we have
Wl <a<wm.

It then follows from Exercise 6.5.8b that

woom Tl <w-
wl.wm—lgw.

witm=t <. (by Exercise 6.5.13a)

e o © R

W< w-

Putting this together, we have that
a<w"<w- -«

so that clearly w -« # «. Since 1 < a < w® was arbitrary, this shows that w® is the least such

ordinal 0

(¢) We claim here that e = “w is the least such ordinal, where we use the notation for tetration
introduced in Exercise 6.5.11e.
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Proof. To show that € has the required property we must first show that the sequence defined by
{"w} for n < w is non-decreasing even though this is somewhat obvious. We show this by induction.
For n = 0 we have

1 0 1 n+1

‘y=l<w=w=wv=lw= w

’ﬂw:

Now suppose that "w < "*lw so that we have

n+1

<w ¥ (by Exercise 6.5.14b and the induction hypothesis)
n+2
=""w

)

which completes the induction.

Returning to the main problem, we then have

w® = supw® (by Definition 6.5.9¢ since ¢ is clearly a limit ordinal)

a<e

"w

= sup w (by Lemma 6.5.15.1 since {"w} is non-decreasing)
n<w

=sup"Mw="w=¢

n<w

so that ¢ does have the desired property.

Now we must show that it is the least such ordinal that has this property. So consider any a < ¢
then since € = sup,,,, "w it follows that there is an n < w such that o < "w by the least upper
bound property (Lemma 6.5.11.2). It then follows that the set A = {k Ewla< kw} is not empty.
Since this is a set of natural numbers it follows that it has a least element m.

Case: m = 0. Then o < ™w = % = 1 so that it must be that o = 0. But then we have
Wr=wl=1#40=a

so that a does not have the property.

Case: m > 0. Then m > 1 so that m — 1 is still a natural number. It then follows that a > ™ 1w
since otherwise m — 1 would be the least element of A. Thus we have

mly<a<™w.

It then follows from Exercise 6.5.14b that

Thus we have
a<Mw < w®

so that clearly a does not have the property since w® # «. Since a was arbitrary and the cases
exhaustive this shows that ¢ is indeed the least such ordinal. O

Exercise 6.5.16

(Characterization of Ordinal Exponentiation) Let « and 3 be ordinals. For f : 8 — «, let s(f) =
{E< B f(&) #0}. Let S(B,a) = {f| f:P — aand s(f) is finite}. Define < on S(B,«a) as follows:
f < g if and only if there is & < B such that f(&) < g(&) and f(&) = g(§) for all £ > &. Show that
(S(B,a), =) is isomorphic to (af, <).
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Solution:

First we define summation notation for ordinals. Since ordinal addition is not commutative we
define summation notation such that each additional term is pre-added to the previous terms, i.e.
added on the left. So, for example, we have

5
Zan=a5+a4+a3+a2+a1.

n=1

We also adopt the convention that
m
S =0
k=n

any time n > m.

Proof. First we note that if 8 = 0 = & then the only function from § to « (it could even be here that
a =0 = @) is the vacuous function @. Hence S(53,«) = {@}, which is clearly vacuously isomorphic
to (in fact identical to) o = a® = 1 = {0} = {@}. Thus in the following we assume that 3 # 0,
which implies that o # 0 as well since functions from £ to « cannot exist when g # 0 = @ but
a=0=0.

Also if « =1 = {0} (and still 8 # 0) then there is clearly only a single function f : 8 — «, namely
that where f(£) = 0 for all £ € 8. Hence S(3,«) = {f}, which is clearly trivially isomorphic to
a? =18 =1 = {0}. Thus in what follows we shall assume the more interesting case when o > 1
(and 8 > 0).

Now we define a function h : S(8,a) — o®. For any f € S(3, a) since s(f) is a finite set of ordinals
it follows that it is isomorphic to some natural number n. Thus its elements can be expressed as a
strictly increasing sequence {sy} for k& < n where each s, € 3 since s(f) C . We now set

n—1

hF) =) o™ f(sk),
k=0
noting that it could be the case that n = 0 so that h(f) = 0, consistent with our convention.

First we show that h(f) € o” so that the range of A is in fact a subset of a®. We begin by showing

by induction on m that
m

Zas’“ flsg) < afmth,
k=0
First for m = 0 we have
m 0
Zask “f(sk) = Zask - f(sk)
k=0 k=0
=a’ - f(s0)
<a®-a (by Exercise 6.5.7a since a # 0 and f(sg) < «)
=0Tl = gsm Tl (by Definition 6.5.9b)

Now suppose that
m
S att - flsi) <asmtl
k=0

It follows from Exercise 6.5.14b that
a3m+1 < aSm+1
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since {s} is a strictly increasing sequence so that s, + 1 < s,,4+1. We then have

m—+1

Z sk f(sk) = gSmt1 . f(Serl) +Za8k f(Sk)
k=0 k=0

<afm . f(spyr) +am Tt (by the induction hypothesis and Lemma 6.5.4a
<’ f(Smyr) + o’ (follows from Lemma 6.5.4 and the above
= a® - [ f(Syg1) + 1] (by Definition 6.5.6b
— oSt L g (by Exercise 6.5.7 since f(sm41) +1 <«
= qfmitl (by Definition 6.5.9b

which completes the induction. Hence we have

n—1

h(f) = a™ - flsk) <t <af
k=0

by Exercise 6.5.14b since s,_1 + 1 < f8 since s,—1 < 8. Clearly then h(f) € a” by definition of
ordinal ordering.

Now we show that h is an increasing function and therefore also injective. So consider any f and g
in S(B8, @) such that f < g. Then by the definition of < there is a £y < 8 such that f(&y) < g(&) and
f(&) =g(&) for all £ < € < B. Now let S = s(f)Us(g), which is clearly a finite set of ordinals since
s(f) and s(g) are. Hence it is also isomorphic to a natural number n so that it can be expressed as
a strictly increasing sequence {si} for k < n. Moreover

W =3 0% - f(s) hg) = 3o - g(se)
k=0 k=0

since for each term where s; ¢ s(f) we have that f(s;) = 0 so that the term contributes nothing
to the sum by Definition 6.5.6a (and similarly for g). Also since f(&p) < g(&o) is has to be that
0 < g(&o) so that & € s(g) and hence & € S. From this it follows that there is an m < n such that
Sm = 50.

We then have

m—1
@' () + Y0 % fls)
k=0

< o™ f(sm) + atmoitl (by Lemma 6.5.4a and the above)

<afm - fsy) +am (since {si} is an increasing sequence)

= - [f(sm) + 1] (by Definition 6.5.6b)

< a*m - g(sm) (since f(sm) < g(sm))
m—1

< a®m - g(sm) + Z - g(sp). (by Lemma 6.5.4)
k=0

Thus it follows yet again from Lemma 6.5.4a that

W) = 3o - f(si)
k=0

n—1 m—1
= 37 ot fse) Fatm - fsm) + Y ot f(sk)
k=m+1 k=0

)
)
)
)
)
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which shows that h is indeed increasing.

Lastly we show that h is a surjective function, which then completes the proof that A is an isomor-
phism so that (S(3,a), <) is isomorphic to (a”, <) as desired. So consider any v € o so that by
definition v < o,

We construct a function f : 8 — « recursively by first initializing f(£) = 0 for all £ € 5. We then
initialize p = v and perform the following iteratively:

If p < « then we set f(0) = p, noting that by definition p € o and 0 € 8 since 5 > 0. We then
terminate the iteration, noting that it could be that f(0) = p = 0.

If p > athen 1 < a < p so that by Lemma 6.6.2 there is a greatest ordinal ¢ such that a” < p. Then
clearly we have a® < p < v < o so that it follows from Exercise 6.514b that o < 8 since a > 1
(the exercise only asserts implication in one direction but the other direction follows immediately

similarly to the proof of Lemma 6.5.4a). Then since clearly a® # 0 it follows from Theorem 6.6.3
that there are unique ordinals 7 and p’ such that

a’ T4p =p
and p’ < a. We claim the following about these:

1. 7 < a. To the contrary, assume that 7 > « so that we have

p=a°-7+p >0’ 74+0=0a-7>a° -a=a°"!

by Lemma 6.5.4, Exercise 6.5.7 since a” # 0, and Definition 6.5.9b. However, this contradicts
the definition of o, i.e. that it is greatest ordinal ¢ such that p > of. Hence it must be that
T < Q.

2. 0 < 7. Were it the case that 7 = 0 then we would have
p=a’-T+p =a%-0+p =0+p ="
However, we then would have both p > o and p = p’ < a“, which is clearly a contradiction.
So it must be that 7 # 0 so 7 > 0.
3. p/ < p. We have
pP<a’=a’-1<a’ - 7=a° - 7+0<a’ - 7+p =p

by Exercise 6.5.7 since @’ # 0 and Lemma 6.5.4 since 0 < p’, noting that we also just showed
that 1 < 7 since 0 < 7.

We therefore set f(o) = 7, noting that we have shown that ¢ < 8 and 7 < « (so that o € § and
T € a). We then repeat the above, setting p’ as the new p, noting that p’ < p < so that p’ <~ is
still true.

Now it has to be that this construction terminates after a finite number of iterations since each p in
the iterations forms a strictly decreasing sequence of ordinals. Hence this sequence has to be finite
since otherwise the range of this sequence would be a set of ordinals with no least element. It thus
follows that f(£) # 0 for a finite number of £ € 8 so that s(f) is finite and f € S(3,a). The fact
that h(f) = v follows immediately from the construction of f so that h is surjective since v was
arbitrary. O
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In conclusion we note that h maps f € S(3,a) to its corresponding ordinal v € o by expanding
~ in base-a with digits in the range of f. Running through the above procedures for finite o and
[ shows that this is the usual base expansion in base-a. However, this is much more general since
a or f (or both) might be transfinite. The interesting conclusion here is that any ordinal can be
expressed with a finite number of (potentially transfinite) digits with respect to any other ordinal
(potentially transfinite) as a base. It would seem that Theorem 6.6.4 (the normal form) is a special
case of this in which the base is w.

86.6 The Normal Form

Exercise 6.6.1

Show that w® = €.

Solution:

This was shown in Exercise 6.5.15¢.

Exercise 6.6.2

Find the first few terms of the Goodstein sequence starting at m = 28.

Solution:

We show the first 5 terms of the Goodstein sequences for m = 28:

mo =m =28 = 2% 4 22+1 4 92

my =3 +3371 133 —1=3% 13371 1 32.2.4 3.2+ 2~ 7.626 x 1012

my =4 144 442244241~ 1.341 x 10154

ms =5 + 51 +52.24 5.2~ 1.911 x 10282

my =65 + 651 4+62-24+6-2—1=65 + 61 +62-2+6+5~ 2.659 x 1036305

Chapter 7 Alephs

§7.1 Initial Ordinals

Exercise 7.1.1

If X is an infinite well-orderable set, then X has nonisomorphic well-orderings.

Solution:

Lemma 7.1.1.1. If « is an infinite ordinal then |a| = |a+ 1|, i.e. @ and a4+ 1 are equipotent.
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Proof. First we note that since « is infinite we have a + 1 > a > w. We then construct a bijection
from a + 1 to a. So define f:a+ 1 — a by

B+1 fB<w
f(B)=48 B>wand f#a
0 B =«

for g € o+ 1.

First we show that f is injective. So consider any § and v in a + 1 where 8 # . Without loss of
generality we can assume that 8 < . We then have the following:

Case: § < w. Then clearly f(8) = f+ 1 < w since 8 < w and w is a limit ordinal, but we also
clearly have that 0 < 8+ 1 = f(8). Now, if also v < w then clearly f(B) =8+1<~vy+1= f(v)
since f < . If v > w and v # «a then we have f(f) < w <~ = f(v). Lastly if v = « then we have
f(v) =0<f(B).

Case: 8 > w and 8 # «. Here since 8 < v we have w < 8 < 7. Thus if also v # « then clearly we
have f(8) = 8 <~ = f(7). On the other hand if v = a then f(7) =0<w < 8= f(B).

Thus in every case we have f(8) # f(v), thereby showing that f is injective. We note that the case
in which 8 = « is impossible since « is the greatest element of « +1 but v > 8 and v € ae + 1.

Next we show that f is surjective. So consider any g € «.

Case: f < w. If 8 =0 then clearly f(o) = 0 = 8. On the other hand if 0 < 5 < w then § is a
successor ordinal, say 8 = v+ 1, so that v < 8 < w hence clearly vy € a+ 1 and f(y)=~v+1= 8.

Case: 8 > w. Then since 8 € a we have § < a < a+ 1 so that § # « but 8 € a + 1. Then clearly
f(B) =B

Hence in all cases there is a v € a + 1 such that f(y) = § so that f is injective. Therefore we have
shown that f is a bijection so that by definition a 4+ 1 and « are equipotent. O

Lemma 7.1.1.2. If an infinite set A with order < is isomorphic to an ordinal a then it can also
be re-ordered to be isomorphic to o + 1.

Proof. Since A is infinite and the isomorphism from A to « is a bijective function, it follows that
they are equipotent so that « is also infinite. Then by Lemma 7.1.1.1 « is equipotent to a + 1 so
that A is also equipotent to az+ 1. Hence there is an f : A — a+1 that is bijective. We then simply
re-order A according to « + 1, i.e. we create the following order on A:

R={(a,b) € Ax A f(a) < f(b)}
so that clearly (A, R) is isomorphic to (a+ 1, <). O
Main Problem.

Proof. For an infinite well-orderable set X we show that X has an infinite number of non-isomorphic
well-orderings. So let < be a well-ordering of X so that by Theorem 6.3.1 (X, <) is isomorphic to
some ordinal . We then show by induction that, for any natural number n, there is an ordering
R, of X such that it is isomorphic to a + n. For n = 0 we have that, for Ry ==, clearly (X, Rp) is
isomorphic to (e, <) by what has already been established. Now suppose that there is an ordering
R, of X such that (X, R,,) is isomorphic to (a«+n, <). Then since X is an infinite set it follows from
Lemma 7.1.1.2 that there is an ordering R, 1 such that X is isomorphic to (a+n)+1=a+(n+1).
This completes the inductive proof. We note that clearly each of these re-orderings are mutually
non-isomorphic since different ordinals are not isomorphic to each other. O
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Exercise 7.1.2

If o and 3 are at most countable ordinals then o+ 3, - 3, and o are at most countable. [Hint: Use the
representation of ordinal operations from Theorems 5.3 and 5.8 and Exercise 5.16 in Chapter 6. Another
possibility is a proof by transfinite induction. ]

Solution:

First we show that o + (§ is at most countable.
Proof. First we define two sets:

W1 ={(0,7)|ye€a} We={(1,7) |y € B} .

We also define the order <; on Wi so that (0,7) <1 (0,6) if and only if v < § for (0,+) and (0,0)
in W1 (so that v and ¢ are in «). Similarly we define the order <5 on Wy so that (1,7) <o (1,4) if
and only if v < ¢ for (1,7) and (1,6) in W (so that v and ¢ are in f3).

Clearly W and Ws are disjoint, (W7, <1) is isomorphic to «, and (Ws, <3) is isomorphic to 8. Tt
then follows from Theorem 6.5.3 that the sum (W, <) is isomorphic to a + 3.

Now, since they are isomorphic, clearly W; is equipotent to « and therefore is at most countable.
Similarly W5 is at most countable by virtue of being isomorphic to 5. It then follows from The-
orem 4.2.6 and Theorem 4.3.5 that W = Wj; U Wy is at most countable. Then, since (W, <) is
isomorphic to a+ 3, W and a+ § are equipotent so that o+ 8 must be at most countable too. [

Next we show that « - 5 is at most countable.

Proof. Since o and [ are at most countable it follows from Exercise 4.2.2 and Theorem 4.3.7 that
a x 3 is at most countable. Then, since « - is isomorphic to the antilexicographic ordering of o x 3
by Theorem 6.5.8, it follows that « - 8 is equipotent to o X 8 and there for at most countable. [

Lastly we show that o is at most countable.

Proof. First if we have that o = 0 then then either o® = 0% = 1 (if 3 = 0) or o = 0% = 0 (if
B > 0). Clearly both 0 and 1 are both at most countable so in the following we assume that « # 0.

Now, let Seq(« - 8) be the set of all finite sequences of elements of « - 8, and S(3,«) be the set as
defined in Exercise 6.5.16 such that S(8, «) with the order defined there is isomorphic (and therefore
equipotent) to . We shall construct a function g : S(8,a) — Seq(a - ).

So consider any f € S(8,a) so that f : 8 — «a and s(f) = {£€ < B | f(§) # 0} (as defined in the
exercise) is finite. Hence there is a natural number n such that s(f) can be expressed as an increasing
sequence h : n — s(f). We now define another sequence ¢t : n — a - 8 by

t(k) = a-h(k) + f(h(k))

for k € n. We then set g(f) =t.

The first thing we show is that g(f) is really a sequence whose elements are in a8 for any f € S(5, ).
Hence for any such f again let h be the increasing finite sequence whose range is s(f) and let t = g(f).
Then for any k € n we we note that h(k) < S since h(k) € s(f) so that h(k) +1 < 5. We also note
that f(h(k)) € a since f: 8 — « so that f(h(k)) < a. Thus we have by definition that

t(k) = a - h(k) + f(h(k))
<a-hk)+a (by Lemma 6.5.4)
=a-(h(k)+1) (by Definition 6.5.6b)
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<a-pf. by Exercise 6.5.7 since a # 0
Y

Hence t(k) < a.- B so that t(k) € o 5. Thus t : n — « - 8 and since clearly this sequence is finite it
follows that t € Seq(a - ).

Now we show that g is injective. So consider f; and fy in S(8,«) such that f; # fo. Let hy, ng
and ho, no be the increasing sequences and natural numbers for fi; and fs, respectively, as defined
above. Also let t1 = g(f1) and t2 = g(f2).

Case: ny # ns. In this case the sequences are different sizes so that clearly ¢t; # to since t; and to
are sequences of sizes ny and ns, respectively.

Case: ny = ng. Since f; # fo there must be a v € 8 such that fi(v) # f2(y). Without loss of
generality we can assume that f1(v) < fa(7).

If f1(y) = 0 then by definition v ¢ s(f1) but v € s(f2). Hence there is a k € ny such that ha(k) = 7.

Also since ny = ng clearly k € ny. However, it must be that hy(k) # v = ha(k) since otherwise it
would be that v € s(f1). Suppose that hy (k) < ho(k) so that hy(k) + 1 < ho(k) and we have

ti(k) = - hy(k) + f1(hi(K))

< a-hi(k)+a (by Lemma 6.5.4)
=a-(hi(k)+1) (by Definition 6.5.6b)
< a- ho(k) (by Exercise 6.5.7 since « # 0)
< - ha(k) + fa(he(K))

= t2(k)

so that t1(k) # t2(k) and therefore t; # t5. The case in which hq(k) > ho(k) is analogous.
On the other hand if f1(y) # 0 then 0 < f1(7) < f2(v) so that v € s(f1) and v € s(f2). Thus there
are k1 and ks in ny = ng such that hy(k1) = ha(ks) = . If k1 = k2 then we have
t1(k1) = a - hy(kr) + fi(hi (k1))

=a-v+ fi(7)

£+ o) (by Lemma 6.5.4b since f1() # f2(7))

= a - ha(k2) + f2(ha(k2))

= to(ka) = ta(k1)

so that t1 # to. If k1 < ko then since hq is increasing we have ha(ka) = hi(k1) < hi(ks) so that
hg(kg) +1< hl(k'g) and so

tg(k'Q) = Q- hQ(kQ) + f2(h2(k2))

< a-ha(ks) + (by Lemma 6.5.4)
=a- (ha(ka) + 1) (by Definition 6.5.6b)
< - hy(ks) (by Exercise 6.5.7 since a # 0)
< - ha(ke) + fi(ha(k2))

= t1(k2)

and t1 # ty. The final sub-case in which k; > ko is analogous.

Hence in all cases and sub-cases g(f1) = t1 # ta = g(f2), which shows that g is injective. From this
it follows from Definition 4.1.4 that |S(8, )| < |Seq(« - 8)|. However, from what was shown above
it follows that « - 8 is at most countable since o and 3 are. Thus Seq(a - () is also at most countable
by Exercise 4.2.4 and Theorem 4.3.10 so that S(3,a) must be at most countable since it was just
shown that |S(8,a)| < |Seq(a - B)|. Lastly, since S(3, a) is equipotent to o it follows that o is at
most countable as well. O
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Exercise 7.1.3

For any set A, there is a mapping of P (A x A) onto h(A). [Hint: Define f(R) = the ordinal isomorphic
to R, if R C A x A is a well-ordering of its field; f(R) = 0 otherwise.]

Solution:

Lemma 7.1.3.1. For a set A and ordinal o, if « is equipotent to a subset of A then o < h(A).

Proof. Suppose that « is equipotent to X C A but that o > h(A). Clearly if « = h(A) then h(A) is
equipotent to X C A (since « is), which contradicts the definition of the Hartogs number. On the
other hand if o > h(A) then let f be a bijection from « to X. Then, since h(A) < o we have that
h(A) € a and h(A) C « since ordinals are transitive. It then follows that f | h(A) is a bijection
from h(A) to f[h(A)] € X C A. Hence again h(A) is equipotent to a subset of A, contradicting the
definition of the Hartogs number. So it has to be that a < h(A) as desired. O

Main Problem.

Proof. We define a function f: P (A x A) — h(A). So for any R € P (A x A) clearly R C A X A so
that R is a relation on A. If R is a well-ordering of some X C A then by Theorem 6.3.1 there is a
unique ordinal « such that (X, R) is isomorphic to . We then set

F(R) = a R is a well-ordering of some X C A
10 Ris not a well-ordering of any X C A

First we show that f(R) really is in h(A) for any R € P (A x A). So for any such R, if R is not a
well-ordering of some X C A then clearly f(R) = 0. Then, since clearly @ C A and & is equipotent
to 0, it follows that 0 < h(A) by Lemma 7.1.3.1. Hence f(R) = 0 € h(A). On the other hand if R
is a well-ordering of some X C A then let « be the ordinal isomorphic to (X, R) so that f(R) = a.
Since this means that « is equipotent to X C A, it again follows from Lemma 7.1.3.1 that o < h(A)
so that f(R) = a € h(A).

To show that f is surjective consider any o € h(A) so that a < h(A). Since by definition h(A)
is the least ordinal that is not equipotent to a subset of A it follows that « has to be equipotent
to an X C A. Then let R be the well-ordering of X such that (X, R) is isomorphic to «. Clearly
R is a relation on X and therefore also a relation on A since X € A. Thus R € A x A so that

R € P(Ax A). Clearly also f(R) = « and since o was arbitrary this shows that f is surjective.
O

Note that this does not mean that h(A) < |P (A x A)| unless the Axiom of Choice is employed.

Exercise 7.1.4

|A| < |A| + h(A) for all A.

Solution:

Lemma 7.1.4.1. |h(A)| £ |A] for any set A.

Proof. Suppose to the contrary that |h(A4)| < |A| so that there is an injective f from h(A) to A.
Then let X = f[h(A)] so that clearly X C A. But then f considered as function from h(A) to X
is a bijection so that h(A) is equipotent to a subset of A, which contradicts the definition of the
Hartogs number. Hence it must be that |h(A)| £ |A| as desired. O
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Note that this does not imply that h(a) > |A| without using the Axiom of Choice.
Main Problem.

Proof. Since we are only interested in the cardinalities of A and h(A) and their cardinal sum we
can assume that they are disjoint. Clearly f : A — AU h(A) defined by f(z) =z for z € A is an
injective function so that |A| < |A| 4+ h(A) by the definition of cardinal addition. So suppose that
|A| = |A| + h(A). Then there is a bijective function f from A U h(A) into A so that f [ h(A) is an
injective function from h(A) to A. By definition this means that h(A) < |A]|, but this contradicts
Lemma 7.1.4.1. So it must be that |A| < |A| 4+ h(A) as desired. O

Exercise 7.1.5

|h(A)| < |P (P (A x A))| for all A. [Hint: Prove that |P (h(A))| < |P (P (A x A))| by assigning to each
X € P (h(A)) the set of all well orderings R C A x A for which the ordinal isomorphic to R belongs to
X.]

Solution:

Proof. First we show that |P (h(A))] < |P (P (A x A))| by constructing an injective f : P (h(A)) —
P (P (A x A)). So consider any X € P (h(A)) so that X C h(A). Then let Y be the set of well-
orderings R C A x A (so that R € P (A x A)) of subsets B C A such that (B, R) is isomorphic to
some a € X. We then set f(X) =Y, noting that clearly f(X) =Y € P (P (A x A)) since for any
R €Y we have that R € P(A x A) so that Y C P(A x A) hence Y € P(P (A x A)). Note also
that Y # & because every a € h(A) is equipotent to some subset B C A (by the definition of the
Hartogs number) so that the well-ordering of B according to « will be in Y.

We claim that f is injective. So consider X; and X5 in P (h(A)) (so that X; C h(A) and X3 C h(A4))
such that f(X;) = f(X32). Then consider any o € X;. Then since f(X;) # @ there is a well-ordering
R € f(X1) of a subset of A that is isomorphic to a. Then since f(X;) = f(X2) we have R € f(X>)
as well. It follows from this that o € X5. Thus X; C X5 since a was arbitrary. A similar argument
shows that X5 C X; so that we conclude that X; = X5. This shows that f is injective.

Hence we have shown that |P (h(A))| < |P (P (A x A))|. We also have by Cantor’s Theorem (The-
orem 5.1.8 in the text) that |h(A)| < |P (h(A))|. It therefore follows from Exercise 4.1.2a that
|h(A)] < |P (P (A x A))| as desired. O

Exercise 7.1.6

Let h*(A) be the least ordinal « such that there exists no function with domain A and range . Prove:
(a) If & > h*(A), then there is no function with domain A and range .
(b) h*(A) is an initial ordinal.

(c) h(A) < h*(A).

(d) If A is well-orderable, then h(A) = h*(A).

(e) h*(A) exists for all A.

[Hint for part (e): Show that a € h*(A) if and only if & = 0 or o = the ordinal isomorphic to R, where
R is a well-ordering of some partition of A into equivalence classes.]

Solution:
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Lemma 7.1.6.1. If A is a well-orderable set and B is any other set, there is a function from A
onto B if and only if |B| < |A].

Proof. Suppose that R is a well-ordering of A.

(—) Suppose that f is a function from A onto B. If A is empty then clearly B must be as well or
else f could not be onto. Thus we have |B] = |@| =0 < 0 = |g] = |A]. So we can assume that
A is nonempty so that if B is empty then |B| = |@] = 0 < |A|. Hence we can assume that B is
nonempty as well.

Then, for each b € B, define the set A, = {a € A | f(a) = b}, which clearly not empty since f is
onto. Then, since R is a well-ordering of A and A, C A, there is a unique least element of a; of A
according to R. We then define g : B — A by simply setting g(b) = a; for any b € B.

We then claim that ¢ is injective. So consider b; and be in B where by # ba. Then since ap, € Ap,
clearly f(ap,) = by. Similarly f(ap,) = ba so that clearly ap, # asp, since f is a function and by # bs.
Hence g(b1) = ap, # ap, = g(ba), which shows that g is injective since by and by were arbitrary.
Then by definition |B| < |A| as desired.

(+) Now suppose that |B| < |A] so that there is an injective f : B — A. If B is empty then clearly
it has to be that |B| = |@| = 0 < | A] regardless of A. So we can assume that B is nonempty so that
there is a b € B. Since f is injective, the inverse f~! is a function from ran (f) onto B. Now we
construct a function g : A — B by setting
o) = {f‘l(sc) x €ran (f)

b x ¢ ran (f)

for any « € A. It should be clear that g maps A onto B since, for any b € B, we have f(b) € ran (f)
(hence also f(b) € A) so that g(f(b)) = f~1(f(b)) =b. O

Main Problem.

First we note that presumably h*(A) for a set A is the least nonzero ordinal « such that there is
no function from A onto a. The fact that h*(A) is nonzero is important since, for a non-empty set
A, there is no function from A onto @ = 0 so that 0 is actually the least ordinal such that such a
function does not exist! We also make note of the fact that, even for A = @&, the empty function
f = @ is a vacuously a function from A onto @ = 0 so that h*(A) = 1 anyway since there is no
function from A = & onto 1 = {0}.

(a)

Proof. Suppose to the contrary that there is a function f from A onto . Then since 0 < h*(A) < «
clearly 0 € h*(A) and h*(A) C «. So we define a function g : A — h*(A) by

@) @ena
(@) {o Fla) & h(4)

for any a € A. Clearly each g(a) € h*(A) but we also claim that g is onto. To this end consider any
B € h*(A). Since h*(A) C a we have that § € « also. Then, since f is onto « there is an a € A
such that f(a) = . Since f(a) = f € h*(A) it follows by definition that g(a) = f(a) = 8. Since
£ was arbitrary this shows that ¢ is onto. However, the existence of g contradicts the definition of
h*(A) so that it must be that there is no such function from A onto a. O

(b)

Page 68




Proof. Suppose to the contrary that h*(A) is not an initial ordinal so that there is an o < h*(A)
such that || = |h*(A)|. Let f then be a bijection from « onto h*(A). Also since a < h*(A4) it
follows from the definition of h*(A) that there is a function g from A onto « (since otherwise h*(A)
would not be the least such ordinal for which such a function does not exist). But then f o g is
a function from A onto h*(A), which contradicts the definition of h*(A). Hence it has to be that
h*(A) is in fact an initial ordinal. O

(¢)

Proof. Suppose to the contrary that h(A) > h*(A). Then by the definition of h(A) there is a subset
X C A such that h*(A) is equipotent to X. So let f be a bijection from h*(A) to X. We then define

a function g : A — h*(A) by
“la) aeX
g(a)—{f .

0 aé¢ X

for any a € A, noting that 0 < h*(A) so that 0 € h*(A). Clearly g is into h*(A) but we also claim
that it is onto. So consider any o € h*(A) and let a = f(«) so that a € X and therefore a € A since
X C A. We then have g(a) = f~!(a) = f~'(f(a)) = a since a € X. Since a was arbitrary this
shows that ¢ is onto. However, the existence of g contradicts the definition of h*(A) so that it must
be that in fact h(A) < h*(A) as desired. O

(d)

Proof. We show that h*(A) < h(A), from which the result clearly follows since also h*(A) > h(A) by
part (c). So suppose to the contrary that h*(A) > h(A). Then by the definition of h*(A) it follows
that there is a function from A onto h(A). It then follows from Lemma 7.1.6.1 that |h(A)| < |A| since
A is well-orderable. However, this contradicts Lemma 7.1.4.1 so that it must be that h*(A) < h(A)
so that the result follows. O

()

Proof. Consider any set A and let S denote the set of well-orderings of some partition of A into
equivalence classes, noting that it could be that S = &. Since each R € S is isomorphic to a unique
ordinal, let H be the set of ordinals that are isomorphic to some R € S, which exists by the Axiom
Schema of Replacement. Then let o = {0} U H and we claim that o = h*(A).

First we show that « is indeed an ordinal number. Since « is a set of ordinals clearly it is well-
ordered by Theorem 6.2.6d. We also must show that « is transitive, so consider any 8 € «. Then
either 3=0or f € H. If 5 =0 = @ then clearly 8 C a. On the other hand if 8 € H then there is a
partition P of A and a well-ordering R of P such that (P, R) is isomorphic to (3, <). Now consider
any v € 8 so that v < g. It then follows that 7y is isomorphic to an initial segment of 5 and therefore
also to an initial segment P’ of P ordered by R. Let L be the least element of P (which is also the
least element of P’), which exists since R is a well-ordering. Then let

L’:Lu(A—UP’),

i.e. L' is the set containing the elements of L and any elements of A that are not covered in the
initial segment P’. Then let
P ={L'}u(P' = {L}),

i.e. P"”is P’ but with L replaced with L’. It is easy to show that P” is a partition of A and that it
is isomorphic to v with the same ordering as R except with L replaced by L’. Hence by definition
we have that v € a. Since v € 8 was arbitrary this shows that § C «, and since 8 € o was arbitrary
this shows that « is transitive and hence an ordinal number.
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Now we show that there is no function from A onto a. So suppose to the contrary that there is such
a function f. We then define the set

E={(a,b) e Ax A f(a) = f(b)} .

It is trivial to show that this is an equivalence relation on A so that A/E is a partition of A by
Theorem 4.4.7. Moreover let g be the mapping from A/E to « defined as follows: for any B € A/E
let g(B) be the least element of {f(z) | z € B}, noting that {f(x) | + € B} contains only a single
element since B is an equivalence class where f(z) = f(y) for any z and y in B. Tt is trivial to show
that ¢ is a bijective function so that we can well-order A/FE according to the ordinal « since « is
the range of g. However, it then follows by definition that o € a, which contradicts Lemma 6.2.7.
Hence it must be that there is no function from A onto «.

Lastly we show that there is a function from A onto 3 for every nonzero 8 < «. So consider any such
[ so that 8 € a. Then either 8 =0 or 8 € H, but since S is nonzero it must be that g € H. Then
by definition there is is a partition P of A and well-ordering R of P such that (P, R) is isomorphic
to (8,<). Let f then be the isomorphism from P to 5. We then define the mapping g : A — 3 as
follows: for any a € A there is a unique B € P such that a € B since P is a partition of A. We then
set g(a) = f(B). It is easy to show that g is onto.

It follows from what has been shown that indeed o = h*(A). O

§7.2 Addition and Multiplication of Alephs

Exercise 7.2.1

Give a direct proof of X, + X, = N, by expressing w, as a disjoint union of two sets of cardinality N,.

Solution:

Lemma 7.2.1.1. If o and B are ordinals and o > (3 then there is a v < a such that || < |v|.

Proof. Clearly for v = we have v = § < a and |§| = || so that || < |v| is true. O

Lemma 7.2.1.2. If a set (A, <) is isomorphic to ordinal « and o > 8 for another ordinal 8 then
there is an a € A such that |5| < |X]| for the set

X={zecAlz=<a}.

Proof. First let f be the isomorphism from « to A. Clearly by Lemma 7.2.1.1 there is an ordinal
v < a such that || < |y|. Now let a = f(y) so that clearly a € A, and let

X={zecAl|lz=<a}.

Now, we claim that X = f[y]. So consider any x € X so that z < a. It then follows that
f~(x) < f~Y(a) = 7 since f~! is an isomorphism since f is. Hence f~!(z) € v so that clearly
z = f(f~Y(z)) € f[v]. Since x was arbitrary it follows that X C f[y]. Now consider any x € f[v]
so that there is a § €  such that = f(§). Then ¢ < 7 so that x = f(§) < f(y) = a since f is an
isomorphism so that by definition € X. Hence f[y] C X. This shows that X = f[y]. Then, since
f is bijective, it follows that |3] < |y| = |f[¥]| = | X]- O

Lemma 7.2.1.3. For initial ordinals « and 3, if |a| < |B], then a < .
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Proof. Suppose that |a| < |5] but that a > 8. Then clearly g is isomorphic (and therefore equipo-
tent) to an initial segment of o so that |3| < |&|. Then by the Cantor-Bernstein Theorem we have
|a| = |B|. However since « is an initial ordinal and 8 < « it cannot be that |a| = |3|. Thus we have
a contradiction so that it must be that o < 3 as desired. O

Lemma 7.2.1.4. For any ordinal o and any infinite initial ordinal Q) where Q < wq, there is a
v < «a such that ) = w,.

Proof. We show this by induction on a. For a = 0 we have w, = wy = w so that there is no infinite
initial ordinal € such that 2 < w, = w. Hence the hypothesis is vacuously true. Now suppose that,
for every infinite initial ordinal ) < w,, there is a v < « such that 2 = w,. Consider any infinite
initial ordinal Q < way1. Then Q < wa+1 = h(wy) so that 2 is equipotent to some subset of w, by
the definition of the Hartogs number. From this it clearly follows that || < |w,| and hence Q < w,,
by Lemma 7.2.1.3 since both Q and w, are initial ordinals. If {2 = w, then we are finished but if
) < wqy then by the induction hypothesis there is a v < o such that 2 = w, so that we are also
finished.

Now suppose that « is a nonzero limit ordinal and that for every 8 < « and infinite initial ordinal
) < wg there is a v < f such that = w,. Consider then any infinite initial ordinal < w,. Then
since wy = sup {ws | 8 < a} it follows that € is not an upper bound of {wg | 8 < a} so that there
is a B < «a such that {2 < wg. But then by the induction hypothesis there is a v < 3 such that
2 = wy. This completes the transfinite induction. O

Lemma 7.2.1.5. For ordinal a > 0 and an ordinal 8 < w, there is an ordinal v < « such that
1Bl <R,

Proof. First, if 3 is finite then clearly 8 < w so that 8 € w. Then 8 C w since w is transitive (since
it is an ordinal number). Hence |8] < |w| = Ry (i.e. 7 = 0 so that v < «). On the other hand if 5 is
infinite then by Theorem 7.1.3 § is equipotent to some initial ordinal €. Clearly €2 is infinite since 3
is and clearly Q) < w, since § < w, and w, is an initial ordinal. It then follows from Lemma 7.2.1.4
that there is a v < « such that Q = w,. Then we have || = |Q] = |w,| = X, so that |5] <R, is
true. O

Lemma 7.2.1.6. Fvery infinite initial ordinal is a limit ordinal.

Proof. Suppose that « is an infinite initial ordinal and that it a successor so that a = + 1. It was
shown in Lemma 7.1.1.1 that || = |8+ 1| = |a|, but since clearly 8 < « this contradicts the fact
that « is an initial ordinal. Hence v must be a limit ordinal. O

Lemma 7.2.1.7. For well ordered sets A and B either |A| < |B| or |B| < |A] (or both in which
case |A| = |B|).
Proof. By Theorem 6.1.3 we have:

Case: A and B are isomorphic. Let f be the isomorphism from A to B. Then clearly f is a bijection
so that |A| = |B|. Also since f is injective |A| < |B|. Clearly also f~! is bijective from B to A so
that |B| < |A| as well.

Case: A is isomorphic to an initial segment of B. Then if f is the isomorphism clearly f is an
injective function from A to B so that |A| < |B].

Case: B is isomorphic to an initial segment of A. Then if f is the isomorphism clearly f is an
injective function from B to A so that |B| < |AJ.

Since these cases are exhaustive by Theorem 6.1.3 clearly the result has been shown.

Note that this did not require the Axiom of Choice. O
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Corollary 7.2.1.8. If A and B are well ordered sets then |A| £ |B| if and only if |B] < |A|.

Proof. (—) Suppose that |A| £ |B|. Then it follows from Lemma 7.2.1.7 above that |B| < |Al.
Suppose that |B| = |A|. Then there is a bijection f from B to A. But then clearly f~! is also a
bijection and therefore injective. Hence by definition |A| < |B|, a contradiction. So it cannot be
that |B| = |A|. Hence |B| < |A] by definition as desired.

(+) We show this by proving the contrapositive. So suppose that |A| < |B|. Also suppose that
|B| < |A] so that by Lemma 7.2.1.7 above |A| = |B|. Thus we have shown that
|B| < |A] — |A] = |B|
1Bl £ 4] v [A] = |B|
~ (1Bl < |A[ A |A] # [B])
~(1Bl < [Al),

thereby showing the contrapositive. O

Main Problem.
The following proof is similar to the proof of Theorem 7.2.1.

Proof. Suppose that A; and A, are disjoint sets that are both equipotent to w, for some ordinal «.
Then there are bijections f; and fo from A; and As, respectively, to w,. We define a well-ordering
< of A= A; U A; as follows: for a and b in A we let a < b if and only if

e ¢ and b are in A; and fi1(a) < f1(b

), or
e aand bare in Ay and fo(a) < fo(b), or
(b), or
(b)

e ac A and b€ Ay and fi(a) < fo
° aGAgandbeAlande(a)<f1b.

First we show that < is transitive. So consider a, b, and ¢ in A such that a < b and b < c.
Case: a € A
Case: be A
Case: ¢ € A;. Then fi(a) < f1(b) < fi(c) so that fi1(a) < fi(c) and hence a < c.

Case: ¢ € Ay. Then fi(a) < f1(b) < fa(c) so that fi(a) < fa(c) is true and hence
a < c.

Case: be Ay
Case: ¢ € A;. Then fi1(a) < f2(b) < f1(c) so that fi(a) < fi(c) and hence a < c.
<

b
Case: ¢ € Ay. Then fi(a) < fa(b) < f2(c) so that fi(a) < fa(c) is true and hence
a<c.

Case: a € Ay
Case: be A;
Case: ¢ € A;. Then fa(a) < f1(b) < f1(c) so that fa(a) < f1(c) and hence a < c.
Case: ¢ € Ag. Then fa(a) < f1(b) < fa(c) so that fa(a) < f2(c) and hence a < c.
Case: be Ay
Case: ¢ € A;. Then fa(a) < f2(b) < f1(c) so that fa(a) < fi(c) and hence a < c.
Case: ¢ € Ag. Then fa(a) < fa(b) < fa(c) so that fa(a) < f2(c) and hence a < c.
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Since all cases imply that a < ¢ and a, b, and ¢ were arbitrary this shows that < is transitive.

Now we show that for any a and b in A, that either a < b, a = b, or b < a and that only one of these
is true. So consider any ¢ and b in A. Then we have

Case: a € A
Case: b € Ay. Then clearly exactly one of the following is true: a < b if f1(a) < f1(b),a =b
if fi(a) = f1(b) since f is a bijection, and b < a if f1(b) < f1(a).
Case: b € Ay. Clearly a = b is not possible since A; and Ay are disjoint. Then if f1(a) < fo(b)
then a < b and if f1(a) > fo(b) then b < a, noting that these are mutually exclusive.

Case: a € Ay

Case: b € A;. Then again clearly a = b is not possible since A; and As are disjoint. Then
if fo(a) < fi(b) then a < b and if fa(a) > f1(b) then b < a, noting that these are mutually
exclusive.
Case: b € Ay. Then clearly exactly one of the following is true: a < b if fo(a) < fo(b), a = b
if fo(a) = f2(b) since fy is a bijection, and b < a if fo(b) < fa(a).

Thus we have shown that < is a total (strict) order on A.

Now we show that < is also a well-ordering. So let X be a nonempty subset of A. Let B =

filX N A1] U f2o[X N Ag], noting that this is a nonempty set of ordinals. Then let B has a least
element «.

Case: o € f1[X N Ay]. Then we claim that x = f; '(a) is the <-least element of X, noting that
x € A;. Note also that clearly then fi(x) = fi(f; '(a)) = a. So consider any y € X.
Case: y € A;. Then y € X N A; so that fi(y) € f1[X N A1] so fi(y) € B. Thus fi(z) =
a < f1(y) since « is the least element of B. Clearly if fi(z) = fi1(y) then x = y since f; is
bijective. On the other hand if fi(x) < f1(y) then by definition # < y. Hence in either case
we have x < y.

Case: y € As. Then y € X N Ay so that fa(y) € f2[X N As] so that fo(y) € B. Thus
f1(x) = a < fa(y) so that by definition x < y. Hence again = < y is true.
Case: o ¢ f1[X N A;]. Then it has to be that a € fo[X N As]. Then we claim that 2 = f, '(a) is
the <-least element of X, noting that = € Ay. Note also that clearly then fa(z) = fo(f; '(a)) = a.
So consider any y € X.
Case: y € A;. Then y € X N A; so that f1(y) € f1[X N A1] so fi(y) € B. Thus fo(z) =a <
f1(y) since « is the least element of B. Now, it cannot be that fo(x) = o = fi(y) for then «
would be in f1[X N Aj]. So it must be that fo(z) = @ < f1(y) so that by definition = < y so
that x < y is true.
Case: y € As. Then y € X N Az so that fa(y) € f2[X N As] so that fo(y) € B. Thus
fa(x) = a < fo(y). Then if fo(x) = a = fa(y) then = = y since fy is bijective. On the other
hand if fo(z) = a < f2(y) then x < y by definition. In either case we have x < y.
Hence in all cases we have shown that X has a <-least element so that < is a well-ordering of A.

Now we show by transfinite induction that N, + X, = N, for all ordinals «. First it was already
shown in a previous chapter that Rg+Rg = Xy. So now consider any o > 0 and suppose X, +R, = R,
for all v < a.

Then consider two disjoint sets A; and As that are both equipotent to w, and the well-ordering <
on A = A; U A as defined above, also again letting f; and f> be the isomorphisms from A; and As,
respectively, to w,. Now let a be any element of A and define

X={zxecAl|lz=<a}.
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Let X7 = XN A; and Xo = X N Ay so that clearly X; and X5 are disjoint and X = X; U X5. From
this it follows from the definition of cardinal addition that | X| = |X7| + | X2|.

If @ € A; then define 8 = fi(a) € wy so that f < w,. It follows from this and Lemma 7.2.1.5
that there is a v < a such that |3] < R, since a > 0, noting also that X, < X, by the remarks
following Definition 7.1.8. Now consider any z; € X; so that also z; € X. Then by definition
1 < a so that by the definition of < we have fi(z1) < fi(a) = § since 1 € A; and a € A;.
Hence fi(x1) € 8 so that f1[X;] C 0 since z7 was arbitrary. Hence, since f; is bijective, we have
|X1| = |fai[X1]] < 18] £ R,. Next, consider any z2 € X, so that o € X and hence 29 < a. Then,
again by the definition of <, we have that fo(za) < fi(a) = 3 since z2 € Ay and a € A;. Hence
fa(z2) € B so that fo[X5| C S since xo was arbitrary. Thus we have | Xs| = |fo[X2]| < 8] < R,
since fy is bijective.

A similar argument shows that |X;| < X, and |X5| <X, for some v < « in the case when a € As.
However, in this case we must set § = fa(a) + 1, noting that 5 € w, since fa(a) € w, and w,, is a
limit ordinal by Lemma 7.2.1.6.

Thus in all cases we have

[ X] = X[ + [ X

<N, 4R, (by property (d) of in section 5.1)
=N, (by the induction hypothesis since v < )
<N, .

Thus we have shown that | X| < X, = |w,| for any a € A, and hence |w,| £ | X| by Corollary 7.2.1.8
since w, and X are both well-ordered. If § is the ordinal isomorphic to (A4, <) (which exists by
Theorem 6.3.1 since we have shown that < is a well-ordering), then it follows from the contrapositive
of Lemma 7.2.1.2 that 6 < w, and hence |A| = |§| < |wa| = Ry Thus we have

Ny + R =41+ |A2| = |A] <X, .
Since obviously 0 < R, it follows again from property (d) in section 5.1 that
Ny =N, +0 <N, + R,

Hence, by the Cantor-Bernstein Theorem we have that R, = X, +X,, which completes the inductive
step. O

Exercise 7.2.2

Give a direct proof of n - X, = R, by constructing a one-to-one mapping of w, onto n X w, (where n is
a positive natural number).

Solution:

Lemma 7.2.2.1. If a is a limit ordinal and n is a natural number then n - a = «.

Proof. First, clearly we have by definition that n-w =sup{n-k |k <w} = w. Then, since « is a
limit ordinal, we have from Exercise 6.5.10 that o = w - 3 for some ordinal 5. Thus we have

na=n-(w-f)=mn-w)-b=w-B=a.
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Main Problem.

Proof. Consider any natural number n > 0 and any ordinal number c«. We then show that n-R, = X,
by constructing a bijective f : ws, — n X wy, which clearly shows the result by the definition of
cardinal multiplication.

So consider any 3 € w,. Then, since n > 0, we have by Theorem 6.6.3 that there is a unique ordinal
~ and unique natural number £ < n such that

where k < n and clearly
y=1v<n-y=n-7+0<n-v+k=p

since 1 < n and 0 < k. Hence we have £k € n and v < < w, so that v € w,. We then set
f(B) = (k,7) € n X wa.
First we show that f is injective. So consider 81 and B2 in w, where f(81) = f(82). If we have
f(B1) = (k1,7) and f(B2) = (k2,72) then clearly this means that k; = ko and v; = 75. It then
clearly follows that

Br=n-y1+ki=n-y+k=pa,

which shows that f is injective.

Now we show that f is also surjective. So consider any (k,v) € n X w, so that k € n and v € w,,.
Then let 8 = n-y+k so that clearly f(58) = (k,v). However, we must show that § is actually in wg,.
To see this, first we note that since v < w,, is an ordinal we have v = § + m for some limit ordinal
0 and natural number m by Exercise 6.5.4, where clearly § < . Hence we have

B=n-y+k=n-(0+m)+k=n-0+n-m)+k=n-d+(n-m+k)=+(n-m+k),

where n-d = ¢ by Lemma 7.2.2.1 since 4 is a limit ordinal. Then since also § < v < w, and n-m+k
is a natural number we clearly have that 8 =6+ (n-m+ k) < w, as well since w,, is a limit ordinal
(by Theorem 7.1.9b). Hence § € w,.

Thus we have shown that f is bijective so that by definition n - R, = |n X ws| = |wa| = Ry as
desired. O

Exercise 7.2.3

Show that

(a) X2 =X, for all positive natural numbers n.

(b) |[Ra]"| = Ry, where [R,]"™ is the set of all n-element subsets of X,, for all n > 0.
(c) |Ra]=“| = R4, where [R,]= is the set of all finite subsets of R,.

[Hint: Use Theorem 7.2.1 and induction; for (c), proceed as in the proof of Theorem 3.10 in Chapter 4,
and use Rg - N, = N,

Solution:
(a)

Proof. For any ordinal «, we show this by induction on n, noting that we only need to show this
for positive n so that n > 1 (in fact it is untrue for n = 0). First, for n = 1 we clearly have
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N7 =Rl =R, by what was shown in Exercise 5.1.2. Now assume that X" = X,. We then have

AR NP NS (by Theorem 5.1.7a)
=N} - N, (again by Exercise 5.1.2)
=N, N, (by the induction hypothesis)
=N,. (by Theorem 7.2.1)
This completes the induction step. O

(b)

Proof. For ordinal @ and natural number n, first we show that |[X,]"| < R, by constructing an
injective f : [Ny]" — w?. For a set X € [N,]" we have that |X| = n. Thus there is a bijective g
from n to X, and since clearly X C X, = w, it follows that g is a function from n to w,. Hence
we simply set f(X) = g. Now consider any X; and X5 in [R,]" where X; # X5. Then let ¢
and g2 be the corresponding bijections from n to X; and Xs, respectively. Thus f(X;) = ¢1 and
f(X3) = g2. Then, since clearly the range of g; is X1, the range of go is X5, and X; # X it
follows that f(X1) = g1 # g2 = f(Xz), which shows that f is injective. Hence it follows that
INa]"| < |w?| = |wa ™ = N = R, by what was shown in part (a).

Now we show that also R, < |[R,]"| by constructing an injective f : ws — [Ra]™. So for any 8 € w,
let X = {8+ k |k € n}, noting that clearly X C w, = R, since w, is a limit ordinal (since then
B+ k € w, for any natural number k). Also clearly |X| = n so that X € [N,]". We then set
f(B) = X. Now consider any 1 and 3 in w, where 81 # B2 and let X7 = {1 + k| k € n} and
Xy = {B2+k|ken} so that f(81) = X1 and f(B2) = Xs. Since 31 # B2 we can assume that
b1 < B2 without loss of generality. Now, clearly 81 = (8140 is the least element of X; and 83 = 52+0
the least element of X5. Since 1 < B3 it then follows that 51 ¢ X5, but since 51 € X; this clearly
implies that f(31) = X1 # X2 = f(B2). This shows that f is injective so that R, = |wa| < [[Ra]”]-

Since we have shown that both |[®,]"| <R, and R, < |[R,]"[, it follows from the Cantor-Bernstein
Theorem that |[R,]"| = R, which is what we intended to show. O

()

Proof. For any ordinal a we show first note that clearly [X,]~“ = Up<w Ra]™. We show that
’[Nu]<w’ = N, by constructing a bijective f : w X waq = U, <., [Na]". So consider any n € w and
B € ws. Now, by what was shown in part (b), we have |[R,]"] = R, = |wa| so that there is a
bijective g, : wa — [Na]”, i.e. gn is a transfinite enumeration of [R,]". We then set f(n, ) = g.(8),
from which it should be clear that f(n, ) € U,.,, [R]" since f(n,B) = gn(B) € [Na]™

First we show that f is injective. To this end consider any (n1, 1) and (ng,82) in w X w, where
(n1, 81) # (na, B2). Then either ny # ng or B # B2 (or both). Let g,, and g,, be the corresponding
bijections from w, to [N,]"" and [R,]"?, respectively, as described above. Clearly if n; # no then
f(n1,B1) = gn,(B1) € [Ra]™ whereas f(na, f2) = gn,(82) € [Ra]™ so that f(ni,B1) # f(na,B2)
since [R,]™" and [R,]" are clearly disjoint (since [N,]"" contains only sets with n; elements and
[No]™ contains only sets with ny elements and ny # ny). On the other hand, if n; = ny then
it must be the case that 51 # fo. It also follows that g,, = gn, since n; = ny. Hence we have
f(nhﬁl) =9n, (ﬁl) 7é Iny (ﬂQ) = Gn, (62) = f(n27ﬁ2) since 9ni = Gn, is injective and ﬂl 7é ﬂ2~ Thus
in any case f(n1,01) # f(n2,B2) so that f is injective.

Next we show that f is surjective. So consider any X € (J,,, [Na]" so that there is an n < w such
that X € [N,]". Then let 3 = g,,1(X) (where g, is the bijection from w, to [R,]" as described
above). Then clearly (n, ) € w X w, and we have f(n,3) = gn(8) = gn(g,; (X)) = X. Since X
was arbitrary this shows that f is surjective.
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Hence f is a bijection so that |[Ra]™| = |U, <., [Ra]"| = lw X wa| = || - [wa| = Ro - Ry = Ry by
Corollary 7.2.2 since clearly 0 < a. This shows the desired result. O

Exercise 7.2.4

If o and $ are ordinals and || < R, and |B] < X, then |a+ 8] < R, |a- B < N, o] < R, (where
a+ B, a- B, and of are ordinal operations).

Solution:

Lemma 7.2.4.1. If « and B are ordinals then |a + 8| = |a| + |8].

Proof. Suppose that A and B are disjoint sets where |A| = |a| and | B| = | 5] so that, by the definition
of cardinal addition, |a|+|8] = |A U B|. We then show the result by constructing a bijection f from
AU B to the ordinal o+ . First, since |A| = |«|, there is a bijective f4 : A — a. Similarly there is
a bijective fp : B — ( since |B| = |B|. Now consider any € AU B. We then set

. fA(x) rz€A
f(x)_{a—f—fg(x) zeB’

noting that this is unambiguous since A and B are disjoint. If € A then we clearly have f(x) =
fa(x) <a=a+0<a+ S by Lemma 6.5.4 so that f(x) € a+ . On the other hand if x € B then
f(z) = a+ fp(z) < a+ B again by Lemma 6.5.4 since fp(z) < 3, and hence again f(x) € a + 5.
This shows that f really is a function into a + .

Next we show that f is injective. So consider any x and y in AU B where z # y.

Case: = and y are both in A. Then f(z) = fa(z) # fa(y) = f(y) since f4 is injective and = # y.
Case: x € Aand y € B. Then f(z) = fa(zr) <a=a+0<a+ fp(y) = f(y) by Lemma 6.5.4 so
that clearly f(x) # f(y).

Case: z € B and y € A. This is analogous to the previous case.

Case: = and y are both in A. Then f(z) = a+ fg(x) # o+ fB(y) = f(y) by Lemma 6.5.4b since
fB is injective and x # y so that fg(x) # fB(y).

Hence in all cases we have f(z) # f(y), which shows that f is injective.

Lastly, we show that f is surjective. So consider any y in o + 8. If y < « then y € a. Since f4
is surjective there is an 2 € A such that fs(x) = y. Then, since x € A, clearly f(z) = fa(z) = y.
If y > a then by Lemma 6.5.5 there is an ordinal £ such that o + & = y. It then follows that
a+& =y < a+fsothat £ < by Lemma 6.5.4a. Hence £ € 3 so that there is an x € B such that
fB(x) = & since fp is surjective. Then, since z € B, clearly we have f(z) = a+ fg(z) =a+ £ =y.
Hence in both cases there is an € AU B where f(z) = y. Since y was arbitrary, this shows that f

is surjective.

Thus we have shown that f is bijective so that |a| + 8] = |AU B| = |a + 8. O
Lemma 7.2.4.2. If « and 8 are ordinals then |a - 8| = |al - |B].
Proof. First, if a = 0 then

- B =10-B] = 0] =0=0-8] =[0] - [8] = [ - 5] -

The result also holds when § = 0. Hence going forward we can assume that o and [ are nonzero
and therefore nonempty.
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We then show the result by constructing a bijective f : ax 8 — a- . So consider any (y,0) € a x 3.
It then follows that v < a and 6 < 8 so that 6 + 1 < 5. We then set f(v,d) = a-J + . We note
that

f(y,)=a-d+v<a-d+a=a-dt+a-1l=a-(6+1)<a-8
by Lemma 6.5.4, Exercise 6.5.2, and Exercise 6.5.7. Hence f(v,d) € - 8 so that f is into a - .

Now we show that f is injective. So consider any (1, d1) and (72, d2) in ax 8 where (71, 01) # (72, 02).
Then clearly we have v < a, 72 < a, 1 < 3, and 2 < . We then have

Case: §; = d2. Then it must be that v; # v2. We then have

fn,01)=a-61+m#a-01+7=a0+v = f(y2,02),

where we have used Lemma 6.5.4b and Exercise 6.5.7b since « # 0.
Case: 01 # 02. Without loss of generality we can assume that §; < d2 so that clearly 61 + 1 < ds.
Then we have

fn,m)=a-dh+m<a-di+a=a-(1+1)<a-d<a-d+v=[f(r7d),

where we have again used Lemma 6.5.4a, Exercise 6.5.2, and Exercise 6.5.7.
Hence in all cases we have f(v1,d1) # f(72,d2), which shows that f is injective.

Lastly, we show that f is surjective. So consider any ordinal £ € «- 8 so that £ < «- 5. Since v # 0,
it follows from Theorem 6.6.3 that there is a unique § and unique v < a such that £ = o - § + .
Note that we have § < g since otherwise § > 3 would imply that

E=a-d+v>a-d>a-p

by Lemma 6.5.4 and Exercise 6.5.7, which is impossible since £ < « - 5. Hence we have that
(7,0) € a x B, and clearly f(v,d) = &. Since § was arbitrary this shows that f is surjective.

Thus we have shown that f is bijective so that by the definition of cardinal multiplication we have
la- B| = |a x B] = |a| - |8] as desired. -

The following two lemmas are straightforward generalizations of Theorems 4.3.9 and 4.3.10, respec-
tively.

Lemma 7.2.4.3. Consider a nonzero ordinals o and 3. Let (A, | v < «) be a (potentially transfi-
nite) system of at most |B| sets, and let (a, | v < a) be a system of enumerations for (A, | v < ),

i.e., for eachy < o, ay = (ay(0) | 6 < B) is a (potentially transfinite) sequence, and Ay = {a,(d) | § < 4

Then U, ., Ay is at most |af - B].

Proof. We define a function f: a x 8 — U, _, A, by simply setting f(v,d) = a,(d) for any v € «
and 0 € 5. We show that f is onto by considering any = € U7<a A, so that there is an v < «
such that © € A,. Then, since A, is the range of a., there is a 0 < 8 such that a,(d) = z. Hence
f(v,6) = ay(d) = = so that f is onto since x was arbitrary.

We also have that a x 3 is well-orderable by Theorem 6.5.8 (for example the lexicographic ordering
has order type - «). It then follows from Lemma 7.1.6.1 that ‘U

f is onto. Hence J

’y<o¢A'Y’ < |a x b = |a| - |B] since

<o Ay is at most |af - [B] as desired. O

Lemma 7.2.4.4. If A is a set with cardinality R for some ordinal v, then the set Seq(A) of all
finite sequences of elements of A also has cardinality X.,.
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Proof. Let f be a bijection from w, to A. We also know from Theorem 7.2.1 that |wy X w,| =
R, -N, =X, solet g be a bijection from w, to wy X w,. For each n < wy =w (ie. n € N) we
define a transfinite enumeration (a,(a) | @ < w,) of A™, where A™ of course denotes the set of all
sequences of elements of A of length n. We define these enumerations recursively. Clearly for n =0
we have A" = A® = {&} so that we can set

ap(e) = @ for any a < w,

ar(o) = (f(a)) for any o < w,,

Then, having defined a,,, for any o < w.,, we let g(a)) = (a1, a2) and define the sequence a,41(c) of
length n as follows:

an(ar)(k) k<n

ans1(@)(k) = {M .

for any k <n+1.

Clearly each a, () is a sequence of length n for any n < wy and o < w.,, but we must show that a,,
is in fact an enumeration by showing that it is onto A" for all n < wg. We show this by induction
on n. Obviously this is true for the trivial n = 0 case and for the n = 1 case as well since, for any
sequence (a) of length 1 where a € A, we have that there is a an a < w,, such that f(a) = a since f
is onto. Hence by definition a1 («) = (f(«)) = (a) so that a; is onto.

Now suppose that a,, is onto A" and consider any sequence h € A"t!. Now, since h | n is a sequence
of length n there is an a1 < w. such that a,(e1) = h | n by the induction hypothesis. We also
have h(n) € A so that there is an ap < w, such that f(as) = h(n) since again f is onto. Now,
clearly (a1,a2) € wy X wy so that there is an o < wy such that g(a) = (a1, a2) since g is onto.
Now consider any k < n + 1. If k < n then clearly we have a,41(a)(k) = an(a1)(k) = h(k) since
an(a1) = h | n. On the other hand, if k¥ = n, then by definition a,4+1(a)(k) = f(a2) = h(n) = h(k).
Thus an+1(a) = h since k was arbitrary and the cases are exhaustive. This shows that a,41 is onto
since h was arbitrary, hence it is an enumeration.

Clearly we have that Seq(A4) = |J,,,, A" and, since we also have an transfinite enumeration (indexed
by w.,) of each A™ it follows from Lemma 7.2.4.3 that

U 4"

n<wo

|Seq(A)| = §|w0|'|w’y|:N0'N'y:N'ya

where we have utilized Corollary 7.2.2 since 0 < . Also clearly R, < [Seq(A)] since, for example,
the function f : w, — Seq(A) defined by f(a) = (a) (for any o < wy) is injective. Thus by the
Cantor-Bernstein Theorem we have |Seq(A)| = R, as desired. O

Corollary 7.2.4.5. If A is a nonempty finite set then the set Seq(A) of all finite sequences of
elements of A is countable.

Proof. First we note that clearly the set B Uw is countable (since B is finite and w is countable)
so that Seq(A Uw) is also countable by Lemma 7.2.4.4. Now let f be a function from Seq(A4) to
Seq(A U w) defined by the identity f(g) = g for any sequence g € Seq(A). Note that A C AUw so
that any sequence of elements of A is a also a sequence with elements in AUw. Clearly f is injective
so that |Seq(A4)| < [Seq(A U w)| = .

Since A is nonempty there is an a € A. For any n < w consider the finite sequence g, (k) = a for
any k < mn, which is clearly a sequence of length n with elements in A. Consider then the function
f from w to Seq(A) defined f(n) = g, for n < w. Clearly this is a injective function since, for any
ny and ng in w where ny # na, we have that f(n1) = gn, and f(na) = gn, are sequences of different
lengths so cannot be equal. Thus we have Ry = |w| < [Seq(a)| as well so that [Seq(A)| = Vg by the
Cantor-Bernstein Theorem. O
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The following is a corollary to Exercise 7.2.3c.

Corollary 7.2.4.6. Suppose that A is a set such that |A| = N, for some ordinal . Let [A]~
denote the set of all finite subsets of A. Then HA]<W‘ =N,.

Proof. First let [R,]~“ again denote the set of finite subsets of X,. Since |A| = X, there is a bijective
f:A =R, We then define g : [A]~* — [Ro]= by letting g(B) = f[B] for any B € [A]~“, noting
that clearly g(B) C X, and g(B) is finite so that g(B) € [Ra]~“. We now show that g is bijective.

First consider any B; and By in [A]= where g(B;) = g(Bs). Hence f[B1] = g(B1) = g(Bs) = f[Ba].
So consider any x € Bj so that f(x) € f[B1]. Then also f(z) € f[Bz] so that there is a y € By
such that f(y) = f(x). But since f is injective it has to be that y = = so that © = y € By. Hence
By C Bs since x was arbitrary. A similar argument shows that By C Bj as well so that B; = Bo.
This shows that g is injective.

Now consider any C' € [R,]~“ and let B = f~*[C], noting that f~! is a bijective function since f
is. We claim then that g(B) = C. So consider any y € g(B) = f[B] so that there is a € B such
that f(x) = y. Then we have x € f~![C] by the definition of B so that there is a z € C such that
f71(2) = 2. Hence z = f(f~1(2)) = f(z) = y so that y = z € C. Thus g(B) C C since y was
arbitrary. Now consider any y € C so that clearly x = f~1(y) € f~![C] = B and also f(z) =y
Hence clearly y = f(x) € f[B] = g(B) so that C C g(B) since y was arbitrary. This shows that
g(B) = C so that g is surjective since C' was arbitrary.

We have just shown that g is bijective so that HA]<°J’ = ’[Na]<w’ = N, by Exercise 7.2.3c. O

Lemma 7.2.4.7. If a and 8 are ordinals where at least one is infinite then ’0/3’ < max (|af,|B])-

Proof. To show this we reference the representation of ordinal exponentiation discussed in Exer-
cise 6.5.16. In that exercise we showed that the set S(8,a) = {f | f: 8 — a and s(f) is finite},
where s(f) = {¢€ < 3| f(&) # 0} for any f : B — a, can be ordered to be isomorphic to a”. From
this it clearly follows that |S(8, )| = |a|.

We now construct an injective function f from S(8,a) to [8]~“ x Seq(c), where [8]=* is the set of
all finite subsets of 8 and Seq(«) is the set of all finite sequences of elements of «. So consider any
g € S(B,a) so that g : § — a and s(g) is a finite subset of 3. Also clearly s(g) is a finite set of
ordinals so that there is a unique isomorphism A from some natural number n to s(g). Clearly then
goh is a finite sequence from n to a. Thus we have that s(g) € [8]~“ and g o h € Seq(a), so we set

f(g) = (s(g9),g0h).

To see that this mapping is injective consider ¢g; and go in S(f8,«) where g1 # go. Then there is
some £ < ( where g1(§) # g2(€£). Let h; and hy be the isomorphisms from natural numbers n;
and ns to s(g1) and s(gz), respectively, as described above. If s(g1) # s(g2) then clearly f(g1) =
(s(g1),91 © h1) # (8(g2),92 © ha) = f(g2). So assume that s(g;) = s(g2), from which it follows
that ny = ny and hy = ho. Since hy = hy are bijections there is a k € n; = no such that
hi(k) = ho(k) = &, noting that it has to be that £ € s(g1) = s(g2) since otherwise we would have
01(6) = 0 = ga(€). We then have (g1 0 1) (k) = g1 (h1(8)) = 91(€) # 62(6) = ga(ha(k)) = (g2.0h2) (k)
so that g1 0 hy # g2 © ho. Thus once again f(g1) = (s(g1), 91 © h1) # (s(g2), 92 © h2) = f(g2), which
shows that f is injective.

Sosince f is injective it follows that [a”| = [S(83, )| < |[ “ x Seq(a)| = |[8] <w|~|Seq(a)|. Suppose
first that |o| < |B| so it has to be that § is infinite so that max (|a|, |5]) = || = X, for some ordinal
~. Thus by Lemma 7.2.4.6 we have HB]Q"‘ =R,. If « = 0 = & then clearly Seq(«) = {@} so that
|Seq(a)| = 1. If «v is finite but nonzero then it is nonempty so that |Seq(«)| = Rg by Corollary 7.2.4.5.
Lastly, if « is infinite then |a| = Ry for some § <y since N5 = |a| < |5] = N,. Hence [Seq(a)| = R,
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by Lemma 7.2.4.4. Thus in all three cases k = |Seq(«)| is either a natural number or Ns for some
0 < ~. It then follows from Corollary 7.2.2 that

|0”] < [[B]7] - 1Seq(a)] = Ry -k = k- Ry =Ry = max (|a] ,|8]) -

On the other hand if |3] < |a| then it must be that a is infinite so that max (|o|,|f]) = |a| = R,
for some ordinal . Thus by Lemma 7.2.4.4 we have |Seq(c)| = R, as well. If § is finite then clearly
every subset of 3 is finite so that [8]~“ = P (f) is finite by Theorem 4.2.8. Hence |[B]<w| = n for
some natural number n. If § is infinite then |5| = N; for some ¢ <« since X5 = || < |of =R,. We
then have that |[6]<w’ = N; as well by Lemma 7.2.4.6. Hence in either case k = Hﬂ]<w| is a natural
number or N for some § < . Hence we have

o] < |[B1°¢] - [Sea(@)] = & - N, = R, = max (jal ,|3])
again by Corollary 7.2.2. Thus in all cases we have shown that [o”| < max (|a/,|8]) as desired. [
Main Problem.

Proof. That |a+ 8] < R, follows almost immediately from Lemma 7.2.4.1. We have that | + 5| =
la|+]8] < RXy+R, =R, where we have also used property (c) of cardinal numbers after Lemma 5.1.2,
and Corollary 7.2.3.

Similarly, o - 5] < R, follows from Lemma 7.2.4.2. We have that |a- 5] = |af - |B] < Ry - R, =Ry,
where we have used property (i) of cardinal numbers following Lemma 5.1.4, and Theorem 7.2.1.

The analogous lemma for ordinal exponentiation (i.e. that |a”| = \a|‘6 " for ordinals o and B)
is evidently not true. As a counterexample consider « = 2 and § = w. We then have that
|a?| = [2%| = |w| = Ry is countable whereas we know that |l = 2|1l = 2% is uncountable.

However, the somewhat analogous Lemma 7.2.4.7 will help us show the desired result. First, if both
a and 3 are finite then clearly o is also finite so that clearly ‘0/3 ‘ < X,. On the other hand, if at
least one of o or 3 is infinite, then have we have that |a”| < max (|af, |3]) <X, by Lemma 7.2.4.7
as desired, noting that clearly max (|a|,|3]) < R, since both |a| <R, and |5] < N,,. O

Exercise 7.2.5

If X is the image of w, by some function f, then |X| < X,. [Hint: Construct a one-to-one mapping g of
X into w, by letting g(x) = the least element of the inverse image of {z} by f.]

Solution:

Proof. Clearly f is a function from w, onto its image X so that it follows from Lemma 7.1.6.1 that
| X| < |wa| = Ry as desired. O

Note that the proof of Lemma 7.1.6.1 uses exactly the technique given in the hint to argue its
conclusion.

Exercise 7.2.6
If X is a subset of w, such that | X| < N,, then |w, — X| = R,.
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Solution:

Lemma 7.2.6.1. If k and X are cardinal numbers and K < X < X, for some ordinal a, then
K+ A< N,.

Proof. We have

K+A=A+k (by the commutativity of cardinal addition)
<A+ A (by property (d) in section 5.1)
=A-1+X-1
=X (1+41) (by property (g) in section 5.1)
=X-2.

If A is finite then clearly A -2 is finite so that kK + A < A -2 < X,. On the other hand if A is infinite
then A = Ng where 8 < asince Rg = A <N,. Thus we have k + A < A-2=2-A=2-Ng =Ng <N,
by Corollary 7.2.2. Hence in either case k + A < R, as desired. O

Main Problem.

Proof. First, we clearly have that w, — X and X are disjoint and (w, — X) U X = w, so that, by
the definition of cardinal addition, we have

lwa = X| + | X| = [(wa — X) U X| = |wa|] =Ns .

Now suppose that |w, — X| < R, Since w, — X C w, and X C w, are both sets of ordinals, they are
clearly both well ordered by <. Thus |w, — X| < |X]| or | X]| < |wa — X| by Lemma 7.2.1.7. Since
we also have |w, — X| < X, and |X| < R,, in either case it follows from Lemma 7.2.6.1 that

No = |wa — X| +]X] < Ra,

which is clearly a contradiction. Thus it must be that |w, — X| £ R, so that X, < |w, — X| by
Corollary 7.2.1.8. Since w, — X C w, we clearly also have that |w, — X| < |wa| = Ro. Hence
|wa — X| = R, by the Cantor-Bernstein Theorem. O

Chapter 8 The Axiom of Choice

As in the text, asterisks indicate exercises for which the Axiom of Choice is needed.

§8.1 The Axiom of Choice and its Equivalents

Exercise 8.1.1

Prove: If a set A can be linearly ordered, then every system of finite subsets of A has a choice function.
(It does not follow from the Zermelo-Fraenkel axioms that every set can be linearly ordered.)

Solution:

Lemma 8.1.1.1. Any linear ordering of a finite set is a well-ordering.

Page 82



Proof. We show this by strong induction on the cardinality of the set. So consider natural number
n and suppose that all linear ordered sets of cardinality k < n are well-orderings. Also suppose that
(A, =) is any linearly ordered set with |A| = n. Consider any nonempty B C A so that there is a
b € B. Then clearly C = B — {b} is also a finite set with C' C B C A so that |C| < n. Clearly
also C' is linearly ordered by < so that, by the induction hypothesis, C' is well-ordered by <. Now,
if C = o, then it follows that B = {b}, which clearly has least element b. On the other hand, if
C # @, then it has a least element c since it is well-ordered. Since < is a linear ordering, it has to
be that either c < bor b <c.

Case: ¢ < b. Then consider any « € B. If x = b then obviously ¢ < b = z. If © # b then
x € C = B —{b} so that again ¢ < x since ¢ is the least element of C. This shows that ¢ is the least
element of B since x was arbitrary.

Case: b < c¢. Then consider any « € B. If z = b then obviously b < b = z. If © # b then
x € C = B —{b} so that b < ¢ < z since c is the least element of C'. This shows that b is the least
element of B since x was arbitrary.

Hence in all cases we have that B has a <-least element. This shows that < is a well-ordering of A
since B C A was arbitrary. This completes the inductive proof. O

Main Problem.

Proof. Suppose that A is a set that can be linearly ordered and suppose that < is a such a linear
ordering. Suppose also that S is a system of finite subsets of A. Then clearly any B € S is finite
and linearly ordered by <. We then have that < is a well-ordering of B by Lemma 8.1.1.1. So we
then set

£(B) = the least element of B according to X B # &
o B=go

for any B € S. Clearly then f is a choice function for S. O

Exercise 8.1.2

If A can be well-ordered, then P (A) can be linearly ordered. [Hint: Let < be a well-ordering of A; for
X,Y C A define X <Y if any only if the <-least element of X A'Y belongs to X ]

Solution:

Proof. Suppose that < is a well-ordering of A. Then, following the hint, defined the relation X <Y
if and only if the <-least element of X AY is in X for any X and Y in P (A). Note that, for any
reXAY =(X-Y)U (Y — X), we clearly have that x € X or z € Y so that z € A since X C A
and Y C A. Hence X AY C A so that it is also well-ordered by <.

First we show that < is a (strict) order on P (A). Hence we must show that it is asymmetric
and transitive. So consider any X and Y in P (A) where X < Y. Then by definition the <-
least element =z in X AY is in X. Suppose also that ¥ < X so that, since YA X = XAY, x
is also in Y. Then clearly  can be neither in X — Y nor Y — X, but then it cannot be that
z€e€(X-Y)U(Y—X)=XAY. This is a contradiction since x was defined to be in X A'Y. Hence
it cannot be that Y < X as well, which shows that < is asymmetric since X and Y were arbitrary.

To see that < is transitive, consider any X,Y,Z € P (A) where X <Y and Y < Z. Then the

least element x of X AY is in X and the least element y of Y A Z is in Y. Thus it has to be that
ze€X—-YandyeY —Zsothatz € X, 2 ¢Y,yeY, and y ¢ Z. Note that, in particular, this
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means that  # y. Since clearly {z,y} C A, it follows that it has a <-least element a. Thus either
a = x or a = y. For each case we show that

1.
2.
3.
Case:
1.
2.

Case:

Thus
lower

a€e X
ae XANZ
a is a lower bound of X A Z

a = x. Then clearly a = x < y so that a < y since a = x # y.

Clearly a € X since a = .

Suppose that @ € Z. Then, since a = x ¢ Y, we have that « € Z —Y so that a € Y A Z.
Hence y < a since y is the least element of Y A Z, but this contradicts the fact that y > a. So
it must be that in fact a ¢ Z so that a € X — Z. Thusa € X A Z.

Now consider any z € X A Z.

Case: z€ X — Z. Then, if z € Y, we have that z € Y — Z so that z € Y A Z. It then follows
that « = x < y < z since y is the least element of Y A Z. On the other hand, if z ¢ Y, then
we have z € X —Y sothat z € X AY. Hence a = x < z since z is the least element of X AY'.

Case: x € Z— X. Then,if z€ Y, wehavex € Y — X so z€ X AY. Then a =z < z since z
is the least element of X AY. On the other hand, if z ¢ Y, then we have z € Z — Y so that
z €Y A Z. Then, as before, a = x < y < z since y is the least element of Y A Z.

Hence in all cases a < z so that a is a lower bound since z was arbitrary.

a =1vy. Then clearly a = y < x so that a < z since a = y # .

. Suppose that a ¢ X. Then since a = y € Y we have that a« € Y — X so that alsoa € X AY.

But then 2 < a since z is the least element of X AY, which contradicts the fact that = > a.
Hence it has to be that a € X.

. We already know that a =y ¢ Z so that a € X — Z since we just showed that @ € X. Hence

ae XNANZ.

Consider any z € X A Z.

Case: z€ X — Z. If also z € Y then clearly z € Y — Z so that z € Y A Z. Tt then follows that
a =y < z since y is the least element of Y A Z. On the other hand, if z ¢ Y, then clearly
z€ X —Y sothat z€ X AY. Hence a =y < x < z since x is the least element of X AY".

Case: z € Z — X. Then, if z € Y, clearly z € Y — X so that z € X AY. We then have
that a = y < x < z since x is the least element of X AY. On the other hand, if z ¢ Y, then
z€ Z —Y sothat z € Y AZ. Then clearly a = y < z since y is the least element of Y A Z.

Hence in all cases a < z so that a is a lower bound since z was arbitrary.

in all cases we have that a is the least element of X A Z (since it is in X A Z and also is a
bound) and a € X. By definition, this shows that X < Z so that < is transitive. This also

shows that < is a (strict) order.

Lastly, we show that < is a linear ordering. So consider any X,Y € P (A). Assume that X #Y
sothat X —Y # @ or Y — X # & (or both). From this it follows that X AY # &. Since also
clearly X AY C A, it has a least element a. If a € X — Y then a € X so that X < Y. Similarly, if
a €Y — X then a € Y so that Y < X. Hence we have shown that either X =Y, X <Y, orY < X
so that < is in fact linear since X and Y were arbitrary.

This completes the proof since we have shown that < is a linear ordering of P (A). O

Page 84




Exercise 8.1.3*

Let (A, <) be an ordered set in which every chain has an upper bound. Then for every a € A, there is
a <-maximal element of x of A such that a < z.

Solution:

Lemma 8.1.3.1. For any set A, there is a b ¢ A.

Proof. Let X = {« € A| « is an ordinal number}. Then by Theorem 6.2.6e there is an ordinal «
such that o ¢ X. It also has to be that o ¢ A since, if it were, then o would be in X since it is an
ordinal number, which would be a contradiction. O

Main Problem.

The proof of this is similar to the proof of Zorn’s Lemma from the Axiom of Choice (part of
Theorem 8.1.13 in the text).

Proof. First, by Lemma 8.1.3.1, there is a b ¢ A. Also, by the Axiom of Choice, there is a choice
function g on P (A). Now consider any a € A. We then define a transfinite sequence (a, | @ < h(A))
by transfinite recursion as follows. Set ap = a. Then, having constructed the sequence (a¢ | { < )
for 0 < a < h(A), we define the set A, = {x € A| a¢ < z for all £ < a}. We then set

g(Ay) ifae#bforal{ <aand Ay # @
o =
b otherwise .

We claim that there is an o < h(A) such that a, = b. To see this, suppose to the contrary that
aq # b for all @ < h(A) so that it has to be that each a, € A. Consider now any a < h(A) and
B < h(A) where a # 8. Without loss of generality we can assume that o < . Clearly then, by
definition, we have that ag € Ag so that ag < ag for all £ < . But since o« < 3, we have that
aq < ag so that a, # ag. Since o and [ were arbitrary, this shows that the sequence is an injective
function from h(A) to A. However, this would mean that h(A) is equipotent to some subset of A,
which contradicts the definition of the Hartogs number. Hence it has to be that a, = b for some

a < h(A).

So let A < h(A) be the least ordinal such that ay = b and let C' = {a¢ | £ < A}. We claim that C'is a
chain in (A4, <). So consider any a, and ag in C so that o < A and 8 < XA Without loss of generality
we can assume that o < 8. If @ = 8 then obviously a, = ag so that a, < ag clearly holds. If o < 3
then, by what was shown above, we have that a, < ag so that a, < ag again holds. Hence, in every
case, ao and ag are comparable in <, which shows that C' is a chain since a, and ag were arbitrary.

Thus, since C' is a chain of A, it has an upper bound ¢ € A. We claim that ¢ is also a maximal
element of A. To show this, suppose that there is an x € A such that ¢ < x. Now consider any
& < A. Then, since c is an upper bound of C', we have that ac < ¢ < z so that a¢ < = since orders
are transitive. It then follows from the definition of Ay that z € Ay, so that Ay # @. Also note
that, by the definition of A, we have that a¢ # b for any £ < A. Thus, by the recursive definition
of the sequence, it follows that ay = g(Ay) # b, which contradicts the definition of A (as the least
ordinal such that ay = b). So it has to be that there is no such element z, which shows that ¢ is in
fact a maximal element of A.

Now, it has to be that 0 # X since ag = a # b = a). It then follows that 0 < A since A is an ordinal.
Hence a = ag € C by the definition of C. Then, since ¢ is an upper bound of C, we have that c is a
maximal element of A where a < ¢. Since a was arbitrary this shows the desired result. O
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Exercise 8.1.4

Prove that Zorn’s Lemma is equivalent to the statement: For all (A, <), the set of all chains of (4, <)
has an C-maximal element.

Solution:

Proof. (—) First, suppose that Zorn’s Lemma is true, and let C be the set of all chains of (A4, <).
First, it is trivial to show that C is a partial order on C, i.e. that it is reflexive, antisymmetric, and
transitive. Let B C C be any C-chain, and let U = | B.

First we claim that that U € C, which requires that we show that U is a chain of (4, <). So consider
any x,y € U = |J B so that there are sets X,Y € B such that x € X and y € Y. Since B is a
C-chain it follows that either X C Y or Y C X. In the case of X C Y then clearly both x and y
are in Y (since z € X and X CY'). Then, since Y € C (since Y € B and B C C), we have that ¥’
is a <-chain. Hence x and y are comparable in <. The case in which ¥ C X is analogous. Since
x,y € U were arbitrary, this shows that U is a <-chain so that U € C.

We also claim that U is an upper bound (with respect to C) of B. To show this, consider any X € B
and any « € X. Then clearly x € |JB = U. Hence X C U since x was arbitrary. Since also X € B
was arbitrary, this shows that U is an upper bound of B.

Thus, since B was an arbitrary C-chain, this shows that every chain of (C, C) has an upper bound.
It then follows from Zorn’s Lemma that C has a C-maximal element as desired.

(+-) Suppose that the set of all chains of (A4, <) has a C-maximal element for any (A, <). So consider
any such ordered set (A, <) where every chain has a upper bound. Let C be the set of all chains of
(A, <) so that C has a C-maximal element M by our initial supposition. Then, since M € C, it is
a chain so it has an upper bound a € A. We claim that a is a maximal element of (4, <).

To show this, assume to the contrary that there is a b € A such that a < b, and let M’ = M U {b}.
Consider any =,y € M’'. If z,y € M then clearly x and y are comparable in < since M is a chain.
On the other hand, if x € M but y = b, then z < a since a is an upper bound of M. We also
have that @ < b = y so that © < y since orders are transitive. The case in which y € M but x = b
similarly leads to y < x. Lastly, if x = y = b then clearly = < y is true. Hence in all cases = and
y are comparable in <, which shows that M’ is a chain since z and y were arbitrary. Therefore
M ecC.

Now, it has to be that b ¢ M since, if it were, a could not be an upper bound of M since a < b
(and therefore it cannot be that b < a since the strict ordering is asymmetric). So, since b ¢ M it
follows that M C M U {b} = M’, which contradicts the fact that M is a C-maximal element of C
since also M’ € C. So it has to be that there is no such b where a < b, which shows that a is in fact
a maximal element of (A, <). This proves Zorn’s Lemma since (A, <) was arbitrary. O

Exercise 8.1.5

Prove that Zorn’s Lemma is equivalent to the statement: If A is a system of sets such that, for each
B C A which is linearly ordered by C, |J B € A, then A has an C-maximal element.

Solution:

Proof. (—) Suppose Zorn’s Lemma and let A be a system of sets where | JB € A for any B that is
linearly ordered by C. We know that C is a partial order on A. So let B be any C-chain of A. Then
we know that |JB € A, and we also claim that | B is an upper bound of B. To see this, consider
any X € B and any = € X, so that clearly x € |JB. Hence X C B since = was arbitrary. This
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shows that | J B is an upper bound of B since X was arbitrary. Since B was an arbitrary chain, this
shows that (A, C) is an ordered set where every chain has an upper bound. Thus by Zorn’s Lemma
there is a C-maximal element of A as desired.

(+-) Now suppose that A has a C-maximal element for any system of sets A such that | JB € A for
any B C A where B is linearly ordered by C. Consider any ordered set (4, <) and let C' be the set
of all chains of A. Let B be any subset of C' that is linearly ordered by C, and consider any x and
y in |J B. Then there are X and Y in B such that € X and y € Y. Since B is linearly ordered
by C we have that either X CY or Y C X. In the former case we have z € X C Y so that both x
and y are in Y. Hence z and y are comparable in < since Y € B C C so that Y is a <-chain. A
similar argument shows that x and y are comparable if Y C X. Since x and y were arbitrary this
shows that |J B is a <-chain so that |JB € C.

Thus C' is a system of sets that meet the criteria of the initial supposition since B was arbitrary.
Hence C has a C-maximal element. Since (A4, <) was an arbitrary ordered set and we have shown that
the set of all chains of (A, <) has a C-maximal element, Zorn’s Lemma follows from Exercise 8.1.4.

O

Exercise 8.1.6

A system of sets A has finite character if X € A if and only if every finite subset of X belongs to A.
Prove that Zorn’s Lemma is equivalent to the following (Tukey’s Lemma): Every system of sets of finite
character has an C-maximal element. [Hint: Use Exercise 8.1.5.]

Solution:

Proof. (—) Suppose Zorn’s Lemma and let A be an arbitrary system of sets of finite character.
Suppose that B is any subset of A that is linearly ordered by C and let C' be any finite subset of
UB. Now, for each x € C there is a set X, € B such that z € X, since x € C C |JB. Clearly
the set D = {X, | v € C} is a subset of B so that D is also linearly ordered by C. Also clearly D
is finite since C' is. Hence D has a C-greatest element X. Note that the Axiom of Choice is not
needed in selecting the set X, for each z € C since we are only making a finite number of choices.
So consider any x € C so that x € X, C X. Hence x € X so that C' C X since z was arbitrary. We
also have that X € B C A so X € A. Therefore C is a finite subset of X, which is an element of
A, so that C is also in A since A has finite character. Since C' was an arbitrary finite subset of | J B
and C € A it follows that | J B € A. Hence, since B was an arbitrary linearly ordered (by C) subset
of A, we have by Exercise 8.1.5 and Zorn’s Lemma that A has a C-maximal element as desired.

(+) Now suppose that every system of sets of finite character has a C-maximal element. Let (A, <)
be any ordered set and let C' be the set of all chains of (A4, <). Now suppose that X € C and let YV
be any finite subset of X. Clearly since X € C, it is linearly ordered by < so that Y is as well since
Y C X. Hence Y € C. Now let X’ be any set such that every finite subset of X’ is in C. Consider
any x,y € X'. Then {z,y} is clearly a finite subset of X’ so that it is in C' and therefore a <-chain.
Hence z and y are comparable in <, which shows that X’ itself is a <-chain since x and y were
arbitrary. Hence X’ € C. Thus we have just shown that X € C' if and only if every finite subset of
X isin C so that C has finite character by definition. Therefore, by the initial supposition, C' has
a C maximal element. Since again C' is the set of all chains of the arbitrary (A, <), Zorn’s Lemma
follows from Exercise 8.1.4. O

Exercise 8.1.7*

Let E be a binary relation on a set A. Show that there exists a function f : A — A such that for all
x € A, (z, f(x)) € E if and only if there is some y € A such that (z,y) € E.
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Solution:

Proof. If A = @ then clearly it must be that £ = @ since E CAX A=@ X @ = . Hence f =@
is vacuously such a function. So assume that A # & so that there is an a € A. For any =z € A
define the set Y, = {y € A | (z,y) € E}, noting that this could certainly be empty if x is not in the
domain of E. Clearly S = {Y, | z € A} is a system of sets, and so has a choice function g by the
Axiom of Choice. We then define a function f: A — A by

Fa) = {g(l@) Y. # o

a Y, =0

for all x € A. We claim that f meets the required criteria, so let « be some element of A.

(—) Suppose that (x, f(x)) € E. Then clearly for y = f(x) we have that (z,y) = (z, f(z)) € E. We
note that, if Y = &, then y = f(x) =a € A, and if Y, # & then y = f(x) = g(Y,) € Y, since g is a
choice function so that again y € A since clearly Y, C A.

(+) Now suppose that there is a y € A such that (z,y) € E. Then clearly by definition we have
y € Y, so that Y, # @. Thus f(x) = g(Y,) € Y, since g is a choice function. We therefore have
(z, f(z)) € E as desired, again by the definition of Y. O

Exercise 8.1.8*

Prove that every uncountable set has a subset of cardinality Nj.

Solution:

This proof is similar to that of Theorem 8.1.4.

Proof. Let A be an uncountable set. By the Well-Ordering Principle (which is equivalent to the
Axiom of Choice by Theorem 8.1.13) A can be well ordered, and so can be arranged in a bijective
transfinite sequence (a, | @ < §2) for some ordinal Q. Since A is then equipotent to € it has to be
that w; < Q since otherwise Q (and therefore A) would be countable or finite. So then clearly the
range of the transfinite sequence (a, | @ < w1) is a subset of A with cardinality ;. O

Exercise 8.1.9%*

Every infinite set is equipotent to some of its proper subsets. Equivalently, Dedekind finite sets are
precisely the finite sets.

Solution:

Proof. By Theorem 8.1.4, any infinite set has a countable subset so that such a set is Dedekind
infinite by Exercise 5.1.10. Therefore any infinite set is equipotent to a proper subset of itself by the
definition of Dedekind infinite as desired. In fact, any countable set (and by extension any infinite
set) is equipotent to an infinite number of its proper subsets. To see this we note that the mapping
f(k) = k+n is a bijection from N to N —n, which is clearly a proper subset of N, for any natural
number n.

Of course the contrapositive of this is that, if a set is Dedekind finite (i.e. not Dedekind infinite),
then the set is finite (i.e. not finite). O
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Exercise 8.1.10%*

Let (A, <) be a linearly ordered set. A sequence (a,, | n € w) of elements of A is decreasing if a,41 < ay,
for all n € w. Prove that (A, <) is a well-ordering if and only if there exists no infinite decreasing
sequence in A.

Solution:

Proof. (—) We show the contrapositive of this implication. So suppose that there is a decreasing
sequence {a, |n € w) in A, and let X be the range of the sequence so that clearly X C A and
X # @. Now consider any x € X so that there is a n € w such that = a,,. We then have that
T = an > an41 since the sequence is decreasing, noting that clearly a, 1 € X. Since x was arbitrary
this shows that X has no least element (since we have shown that Vo € X3y € X(x > y) and this
is logically equivalent to =3z € XVy € X(z < y), noting that —(x > y) is equivalent to z < y since
the ordering is linear). Thus, since there is a nonempty subset of A that has no least element, it
follows that (A, <) is not a well-ordering.

(+-) We show the contrapositive of this implication as well. So suppose that (A4, <) is not a well-
ordering. Then there exists a nonempty subset X of A such that X has no least element. By
the Axiom of Choice the set P (X) has a choice function g. For any x € X we define the set
X,={yeX|y<z}

First we claim that X, # @ for any z € X. Suppose to the contrary that there is some x € X
such that X, = @. Consider any other y € X. Then it cannot be that y < = for then y € X, so
that X, # @. So, since the ordering is linear, it has to be that y > x. But, since y was arbitrary,
this would mean that z is the least element of X, which we know cannot be since X has no least
element! Therefore it has to be that indeed X, # @ for any = € X.

Now we construct a sequence (a,, | n € w) by recursion:

ap = g(X)
an+1 = g(Xan) )

noting that the recursive step is always valid since X, is never empty, as was just shown. It is easy
to see that this is a decreasing sequence. Take any n € w so that we have that a,+1 = g(X,, ). Hence
an+1 € X,,, since g is a choice function. By the definition of X, it then follows that a,4+1 < ay,
which shows that the sequence is decreasing since n was arbitrary. Hence we have constructed an
infinite decreasing sequence in A. O

Exercise 8.1.11%*

Prove the following distributive laws (see Exercise 3.13 in Chapter 2).

(us)-y (o)

teT \s€S fesT \teT
U(Nae)= N (Yol
teT \se€s fesT \teT

Solution:
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First we show that

N (Uae) = U (Do)

teT \seS fesST \teT

Proof. First let

=0 (U w= U ()

teT \seS fesST \teT

so that we must show that L = R.

(C) Consider any x € L. For any ¢ € T, define the set S, = {s€ S|z € A, s}. Since z € L we
have that = € (J,.g A¢,s for all £ € T. Hence, for all ¢ € T', there is an s € S such that x € Ay ;.
From this it follows that S; # @ for any ¢t € T. Now, by the Axiom of Choice, the system of sets
{S: |t € T} has a choice function g. We then define a function f(t) = ¢(S;) for any ¢ € T, noting
that this is defined for all ¢ € T since S; is nonempty. Clearly then we have, for any such t € T,
that f(t) = g(S;) € S; C S so that f(t) € S. Hence f is a function from T into S so that f € S7.
Now consider any specific t € 1" so that f(t) € S; and hence 2 € A, ;) by the definition of S;. Thus
since t was arbitrary this shows that x € (),c, Ay, (). Moreover, since f € ST we clearly have that
T € UfeST (ﬂteT At,f(t)) = R. Thus, since x was arbitrary, this shows that L C R.

(D) Now consider any z € R so that there is an f € ST such that x € Mier At,fr)- Thus we have
that x € Ay« for all t € T. So consider any ¢ € T" and let s = f(t), noting that s = f(t) € S since
f € ST. Thus we have that x € Ay pt) = Ats. Since we have shown that there is an s € S such that
r € Ay, it follows that 2 € (J g A¢,s. Since t € T was arbitrary we have z € ;o (Uses Am) =1L
Hence R C L since x was arbitrary.

Now we show that

U(Nae)= N (Uas).

teT \seS fesST \teT

Proof. First let

L= <ﬂ At,s> R= ] (U Atvfm)

teT \seS fesST \teT

so that we must show that L = R.

(C) Consider any x € L so that there is a ¢ € T such that x € [),cg Ars. Hence we have that
x € Ay for all s € S. Now consider any f € ST. Then we have that f(t) € S so that x € A, s(4).
Therefore there is a t € T such that € A ) so that = € |J,cq A¢ pr). Moreover, since [ was
arbitrary, we have that x € ﬂfeST (UteT At,f(t)) = R. This shows that L C R since x was arbitrary.

(2) We show this by contrapositive. So suppose that x ¢ L. Hence we have

ey(na)

teT ses
-3teT <x € ﬂ At,s)
seS

-t eTVse S(xe Ay)
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VieT3se S(x ¢ Ars) .

Now, let Sy = {s € S|z ¢ A; s} for each ¢t € T, noting that S; # @ by the above for any ¢ € T.
Then, by the Axiom of Choice, the system of sets {S; | ¢ € T'} has a choice function g. We then set
f() = g(S;) for any t € T. Then clearly f(t) = g(S;) € S; C S for any t € T so that f(¢t) € S
since ¢ is a choice function. It then follows that f is a function from T into S so that f € ST. Now
consider any t € T so that f(t) = g(S;) € Si. Then, by the definition of S;, we have that x ¢ A; ).
Since t € T' was arbitrary, we have thus shown that

feST™VteT (x ¢ Ay

VfeSTHET (x € A yw)

-vfesT (:17 € U At,f(t)>

teT

—lze N (UAtf(t))

fesT \teT

v¢ () (U Auf(t))

fesT \teT

r¢ R.

Since x was arbitrary, this shows by contrapositive that x € R implies € L so that R C L. O

Exercise 8.1.12%

Prove that for every ordering < on A, there is a linear ordering < on A such that a < b implies a < b
for all a,b € A (i.e., every partial ordering can be extended to a linear ordering).

Solution:
Proof. Let (A, <) be a partially ordered set. Define the set
P={RCAxA|Risapartial order of A and xC R} .

We know that C partially orders P. Now consider any C-chain C' of P. If C' = @ then, since clearly
we have that <€ P, we have that @ C< so that < is an upper bound of C'. On the other hand if
C # & then there is an R € C, noting that C C P so that R € P as well. Then, by the definition
of P, R is a partial order on A such that C R. Let U = |JC. We first show that U is a partial
order on A.

So consider any a € A. Then (a,a) € R since R is a partial order of A (and therefore reflexive).
Hence clearly then (a,a) € |JC = U since R € C so that U is reflexive since a was arbitrary.

Now consider any = and y in A where (z,y) € U and (y,z) € U. Then, since U = |JC, there are
S e Cand T € C such that (z,y) € S and (y,z) € T. Since C is a C-chain, we have that either
S CTorTCS. In the former case then we have that both (z,y) € T (since (z,y) € Sand S CT)
and (y,x) € T so that © = y since T is a partial order of A (since T' € C' and C C P) and is therefore
antisymmetric. The case in which T' C S is analogous. This shows that U is antisymmetric.

Lastly, consider z, y, and z in A such that (z,y) € U and (y,z) € U. Then, again, we have that
there are S € C and T' € C such that (z,y) € S and (y,z) € T. We also again have that S C T or
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T C S since C is a C-chain. In the former case we have that (x,y) € T (since (z,y) € Sand S CT)
and (y, z) € T so that (z,z) € T since T' is a partial order on A (again since T' € C' and C C P) and
therefore transitive. Hence, since T € C, clearly we have (z,z) € |JC = U so that U is transitive.
The case in which 7' C S is again analogous.

Therefore we have shown that U is reflexive, antisymmetric, and transitive, and is therefore a
partial order on A by definition. Now consider any (x,y) €<. Then (z,y) € R since <C R. Hence
(z,y) € JC = U since R € C. It then follows that <C U since (z,y) was arbitrary. Thus U is a
partial order on A and C U so that by definition U € P.

Now consider any S € C and any (x,y) € S. Then clearly (x,y) € |[JC = U so that S C U since
(z,y) was arbitrary. Since S was arbitrary this shows that U is in fact an upper bound of C with
respect to C.

Since the chain C was arbitrary, this shows that all C-chains of P have an upper bound so that
the conditions of Zorn’s Lemma are satisfied. We can therefore conclude that P has a C-maximal
element <.

We claim that < is a linear ordering of A. So assume to the contrary that < is not linear so that
there are a and b in A such that (a,b) ¢< and (b,a) ¢<. Then define the relations

R ={(z,y) € AxA|z<aandb<y}

and R =< UR’. First, notice that (a,a) €< and (b,b) €< since < is reflexive so that by definition
(a,b) € R" and hence (a,b) € R. We claim that R € P so that we must first show that R is an order
on A.

Consider any x € A so that clearly (z,z) €< since < is an ordering of A and is therefore reflexive.
Hence clearly (x,x) €< UR' = R so that R is reflexive.

Now suppose any x and y in A where (z,y) € R and (y,z) € R. Then clearly (z,y) €< or (z,y) € R’
and similarly (y,z) €< or (y,z) € R/

Case: (x,y) €<. If (y,x) €< then clearly x = y since < is an order on A and therefore is antisym-
metric. The sub-case in which (y,z) € R’ cannot be since, if it were, then we would have y < a and
b < x. Hence we would have that b < x <y < a so that b < a by transitivity, which we know is not
possible by our definition of ¢ and b.

Case: (z,y) € R'. Then 2 < a and b < y. Here again the sub-case in which (y,z) €< is impossible
since we would then have b < y < x < a so that b < a by transitivity. Evidently the sub-case in
which (y,x) € R’ is also impossible since then we would have y < a and b < z so that b < x < a as
well as b < y < a so that b < a and a < b, which we know is not possible. Hence this entire case is
not possible.

Thus, in the only valid case, we have that x = y so that R is antisymmetric.

Now suppose z, y, and z in A where (z,y) € R and (y,z) € R. Then we have that (z,y) €< or
(z,y) € R’ and similarly (y,z2) €< or (y,2) € R'.

Case: (z,y) €<. If (y,2) €< also then clearly we have (z,z) €< since < is an order and therefore
transitive. If, on the other hand, (y,2) € R’ then we have y < a and b < z. Hence we have that
x < y < a so that x < a by transitivity. We thus have x < a and b < z so that (z,2) € R by
definition.

Case: (z,y) € R’. Then we have z < a and b < y. If (y,2) €< then we have b < y < z so that
b < z by transitivity. Hence z < a and b < z so that (z,z) € R’ by definition. On the other hand,
if (y,z) € R, then we have y < a and b < z. Hence b < y < a so that b < a by transitivity, which
we know is not true. Therefore this sub-case is impossible.

Hence in all valid cases we have that (z,z) €< or (z,z) € R’ so that clearly (z,2) € R =< UR/,
thereby showing that R is transitive.
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Therefore we have shown that R is an ordering of A. We also clearly have that C R since xC<
(since <€ P) and <C R (since R =< UR’). Thus indeed R € P.

Now, since R =< UR’ we clearly have that <C R. We also know that (a,b) € R but (a,b) ¢< so
that R #<, and hence <C R. However, this contradicts the fact that < is a maximal element of P
so that it must be that < is in fact linear!

Lastly, consider any a and b in A where a < b. Then (a,b) €< so that (a,b) €< because C< since
<€ P. Thus a < b so that < is the <-extended linear ordering of A that we seek. O

Exercise 8.1.13%*

(Principle of Dependent Choices) If R is a binary relation on M # & such that for each x € M there is
ay € M for which xRy, then there is a sequence (z,, | n € w) such that x,, Rx,,4+1 holds for all n € w.

Solution:

Proof. Suppose such a relation R on M # &. Define the set X, = {y € M | xRy} for each z € M.
Then, by the given property of R, clearly X, # @ for any x € M. Then, by the Axiom of Choice,
the system of sets {X, | € M} has a choice function g. We also have that there is an a € M since
M # @&. We then define a sequence recursively as follows:

o —=a

Tp+1 = Q(Xxn) 5

noting that this is well defined since each X,, is nonempty.

To show that the sequence (x,, | n € w) has the desired property, consider any n € w. Then by the
recursive definition we have that x,11 = g(X,, ) so that z,41 € X, since g is a choice function

and X, is nonempty. Then, from the definition of X, , it follows that x,, Rz,1. This shows the
desired result since n was arbitrary. O

Exercise 8.1.14

Assuming only the Principle of Dependent Choices, prove that every countable system of sets has a
choice function (the Axiom of Countable Choice).

Solution:

Proof. Suppose that S is a countable system of sets and let T={X € S | X # @}. Then it suffices
to show that there is a choice function h for T. To see this suppose that there is such a choice
function h and define a function g on S by

%] X=0
g(X)Z{h(X) X4o'

for any X € S, noting that clearly X € T if X # & so that X is in the domain of h. Then, for any
nonempty X € S, we have that g(X) = h(X) € X since h is a choice function. Hence g is a choice
function on S.

Now we construct a choice function & for T'. First note that clearly either T is finite or countable
since T' C S and S is countable. If T is finite then it has a choice function A by Theorem 8.1.2, so
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we shall assume that T is also countable. It then follows that T" can be written as a sequence of sets
(Xn | n €w).

Now define the the binary relation R on |JT by
R:{(:my)EUTXUTHcEXn and y € X1 forsomenéw} .

First, since X € T, it is nonempty so that there is an x € Xy. Then clearly = € |JT so that T
is nonempty. Now consider any x € | JT so that there is an n € w such that x € X,,. We then have
that X,,11 # @ since X,,4+1 € T so that there is a y € X,,11, noting that clearly also y € JT. It
then follows from the definition of R that zRy. Since x was arbitrary this shows that the relation
R on T meets the conditions of the Principle of Dependent Choices. Thus we can conclude that
there is a sequence (x,, | n € w) of elements of | JT where x,, Rz, 1 holds for any n € w.

Now, since we have that x¢ € |J7T, there is an m € w such that xg € X,,. We claim that
Ty € Xmin for all n € w, which we show by induction on n. First, for n = 0, we already
know that z, = 29 € X, = Xinto = Xint+n. Now suppose that z, € X,,4+,. By the property
of the sequence (xy),., we know that x, Rz, so that, by the definition of R, we have that
Tnt1 € Ximsn)+1 = Xmy(ns1) since clearly m +n € w and z,, € Xy 4pn. This completes the
induction.

Now consider the set 77 = {X,, | n € m}, which is clearly a finite system of nonempty sets. Hence
by Theorem 8.1.2 it has a choice function #'. Now we define a function b : T'— |JT. For any X € T
we know that there is an n € w such that X = X,,. So we set

/
BX) = h(X,) = {h (Xa) n<m
Tpem N2M
We claim that & is a choice function on T'. So consider any X € T (which automatically means that
X # @) so that again X = X, for some n € w. If n < m then we have that h(X) = h'(X,,) € X,, = X
since h’ is a choice function. On the other hand, if n > m, then we note that n — m € w and we
have W(X) = Zn—m € Xpy(n-m) = Xn = X by what was shown above. Since X was arbitrary this
shows that h is a choice function on 7. Hence, as shown above this means that there is a choice
function g on S as desired. O

Exercise 8.1.15

If every set is equipotent to an ordinal number, then the Axiom of Choice holds.

Solution:

Proof. Let A be any set and « be an ordinal equipotent to A. Then there is a bijection f from A
to . We can then simply order A according to f, that is order it by the relation

<={(z,y) e Ax A| f(z) < f(y)}

Clearly then (A, <) is isomorphic to (o, <) so that it is a well-ordering. Hence A can be well-
ordered. Since A was an arbitrary set, this shows the Well-Ordering Principle, which is equivalent
to the Axiom of Choice by Theorem 8.1.13. O

Exercise 8.1.16

If for any sets A and B either |A| < |B| or |B| < |A], then the Axiom of Choice holds. [Hint: Compare
A and B = h(A)/]
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Solution:

Proof. Consider any set A. Then we have that either |A| < |h(A)| or |h(A)| < |A| (where h(A)
denotes the Hartogs number of A). Now, it cannot be that |h(A)| < |A|. For, if it were, then there
would be an injection f from h(A) into A. Then clearly ran f C A and f is a bijection from h(A) to
ran f. Thus h(A) is equipotent to ran f C A, which violates the definition of the Hartogs number.

Therefore it must be that |A| < |h(A)|. Hence there is an injection g from A into h(A). Since h(A)
is an ordinal and rang C h(A), it follows that rang is a set of ordinals, which is well-ordered by
Theorem 6.2.6d. So, ordering A according to g (considered as a bijection from A to rang) results
in a well-ordering of A. Since A was an arbitrary set, this shows the Well-Ordering Principle, from
which the Axiom of Choice follows by Theorem 8.1.13. O

Exercise 8.1.17%*
If B is an infinite set and A is a subset of B such that |A| < |B|, then |B — A| = |B|.

Solution:

Proof. Since B is infinite, it follows Theorem 8.1.5 that there is a unique ordinal « such that
|B| = N,, noting that this requires the Axiom of Choice. Thus there is a bijection f from B onto
W Clearly then, since A C B, we have that f[A] C w,. Moreover, clearly f is a bijection from A to
f[A] so that | f[A]| = |A| < |B| = Rq. It therefore follows from Exercise 7.2.6 that |w, — f[A]] = Rq.-
We now claim that f[B — A] = w, — f[4].

(©) So consider any y € f[B — A] so that there is an © € B — A such that y = f(x). Since clearly
x € B, we have that y = f(z) € w, since f maps B onto w,. Now suppose that also y € f[A] so
that there is a z € A where y = f(z). Then we have that y = f(z) = f(2) so that = z since f is
injective. Hence we have x = z € A but also z = 2 ¢ A since z = x € B— A, which is a contradiction.
So it must be that y ¢ f[A] so that indeed y € w, — f[A]. Therefore f[B — A] C wy — f[A] since y
was arbitrary.

(D) Now consider any y € wo — f[A] so that y € w, and y ¢ f[A]. Since f is onto w,, there is
an € B such that y = f(z). Moreover, since y ¢ f[A] we can be sure that x ¢ A. Therefore
x € B— A. Since y = f(z) it therefore follows that y € f[B — A] so that w, — f[A] C f[B — A] since
y was arbitrary.

Thus we have shown that f[B — A] = w, — f[A] so that clearly f is a bijection from B — A onto
wq — f[A]. Hence we have that |B — A| = |ws — f[4]| = Ry = | B] as desired. O

§8.2 The Axiom of Choice in Mathematics

Exercise 8.2.1

Without using the Axiom of Choice, prove that the two definitions of closure points are equivalent if A
is an open set. [Hint: X, is open, so X,, N Q # &, and Q can be well-ordered.]

Solution:

Lemma 8.2.1.1. If A and B are open subsets of R then AN B is open.
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Proof. First note that, if ANB = &, then this is vacuously open. Otherwise, consider any ©z € AN B.
Then, since A is open and = € A, there is a real 4; > 0 such that |y — x| < 01 implies that y € A
for all y € R. Similarly, x € B and B is open so that there is a d; > 0 where |y — 2| < d5 implies
y € Bforally € R Let § = min {01, d2} so that 6 < d; and § < d2. Then consider any y € R where
|y — x| < 0. Then we have |y — x| < d < d7 so that y € A. Similarly, |y — x| < 6 < J3 so that y € B
as well. Hence y € AN B. Since y was arbitrary and § > 0, this shows that AN B is open. O

Lemma 8.2.1.2. If A is a nonempty open subset of R then ANQ # .

Proof. Suppose that A C R is nonempty and open. Then there is an x € A and, since A is open,
there is a real § > 0 such that (z — d,z + ) C A. Now, since § > 0, we clearly have

—-06<0<§
r—0<x+9.

Since @ is dense in R with respect to order, there is a ¢ € @ such that x —§ < ¢ < x+ 9. Then we
have g € (x — 0,z + J) so that also ¢ € A since (x — 6,z + ) C A. Thus ¢ € Q and ¢ € A so that
q € ANQ as desired. O

Main Problem.

Proof. A proof of this equivalence is presented in the text as Theorem 8.2.1. Recall that, in the proof
that (b) implies (a), a € R is the closure point of A C Rand X,, = {z € A | |xr —a| < 1/n}, and we
know from (b) that each X, is nonempty. Note that we assume that Xy = AN(—o00,00) = ANR = A.
Per the remarks after this proof, it suffices to show that the system of nonempty sets { X}, .5 has
a choice function when A is open.

First we show that each X, is an open set. Clearly Xy = A is open, so consider any natural n > 0
and let I, = (a — 1/n,a + 1/n). We claim that X,, = AN I,. To this end we have

reX,rx€eAN|zr—al <1/n
creAN-1/n<z—a<l/n
creANa-1/n<z<a+1l/n
crxeAnxel,
—rxeANnlI,.

for any real x, which of course shows that X,, = AN I,. Then, since A is open and I,, is clearly an
open interval, it follows from Lemma 8.2.1.1 that X, is open as well.

Now, since each X, is open and nonempty, it follows that X,, N Q # & from Lemma 8.2.1.2. Then,
since @ is countable, it can clearly be well-ordered. So choose a well-ordering of Q. Since X,, N Q is
clearly a nonempty subset of @, it then has a least element z,, according to our well-ordering. We
then define a function g on {X,},.n by 9(X,) = 2, which is clearly a choice function. O

Exercise 8.2.2

Prove that every continuous additive function f is equal to f, for some a € R.

Solution:

Proof. Consider any arbitrary continuous additive function f : R — R. Then, by what was shown
in the text, there is a real a such that f(q) = f.(q) = a- ¢ for all ¢ € Q; in particular a = f(1).
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Now suppose to the contrary that f # f, so that there is an x € R where f(z) # f.(x). So let
e = |f(z) — fa(x)| /2, noting that clearly ¢ > 0 since f(z) # fo(z). Since f is continuous there is
a real 6; > 0 such that |f(y) — f(x)] < € for all y € R where |y — x| < d;. Also clearly f, is also
continuous so that there is a real d3 > 0 where |f,(y) — fo(2)| < € for all y € R where |y — z| < 0.
So let § = min{d1,d2}. Then, since § > 0 it follows that x — d < = + ¢ so that there is a ¢ € Q
where z — 0 < ¢ < x+ ¢ since Q is order dense in R. It then clearly follows that |¢ — 2| < § so that
lg —z| < <9 and |qg — x| < § < Ja. Therefore |f(q) — f(z)| < € and |fo(q) — fa(x)] < €.

We then have

|f(x) = fa(z)| < [f(z) = f(@] + |f(q) — fa(2)]
<|f(z) = f(@| + f(a) — fa(@)| + [falq) = fa(2)]
<e+0+4e=2=|f(z)— fa(x),

which is a contradiction, noting that |f(q) — f.(q)| = 0 since f(q) = fa(q) since ¢ € Q. So it must
be that in fact f = f, as desired. O

This proof is similar to that of Theorem 10.3.11 later in the text. That theorem is certainly more
general, and this can be easily proved from it. In particular it was shown in the text that, for an
arbitrary additive and continuous f : R — R, f(q) = fu(q) for all ¢ € Q for some a € R so that
f1Q=f, ] Q. Since f and f, are both continuous and @ is order dense in R, it follows from
Theorem 10.3.11 that f = f,.

Exercise 8.2.3

Assume that p has properties 0)-ii). Prove properties iv) and v). Also prove:
vi) W(AUB) = pu(A) + n(B) — p(AN B).

vii) 1 (Unto An) < 300720 1(An).

Solution:

First, for reference, we assume the following properties of u:

0) p([a,b]) =b—a for any a and b in R where a < b.
i) u(@) =0 and u(R) = occ.

ii) If {A,},-, is a collection of mutually disjoint subsets of R, then

o (U An) = ZN(AH)-
n=0 n=0

First we show
iv) If AN B = & then p(AU B) = u(A) + u(B).

Proof. Assume that AN B = & and define Ag = A, A1 = B, and A,, = @ for all natural n > 1.
Then clearly each of the sets in {A4,}, -, are mutually disjoint. It is also trivial to show that
Ur—, A, = AU B. We then have by property ii) that

uAUB) = <U An> = > lAn) = p(Ag) + p(A1) + D p(An)

n=0 n=0 n=2
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(B)+ > u(@) = p(A) + p(B)+ >0
n=2 n=2
— u(A) + u(B).

noting that we have also used property i) according to which (@) = 0. This shows the desired
result. O

Lemma 8.2.3.1. For a measure u, if AC B C R then u(B — A) = u(B) — p(A4).

Proof. Clearly A and B— A are disjoint sets such that AU(B—A) = B so that pu(A)+u(B—A) = u(B)
by property iv). The result then clearly follows by subtracting (A) from both sides. O

Next we show
v) If AC B then pu(A) < u(B).

Proof. Suppose that A C B so that u(A)+u(B—A) = u(B) by Lemma 8.2.3.1. Since p is a function
into [0, 00) U {00}, it follows that

as desired. O
Now we show
vi) u(AUB) = u(A) + u(B) — u(AN B).

Proof. Let C = ANB, A =A—C,and B = B— C. It is then trivial to show that A’, B’, and
C are mutually disjoint sets such that A’ U B’ UC = AU B. We then have by a straightforward
extension of property iv) that

(A" + u(B') + p(C) = u(AU B)
(A —C)+ (B —C)+pu(C) =p(AUB)
1(A) = 1(C) + u(B) — p(C) + u(C) = p(AU B)
1(A) + p(B) — u(C) = p(AU B)

1(A) + p(B) — (AN B) = n(AU B)

as desired. Note that we have also used Lemma 8.2.3.1 since clearly C C A and C C B so that
(A= C) = p(A) — u(C) and u(B = C) = pu(B) — p(C). O

Lastly we show

vii) p (UZO:O Ay) < ZZO:O 1(An).

Proof. Supposing that we have a system of sets {A4,,} 72
sets recursively:

n—po» first we define a sequence of corresponding

Al = Ag

Ay = A~ | 4
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Note that it is clear that A}, C A, for any n € N so that p(A]) < u(A,) by property v).

We now show that each of these sets are mutually disjoint. So consider any natural m and n where
m # n. Without loss of generality, we can then assume that m < n. Suppose that A/, and A/, are
not disjoint so that there is an x € A}, N A}. Thus x € A, = A,, — Z;é A} so that = ¢ UZ;& Al
However since also x € A, and 0 < m < n—1, we also can conclude that = € Uz;é Al Since this is
a contradiction, it must be that A/ and A! are in fact disjoint, which shows mutual disjointedness
since m and n were arbitrary.

o0

Next we show that (J,~, A, = U, —, An. The C direction is clear since, for any = € |-, A7, there
a natural n where x € A]. Since A, C A, it follows that @ € A, so that clearly = € UZOZO A,.
Now consider any z € (J,—, A, so that there is a natural n where x € A,,. Clearly if n = 0 then
x € Ag = A[. So assume that n > 0 so that UZ;; A} is defined. If z € Uz;é A} then there is a
0 < k < n—1wherez € A,. On the other hand, if z ¢ | J;—) A}, then clearly z € A, —{Jj—} A}, = A’..
Thus in all cases there is a natural k such that x € A} so that z € [J,—, A}, as desired.

We therefore have

(U)=+(0%)

= Z wu(AL) (by property ii) since the sets {4/}, are mutually disjoint)
n=0
< Z w(Ar) (since 0 < u(AL) < u(A,) for all natural n)
n=0
as desired. O

Exercise 8.2.4%*

Let §={X CS||X]|<Ngor |[S—X| <Ry} Prove that & is a g-algebra.

Solution:

Lemma 8.2.4.1. If A, B, and C are sets then A—(B—C)=(A—B)U(ANC).
Proof. For any x we have

re€A—(B-C)«axeAnz ¢ B-C
—creAN-(reBAx¢C)
—xeAN(x¢ BVrel)
> (xeAnz¢B)V(zeAnzel)
~+XeA-BvzeAnC
sze(A-—B)U(ANC).

Lemma 8.2.4.2. If A C B and S is another set, then S — B C S — A.

Proof. Consider any © € S — B so that « € S and © ¢ B. Then it has to be that also = ¢ A
since otherwise it would not be that A C B. Hence x € S — A, which shows the result since x was
arbitrary. O
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Main Problem.

Proof. We must show that the above definition of & satisfies the three parts of the definition of a
o-algebra:

(a) €S and S € 6.
(b) f X € S then S— X € 6.
(c) If X,, € G for all n, then ;- X, € & and (),—, X, € &.

For (a) clearly |@] =0 < Ng so that @ € &, and S — S = @ so that |[S — S| = || =0 < Xy. Hence
S € G as well.

For (b) suppose that X C S and X € &. Then either | X| < Ng or |[S — X| < Rg. If | X| < Np then
by Lemma 8.2.4.1 we have

S—(S-X)=(S-S)U(SNX)=oU(SNX)=SNX =X

since X C S. Therefore |S — (S — X)| = |X| < Rp so that S — X € &. On the other hand, if
|S — X| < g, then obviously S — X € & by definition.

Lastly, regarding (c), suppose that {X,} ~, is a system of sets where each X,, is in &. Thus
| Xn| < N or |S— X,| <R for each natural n.

Now we show that |J)—, X, € &. First, if |[X,| < R for all natural n, then it follows from
Theorem 8.1.7 that |J;~, Xn| < Ro, which of course uses the Axiom of Choice. If, on the other
hand, there is a natural m such that | X,,| € N, then it has to be that |[S — X,,,| < Ng since X, € 6.
Then, since clearly X, C ;" , Xy, it follows from Lemma 8.2.4.2 that S —J,—, X,, €S — X,,, so
that clearly |S — J;—q Xn| < [S — X,,| < Ro. Thus in all cases we have that either || J;~, X,| < Rg
or |S — U~y Xn| <R so that (Jo2, X, € 6.

Lastly we show that ()", X, € & as well. If it is the case |S — X,| < N for all natural n, then
clearly we have that | J; - ,(S—X,,) < R, again by Theorem 8.1.7. It also follows from Exercise 2.3.11
that S — (", Xn = Ur—o(S — X,,) so that we have [S — (0_, Xn| = [Up2o(S — X»n)| < Rg. Now,
on the other hand, if there is a natural m such that |S — X,,,| € Ro, then it has to be that | X,,| < N
since X,,, € &. Since clearly ()~ X;, € X, we then have |))— 5 X,,| < [ Xin| < Rg. Hence in either
case we have that |[)," o X,,| < Ng or [S — (" Xn| < Rg so that (", X,, € S by definition.

We have therefore shown parts (a), (b), and (c) so that & is a o-algebra as desired. O

Exercise 8.2.5

Let € be any collection of subsets of S. Let & = (({T| € C T and ¥ is a o-algebra of subsets of S}.
Prove that & is a o-algebra (it is called the o-algebra generated by €).

Solution:

Proof. First, let T = {T| € C T and ¥ is a o-algebra of subsets of S} so that & = ((7T. Then we
must show that & meets the definition of a o-algebra:

(a) € Gand S €6.
(b) f X € Sthen S — X € 6.
(c) If X,, € G for all n, then | J,- ; X, € & and ), X, € 6.

Page 100



Regarding (a), consider any ¥ € T. Since ¥ is then a o-algebra it follows that both @ € ¥ and
S € T by (a). Then, since ¥ € T was arbitrary, it follows that both @ and S are in (7T = &.

For (b) suppose that X € & = (T so that X € ¥ for all ¥ € T. So consider any such T € T so that
clearly X € €. Then, since T is then a o-algebra, it follows that S — X € ¥ by (b). Since T € T
was arbitrary, we have that S — X € T = 6.

Lastly, for part (c¢) of the definition, suppose that X,, € & = (T for all n € N. Let T be any
element of T so that X,, € T for all natural n. Since ¥ is a o-algebra, it then follows from (c)
that both |J;~, X, and (,—, X, are in T. Since T € T was arbitrary we have that [ J,_, X, and
Moo Xn arein T = 6.

Hence we have shown all three parts of the definition so that & is indeed a o-algebra. O

Exercise 8.2.6

Fix a € S and define g on P (S) by: u(A) =1ifa € A, u(4) =0if a ¢ A. Show that u is a o-additive
measure on .S.

Solution:

Proof. Let & = P (S), which we know is the largest o-algebra of subsets of S. We must show that
1 as defined above satisfies the properties of o-additive measure on S:

i) w(@) =0, u(S) > 0.

ii) If {X,},~, is a collection of mutually disjoint sets from &, then

H <U Xn) = ZM(XTL)
n=0

n=0

To show i), we clearly have that a ¢ @ so that by definition p(2&) = 0. Also, clearly a € S so that
w(S)=1>0.

Regarding ii), suppose that {X,,} -, is a collection of mutually disjoint sets in & = P (5).

Case: a € |J,—, Xy, Then by definition x ({J,—, X,,) = 1. There is also an n € N such that a € X,
and since the sets {X};, are mutually disjoint, it follows that a ¢ X,, for any natural m # n
(since otherwise X, and X, would not be disjoint). Thus we have u(X,,) = 1 while u(X,,) = 0 for
all natural m # n. Hence

o) n—1 00 n—1 o)
Dou(Xe) =Y p(Xe) =D pu(Xp) + (X)) + D w(Xk) =D 0414 Y 0=1.
k=0 keN k=0 k=n+1 k=0 k=n+1

Thus clearly p (e Xn) = v u(Xy) = 1.
Case: a ¢ U,y Xn. Then pu(J;—,X,) = 0 by definition. It also follows that a ¢ X,, for every
natural X, so that u(X,,) = 0. Hence clearly

,LL(UX”>OZOZM(X”).

Thus ii) is shown in both cases so that u is indeed a o-additive measure on S since we also showed
i). O
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Exercise 8.2.7
For AC Slet u(A) =01if A= o, u(A) = oo otherwise. Show that y is a o-additive measure on S.

Solution:

Proof. Let & = P (S), which we know is the largest o-algebra of subsets of S. We must show that
u as defined above satisfies the properties of o-additive measure on S:
i) (@) =0, u(S) > 0.

i) If {X,},~, is a collection of mutually disjoint sets from &, then
o <U Xn) = ZM(X’I’L)
n=0 n=0

For i) we clearly have p(&) = 0 by definition and p(S) = co > 0 since S is nonempty, which follows
from the fact that P (S) is a o-algebra of subsets of S.

Regarding ii), suppose that {X,},~ ; is a collection of disjoint sets in & = P (S5).

Case: |~y X,, = @. Then by definition p (U,—,X,) = 0, and it also has to be that X,, = & for
all n € N so that p(X,) = 0. Therefore

ZM(Xn)=20=0=M<U Xn> :
n=0 n=0 n=0

Case: |, —, X, # @. Then by definition x ({J;~, X») = co. It also follows that X,, # & for at least
one n € N so that u(X,) = co. We then have

o) n—1 00 n—1 oS
S onXe) =D p(Xk) +u(Xn) + D> p(Xk) =Y w(Xe) +oo+ Y p(Xk)
k=0 k=0 k=n+1 k=0 k=n-+1

e(3)

since each pu(X,,) € {0,00} for all natural m # n.

Thus ii) is shown in both cases so that p is indeed a o-additive measure on S as desired. O

Exercise 8.2.8

For A C S let u(A) = |A] if A is finite, u(A) = oo if A is infinite. p is a o-additive measure on S; it is
called the counting measure on S.

Solution:

Proof. Let & = P (5), which we know is the largest o-algebra of subsets of S. We must show that
1 as defined above satisfies the properties of o-additive measure on S:
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ii) If {X,},2, is a collection of mutually disjoint sets from &, then

M(UXTL> :ZM(Xn)'

n=0

For i) we have that u(@) = || = 0 since @ is finite. If S is finite then u(S) = [S| > 0 since S is
nonempty. If S is infinite then u(S) = oo > 0 as well so that in either case p(S) > 0 as desired.

To show ii) suppose that {X,,} - is a collection of disjoint sets in & = P (5).

Case: There is an m € N where X, is infinite. Then obviously u(X,,) = oo by definition. We also
clearly have that |J7-, X,, is infinite since X,,, C |~ X,, and hence p(|J;—, X,) = co. Then

S ) = S uX) FuXa) b S wX) = S X toot 3 p(X) = oo
n=0 n=0 n=m-+1 n=0 n=m-+1

since 1(X,,) € N U {oo} for every n # m. Therefore u(lJ,—, Xn) = > re (X)) = 0o as desired.

Case: X, is finite for every n € N. Clearly then u(X,) = |X,| for every natural n. First, if there

is a natural N such that X,, = @ for all n > N, then clearly J,> , X, = ngo X, i.e. the union is

finite. It then follows that UfLO X, is finite by Theorem 4.2.7 so that u (Uszo Xn) = ‘UnNzo X,

Then, since the sets {Xn}gzo are mutually disjoint, we have

00 N N N 0o
N(UXn>,u<UXn> :Z‘Xn|:2ﬂ(Xn):ZN(Xn)
n=0 n=0 n=0 n=0 n=0

by the definition of cardinal addition, noting that clearly the last step follows from the fact that
w(Xy) =12 =0 for all n > N.

On the other hand, if there is no such N, then it follows that, for every NV € N, there is a natural
n > N such that X,, # @. At this point we need two facts from real analysis, supposing that
(an)or, is a real sequence:

N

U,

n=0

1. By definition, the sequence converges to a real a if, for every real € > 0, there is an N € N
such that |a, — a| < ¢ for every natural n > N.

2. If the infinite series Y -, a,, converges (to a finite value) then the sequence itself must converge
to zero.

We shall show that Y~ u(X,,) diverges by showing that the sequence (u(X,,)),-, does not con-
verge to zero (i.e. the contrapositive of 2). So let € = 1/2, noting that clearly e = 1/2 > 0. Then
consider any natural N so that there is a natural n > N such that X,, # @. It then follows that,
since X, is finite but nonempty, |u(X,) — 0| = [u(Xyn)| = || Xn]| = |Xn| > 1 > 1/2 = . Therefore
we have shown

Je > 0YN € NIn > N (|Ju(Xn) — 0| > €)
—Ve > 034N € NVn > N (Ju(X,) — 0| <¢) ,

which shows by definition that (u(X,)),., does not converge to zero. Hence Y7, u(X,,) diverges
so that by convention >~ u(X,,) = co.

Lastly, we show that J7~ , X,, must be infinite. Suppose to the contrary that | J,- , X, is finite. We
then construct a function f : |J;~, X, — N as follows: for each z € |J,., X, there is a unique
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m € NN where x € X,,,. Clearly such an m exists since = € UZO:O X,, and it is unique because the
sets {X,,},~, are mutually disjoint (if it was not unique then there would be distinct n and m where
z € X,, and z € X,,, so that X,, N X,,, # &). We then simply set f(z) = m.

It then follows from Theorem 4.2.5 that ran (f) is finite since dom (f) = (J;2, X, is. Since ran (f)
is then a finite set of natural numbers, it has greatest natural number N. But we know that there is
an m > N such that X,,, # @ so that there is an x € X,,,. It then follows that clearly x € UZO:() X
and that f(z) = m. However, then m would be in ran (f) so that m < N since N is the greatest
element of ran (f). But we already know that m > N, which is a contradiction. So it has to be that
U~ X, is in fact infinite as desired.

We therefore have p(J;— o Xn) = 0o = >, u(X,) and hence ii) has been shown in every case
and sub-case so that p is indeed a o-additive measure on S by definition. O

Chapter 9 Arithmetic of Cardinal Numbers

§9.1 Infinite Sums and Products of Cardinal Numbers

Exercise 9.1.1

If J; (i € I) are mutually disjoint sets and J = |J,; Ji, and if k; (j € J) are cardinals, then

il
D\ =2
iel \jeJ; jed

(associativity of >_)

Solution:

Proof. Suppose that (A; | j € J) are mutually disjoint sets where |A;| = k; for every j € J. Then,
by definition, we have that

> ri=(U A (1)

JjeJ JjeJ

Now let S = {J; | ¢ € I}, from which it is trivial to show that | .S = J. It follows from Exercise 2.3.10
that

UAj=UAa:U<UAa>:U U 4] - 2)

jeJ acl S ces \aeC iel \jeJ;

We claim that the sets <Uj€Ji Ajlie I> are mutually disjoint. So consider any ¢; and iy in [
where i1 # i, and suppose that Ujeh1 A; and Ujer,z A; are not disjoint so that there is an x
where = € UjeJil Aj and x € UjeJiz A;. Then there is a j; € J;; where x € A;, and a js € Jj,
where z € A;,. Now, since (J; | ¢ € I) are mutually disjoint and i1 # 49, it follows that J;, and J;,
are disjoint. Therefore it has to be that ji # ja (since ji € J;; and jo € J;,). But then A;, and A;,
are not disjoint (since x is in both) despite the fact that j; # ja, which contradicts the fact that
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(Aj | j € J) are mutually disjoint. So it must be that in that Uje‘]i1 A; and UjeJiz A; are disjoint,
which proves the result since i1 and iy were arbitrary.

Since <U e, Ajliel > have been shown to be mutually disjoint, it follows by definition that
> U4 =UlU4| (3)
icl |jed; iel \jeJ;

Lastly, we also clearly have that (A4; | j € J;) are mutually disjoint for any ¢ € I (since (4, | j € J)
are mutually disjoint) so that

Zlij: UAJ (4)

JjeJi JjEJ;

Putting this all together, we have

> k=14 (by (1))
jeJ jeJ
=Ul U4 (by (2))
i€l \jeJ;
=> 1 4 (by (3))
el (jed;
=> 1D (by (4))
el jeJ;i

as desired.

Exercise 9.1.2

If ki < X\ forall i € Ithen Y, ks <3050 Ai

Solution:

Proof. Suppose that (A; | i € I) are mutually disjoint sets such that |A;| = k; for all ¢ € I. Similarly,
suppose that (B; | ¢ € I) are mutually disjoint sets such that |B;| = A; for all ¢ € I. Tt then follows
by definition that

UBi| -

iel

S-

el

U

iel

IR

icl

Now, we have |A;| = k; < A\; = | B;| so that there is an injective function f; : A; — B; for all i € I.
With the help of the Axiom of Choice, we can choose one of these functions for each ¢ € I and form
the system of functions {f;},c;.
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We claim that {f;},.; is a compatible system of functions. To see this, consider any i; and iy in
I. If iy = iy then consider any € dom (f;;) Ndom (fi,) = A;; N Ay, = A;y N A, = A;;. Then
clearly fi,(z) = fi,(z) since i1 = i and f;; = f;, is a function. On the other hand, if i1 # is,
then we have that dom (f;,) Ndom (f;,) = 4;, N A;, = @ since (4; | i € I) are mutually disjoint and
i1 # i2. Hence it is vacuously true that f;, (z) = fi,(z) for all z € dom (f;,) N dom (f;,) since there
is no such x. Since i; and iy were arbitrary, this shows that {fi};,.; is a compatible system (see
Definition 2.3.10). It then follows from Theorem 2.3.12 that f = J,.; fi is a function with domain
Uierdom (fi) = U,es As-

Though perhaps it may seem obvious, we show formally that f(z) = fi(x) for any z € A; (for any
i € I). So consider any such i € I and x € A;. Then (z, f(z)) € f = U,¢; fi so that thereis a j € I
where (z, f(x)) € f;. Suppose for a moment that j # i so that z € dom (f;) = A;. Since z € A;
and x € A; but i # j, this contradicts the fact that (A; | i € I) are mutually disjoint. Hence it must
be that j =i so that (x, f(z)) € f; = fi. From this of course it follows that f;(z) = f(z) as desired.

We also claim that f(x) € |J,c; Bi for any x € |J,o; A so that |J,c; B; can be the codomain of
f. This is easy to show: consider any = € (J;o; A; so that there is an i € I where z € A;. It
then follows that f(x) = f;(x) € B; since f; is a function from A; to B;. Therefore we clearly have
f(x) € U;c; Bi- This shows the result since x was arbitrary.

We also claim that f is injective. So consider any x; and x3 in (J;.; A; where 21 # x5. Then there
are i1 and i such that 21 € 4;, and a9 € A;,. If iy = iy then f(x1) = f;, (x1) # fi, (x2) = fi,(z2) =
f(z2) since f;, = fi, is injective. If iy # ig then f(z1) = fi, (z1) € B;, whereas f(z2) = fi,(z2) €
Bi,. Since {B; | i € I} are mutually disjoint and 4y # iz it follows that f(z1) # f(z2). Therefore f
is an injective function from (J;.; A; to J,;o; Bs so that

i€l
ZMZ UAi < UBi:Z/\i
iel iel iel iel
as desired. 0

Exercise 9.1.3

Find some cardinals £, A, (n € N) such that k, < A, for all n, but 07k = > 07 An.

Solution:

Let k, =1 and A\, = 2 for all n € N. We claim that these satisfy the required properties.

Proof. Clearly we have k, =1 < 2 = )\, for all n € N. It then follows from Exercise 9.1.4 (and
also the more general Theorem 9.1.3) that

inn:i1221: D 1=Rg-1=Rg=R-2= ) 2= 22:i2:i)\n
n=0 n=0 n=0 n=0

neN n<Ng n<Ng neN

as desired. 0

Exercise 9.1.4

Prove that kK + k4 - -+ (A times) = X\ - k.
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Solution:
Proof. First, if A = 0 then, by convention, we have
k+ K+ (Atimes) =k +k+---(0times) =0=0-k=A-k

regardless of what k is. So assume in what follows that A > 0so A > 1.

For each oo < A, define A, = {(«, B) | B € k}. Consider then any oy < A and ag < A where ay # ao.
Suppose that both (z,y) € A,, and (z,y) € Ay, It then follows that x = oy and x = ag so that
& = a1 = ag, which contradicts our assumption that oy # as! So it must be that no such (z,y)
exists so that A,, and A,, are disjoint. Since ay and ay were arbitrary, this shows that (4, | o < A)
are mutually disjoint sets. We also clearly have that |A,| = « for each a < A. It therefore follows
from the definition of cardinal summation that

K+ K+ - (X times) ZH—
a<A

U 4a| -

a<A

Now we show that J,.\ Aa = A X k. First consider any (z,y) € [, so that there is an o < X
where (z,y) € A,. We then have that £ = o and y € k. Therefore © = o < A so that € A by
the definition of < for ordinal numbers. Hence z € X and y € & so that (z,y) € A x &, which shows
that | J,. Aa € A X s since (z,y) was arbitrary. Now consider any (x,y) € A x & so that x € A and
y € k. Let a = x € X so that @ < A. Hence (z,y) = (,y) for a < A and y € k, which shows that
(x,y) € Ay so that clearly (x Y) € Uqer Aa- This shows that A x x C (J, ., Aa since again (z,y)

was arbitrary. Thus (J, ) Aa = A X & as desired.

Putting all this together, we have

K+ K+ (X times) = Z UA = AXKl =Xk
a< a<A
by the definition of cardinal multiplication since obviously |A| = A and |k| = k. O

Exercise 9.1.5

Prove the distributive law:

A (Zm) => (A-ki) .

i€l i€l

Solution:

Proof. Suppose that (A4; | i € I) are mutually disjoint sets such that |A;| = k; for all ¢ € I. Then
by definition Y, ; k; = |U;c; Ai]- Also suppose that B is a set such that |B| = A.

We claim first that B x (J;c; Ai = U,;¢; (B x A;). This is easy to show since, for any z and y, we
have

(x,y)eBxUAZ-<—>:UEB/\EIZ‘€I(y€AZ-)
iel
—~Jdiel(zxe BAyeA)
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< Jiel((z,y) € BxA)
 (z,y) € U(BX Aj).

iel
We then have
A =4

(by the definition of cardinal summation)

i€l iel
= |B x U A; (by the definition of cardinal multiplication)
iel

= U (B x A) (by what was just shown above)
iel

= Z |B x A;] (by the definition of cardinal summation)
iel

= Z (N k) (by the definition of cardinal multiplication)
iel

as desired. We note that |\J;c;(B x 4;)| = Y_,c; |B x A;| works since the sets (B x A; | i € I)
are mutually disjoint. This is easy to see by considering i and j in I where i # j. Then, if
(z,y) € B x A; and also (z,y) € B x A;, it follows that y € A; and y € A;, which cannot be since
i # j and (4; | i € I) are mutually disjoint. Hence it must be that there is no such ordered pair

(x,y) so that B x A; and B x A; are disjoint, which proves the result since ¢ and j were arbitrary.
O

Exercise 9.1.6

|UieI Ai| < Zie[ |Ai‘-

Solution:

Proof. First let (B; | i € I} be mutually disjoint sets where |B;| = |A4;| for every i € I. It then
follows that >, [4i| = |U;e; Bi| by definition. For each i € I we can choose a bijection f; from
A; to B; by the Axiom of Choice since |A4;| = |B;|. We construct a function f: J,c; Ai = U,;c; B
For each x € [J;.; A; we have that 2 € A; for some j € I. We choose one such j, which requires
the Axiom of Choice, and set f(x) = f;(x). Clearly f(x) = f;(x) € B so that then f(z) € J;c; Bi,
which shows that | J;.; B; can be the codomain for f.

We show that f is injective. So consider any z; and z in (J;o; A; where 21 # x2. Then we
have chosen unique j; and j, where f(z1) = fj,(z) and f(z2) = fj,(z). If j1 = jo then we have
flz1) = fi(x1) # fi(x2) = fj.(22) = f(x2) since f;, = f;, is injective and x1 # xo. If ji # jo then
f(z1) = fji(z1) € Bj, whereas f(z2) = fj,(22) € Bj,. Since ji # jo and (B; | i € I) are mutually
disjoint, it follows that f(x1) # f(x2). Since this is true in both cases and 7 and x5 were arbitrary,
it shows that f is injective.

Since f is injective we, we have

U
icl
as desired. O

< UBi

iel

=14l

icl
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Exercise 9.1.7

If J; (i € I) are mutually disjoint sets and J = J,.; Ji, and if x; (j € J) are cardinals, then

il
[T\ II=)=11n
iel \jeJ; jeg

(associativity of T]).

Solution:

Proof. Suppose that (A, | j € J) are sets where |A;| = k; for each j € J. It then follows that

Hlij: HAJ . (5)

jed jeJ

Now, for any 7 € I, set B; =[] A;j so that

J€J;

I % =1] 4| =Bl (6)

Jj€Ji JEJ;

by definition.

Now we construct a bijection f from [[,c; A; to [[;c; Bi. So consider any a € [[,;c; A; so that
a=(a; |j€J) where a; € A; for every j € J. Now, for each ¢ € I, set a} = (a; | j € J;), noting
that clearly j € J = (J,c; Ji for each j € J; so that a; has been defined as in the range of a. We
then have that a; € A; for j € J; so that a; € [[;c; A; = Bi. Soset b= (a; | i € I) so that clearly
b € [l;e; Bi, and set f(a) =b. Since f(a) = b € [[;c; B for any a € [[;.; A;, we have that f is
indeed a function from [[,. ; 4; into [[;c; Bi.

We claim first that f is injective. So consider any a and 3 in [] jed A; where o # (. It then follows
that o« = (a; | j € J) and 8 = (B; | j € J) where both o and ; are in A; for any j € J. Now, since
o # [ it follows that there is a jo € J such that «;, # 5;,. Also there is an ig € I such that jo € J;,
since jo € J = U;c; Ji- Now let o = (a; | j € J;) and B; = (B; | j € J;) for i € I. We then have
that o # fB; since jo € Ji, and o, # B3j,. Clearly then f(a) = (aj |i € I) and f(B) = (B; | i € I)
by definition so that f(a) # f(f) since ig € I and aj # 3 . This shows that f is injective since a
and /3 were arbitrary.

el

We also claim that f is onto. Consider any b € [[;; B; so that b = (b; | i € I) where each b; € B;
for i € I. So, for any i € I, we have that b; € B; = HjeJi, A so that b; = (a;; | j € J;) where each
ai; € Aj for j € J;. Now we construct a function g. So consider any jo € J so that there is a unique
ip € I such that jo € J;,, where the uniqueness clearly follows from the fact that (J; | i € I) are
mutually disjoint. Then simply set g(jo) = ai,j, € Aj, so that clearly g € [[;.; A;. If we then set
a;={g9(7)|jedi)="{aij | j€Ji) =0b;foralli eI, then f(g) =(a} | i€ I)= (b |i€I)=0>=. Since
b was arbitrary this shows that f is indeed onto.

It may not have been obvious, but the uniqueness of ig € I for any jo € J (such that jo € J;,)
when constructing g was critical for this proof. To see why, suppose that for some jo € J there
are distinct ¢; and 49 in I such that jo € J;;, and jo € J;,. Then it could very well be that
@iy jo 7 Giyj, (though they would both be in A; ) and we would have to choose one to be g(jo).
Supposing we choose g(jo) = ai,j, then we would have aj, = (g(j) | j € Ji,) so that aj, # bs, since
a;,(jo) = 9(jo) = Gijo # Ginjo = bi,(jo). If we had set g(jo) = as,j, instead then, by the same
argument, we would have aj # b;,. Clearly in either case this would break the proof since we would
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have f(g) = (a} | i € I} # (b; | i € I} = b. In fact, in this case there would be no g € []|
that f(g) = b since we cannot choose a value for g(jo) for which a; = b; for all ¢ € I.

Aj to [[;c; Bi so that

et Aj such

Returning from our digression, we have shown that f is a bijection from [] jeJ

14| =

JjeJ

1=

iel

: (7)

Therefore we have

II({ I~ ) =113 (by (6))

icl \jeJ; i€l

I

iel

(by the definition of cardinal product)

114, (by (7))

jeJ

=1Iw (by (5))

jeJ

as desired. O

Exercise 9.1.8
If k; < \; for all i € I, then

Hm SH)‘i‘

i€l i€l

Solution:

Proof. Suppose sets (A; |i € I) and (B; | i € I) where |4;| = x; and |B;| = A; for all ¢ € I. Then,
by the definition of the cardinal product, we have that

[T~ [T

iel iel

[T -

i€l

e

icl

Now, for any i € I, we also have
|Ai| = ki < \i = | Byl

so that we can choose an injective f; : A; — B; (with the help of the Axiom of Choice).

We then construct a function f from [[;.; A; to [[;c; Bi- So for any a € [];.; Ai we have that
a = {a; | i € I) where each a; € A;. Thus a; € A; = dom (f;) for each i € I so that f;(a;) € B;.
We then define f(a) = (fi(a;) | i € I) so that clearly f(a) € [],c; B; and hence f is a function into
Hie[ Bi.

We claim that f as defined above is injective. To this end, consider any o and § in [[;c; 4
where o # (. It then follows that & = (a; | i€ I) and 8 = (B; | i € I) where both a; and 3;
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are elements of A; for each i € I. Since a # [ we must have that there is an iy € I such
that a;, # B, It then follows that f; (ci,) # fi,(Bi,) since f;, is injective. Therefore clearly
fla) = {filay) | i€ I)# (fi(B;)|i €Iy = f(B). This shows that f is injective since o and 5 were
arbitrary.

Finally, since f is an injective function from [],.; A; to [],c; Bi, we have that

Hfﬂz HAi < HBi

i€l icl icl

iel

:H/\i

icl

as desired. O

Exercise 9.1.9

Find some cardinals £y, A, (n € IN) such that k, < A, for all n, but [[° kn =]~ M-

Solution:

Let Kk, = 2 and A\, = Vg for all n € N. We claims that these satisfy the requirements.

Proof. Clearly k, = 2 < Ny = A, for every n € N. However, by Exercise 9.1.10 and Theorem 5.2.2c,
we then have

HmﬁHQ— H 2 =2% =Rl = H NOfHNOfH)\n

n=0 n<Ng n<Ng

Exercise 9.1.10

Prove that - k- --- (X times) = x*.

Solution:

Proof. First, we clearly have that

K- kK- (A times) H K.
a<

So let A and B be sets such that |[A] = x and |B| = X\. Then by definition we have [[,.,x =
[To<x 4] and £* = |AP|. We also have that there is a bijective g : A — B since |A\| = A = |B|. We
construct a bijection f from A® to [Io<rA. So, for any h € AB let f(h) = hog. Clearly, since
g:A— Band h:B — A, it follows that f(h) : A — A and hence clearly f(h) € [], ., A (since
f(h)(a) € A for each a < \) so that f is a function from AZ to [ _, A.

We also claim that f is injective. So consider any h; and hy in AP where hy # hy. It then follows
that there must be a b € B where hy(b) # ha(b). Then let o = g~1(b), noting that g~ is a bijective
function from B to A since g is bijective. We then have that

f(hi)(@) = (h1 o g)(@) = hai(g(e)) = I
# ha(b) = ha(g(g7"' (b)) = ha(g(@)) = (h2 0 g)(@) = f(h2)(a)

a<A
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so that f(h1) # f(he). Since h; and hg were arbitrary this shows that f is indeed injective.

We also claim that f is onto. So consider any h' € [],., A so that A’ is a function from X\ to A
(since h'(a)) € A for each o < \). Then let h = b’/ o g=! so that clearly h is a function from B to A
since ¢! : B — XAand ' : A — A. We then have that

f(hy=hog=(hog )og=ho(g og)=h'oiy="

where i, is the identity function from A to A. Since h’ was arbitrary, this shows that f is indeed
onto.

Thus, since we have shown that f is a bijection, it follows that

114

a<

n%-u-()\times):Hn: = [AP| = &

a<

as desired. O

Exercise 9.1.11

Prove the formula (T, m)/\ = [Lics (k;)*. [Hint: Generalize the proof of the special case (k- )" =
k# - A given in Theorem 1.7 of Chapter 5.

Note that the hint differs from that in the book; see the Errata List.

Solution:

Proof. First suppose that (A; | i € I) are sets where |A;| = k; for all ¢ € I. Also suppose that B is
a set such that |B| = A. It then follows that
A B
i€l

(11-) -

[T =TT 1471 -

el el

[

icl

and

[147|-

icl

We then aim to construct a bijection F from [[,.; AZ to ([[;c; 4:)”, which clearly would show the
result since we would have by the above that

(1) - (1) -

So suppose that f € [],c; AP so that f; = f(i) € AP for every i € I. Then define a function g such
that, for any b € B, g(b) = (f;(b) | i € I}. We then have that, for any i € I, f;(b) € A; since f; is a
function from B to A;. Therefore g(b) € [[;c; Ai, and hence g is a function from B to [[;c; As so

that g € ([[;e; AZ-)B. Naturally then we set F(f) = g so that F' is indeed a function from [],., AP
B
to ([Ties 4i) "

[147

i€l

St

i€l
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To show that F is injective consider any f and f’ in [],.; A? where f # f’. It then follows that
there is an ig € I such that fi, = f(io) # f'(io) = f],. Then, since f;, and f/ are both in AZ, it
follows that they are both functions from B to A;,. Since fi, # f/ we have that there is a b € B
such that fi (b) # fi (b). We then have that g(b) = (f;(b) |i € I) # (fi(b) |i € I) = ¢'(b) since
fio(b) # fi,(b) and ig € I. Therefore F'(f) = g # g' = F(f’), which shows that F is injective since
f and f’ were arbitrary.

To show that F is also onto, consider any ¢’ € ([T, Ai)B so that ¢’ is a function from B to
[I;c; Ai. Therefore, for any b € B, ¢'(b) is a function on I such that g’(b)(i) € A; for each i € I.
Clearly we have ¢'(b) = (¢/(b)(¢) | i € I). Then, for each i € I, we define a function f; on B such
that f;(b) = ¢/(b)(¢). Then, since f;(b) = ¢'(b)(#) € A;, clearly each f; is a function from B to A4;.
Therefore f; € AP. We then set f = (f; | i € I) so that clearly f € [],c; A?. Now, we then set
g = F(f) so that, by the definition of F', g is a function on B such g(b) = (f;(b) | i € I) for any
b € B. We then have that g(b) = (fi(b) |t € I) = (¢'(b)(4) | i € I) = ¢'(b) by the definition of each
fi- Since b € B was arbitrary, this shows that F(f) = g = ¢’. Thus F is onto since g’ was arbitrary.

We have shown that F' is a bijection so that the result follows as described above. O

Exercise 9.1.12

Prove the formula

H (Ii)\i) — KZz‘EI Ai .

i€l

[Hint: Generalize the proof of the special case k* - k# = k*T# given in Theorem 1.7(a) of Chapter 5.]

Solution:

Proof. First, suppose that A is a set such that |A| = «, and that (B; | i € I) are mutually disjoint
sets such that |B;| = A; for each i € I. Then, by the definitions of cardinal products and sums, we
have

1 () =TT 4" =

i€l i€l

[1+"

iel

and

UieI B;

HZz‘EI A — g = ‘AUiGI Bi

We now construct a bijective function F from [[,; ABi to AVier Bi | which clearly shows the desired
result since we then have

16 - - B

icl

[14"

icl

— ‘AU{,EI B

So, for any f = (f; |i€I) € [[;c; AP, we have that each f; is a function from B; to A. It then
follows from the fact that (B;|i € I) are mutually disjoint that {f;},.; is a compatible system
of functions. We then that g = (J,c; fi is a function from J;.; dom (f;) = (U;c; Bi to A by

Theorem 2.3.12. Hence g € AUic1 Bi| and we of course set F(f) = g so that F is a function from
[M,o; AP to AUier B,
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To show that F is injective, consider any f and f’ in [],.; AP where f # f'. Let g = F(f) and
g = F(f'). Tt then follows that there is an ig € I such that f;, # f; . Then, it has to be that
there is a b € B;, where f; (b) # f] (b). Clearly also b € |J;c; Bi since ig € I so that b € dom (g)
and b € dom (¢') (since by the definition of F' we have that g and ¢’ are functions with domain
Uicr Bi). Moreover, we have that g(b) = fi,(b) and ¢'(b) = f; (b), which again follows from the fact
that (B; | i € I) are mutually disjoint or equivalently that {f;},.; is a compatible system. Hence we
have g(b) = fi,(b) # fi, (b) = ¢g'(b) so that F'(f) = g # g" = F(f'). This shows that F' is injective
since f and f’ were arbitrary.

To see that F is onto, consider any ¢’ € AYier Bi| For each i € I, define f; = ¢’ | B;, which is clearly
a function from B; to A so that f; € APi. Then let f = (f; | i € I) so that F(f) =g = ,c; fi» and
clearly f € [],c; AP = dom (F). Now consider any (z,y) € g = U,c; fi so that there is an ip € I
where (z,y) € fi, = ¢’ | Bi,. Therefore (x,y) € ¢’ since obviously ¢’ | B;, C ¢’. Consider next any
(7,y) € ¢' so that x € dom (¢9') = J;c; Bi and y = ¢g'(z). Then there is an 99 € I where x € B, so
that (z,y) € ¢’ | Bi, = fi,- Hence clearly (z,y) € U,;¢; fi = g since ig € I. Therefore g C ¢’ and
g’ C g so that F(f) = g = ¢/, which shows that F is onto since g’ was arbitrary.

We have thus shown that F' is a bijection so that the result follows. O

Exercise 9.1.13
Prove that if 1 < s; < X; for alli € I, then >, my < J[cp Mie

Solution:

Lemma 9.1.13.1. If A is a set and n < |A| for a finite cardinal (i.e. natural number) n, then
n+1< Al

Proof. Since n < |A], it follows that there is an injective function f : n — A but that f cannot be
onto. Thus there is an a € A such that a ¢ ran (f). Noting that n+1 =nU {n}, for any k € n + 1,
define a mapping g by

o(k) = {f(k) ken

a k=n.

Clearly in either of these cases we have that g(k) € A so that g is in fact a function from n + 1 into

A.

To see that g is injective, consider any ki and ko in n + 1 where k1 # ko. If k; = n then g(k1) = a
and it has to be that k2 € n since ky # k1 = n. Hence clearly g(ks) = f(kz2) € ran(f) whereas
g(k1) = a ¢ ran (f) so that g(k1) # g(kz2). If k1 € n but k2 = n then this is analogous the previous
case, so assume that also ko € n. Here clearly g(k1) = f(k1) # f(k2) = g(k2) since f is injective and
k1 # ko. Therefore, in all cases we have that g(k1) # g(k2), which shows that g is injective since k;
and ko were arbitrary.

The existence of the injection g thus shows that that n+ 1 < |A]| as desired. O
Main Problem.

Proof. Suppose that (A; | i € I) are mutually disjoint sets where |A4;| = k; for every i € I, and that
(B; | i € I) are sets where |B;| = \; for each i € I. Since we have |A;| = k; < \; = |B;| , we can
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assume that A; C B; (for every i € I). We show the result by constructing an injective function
that maps | J,.; 4; into [],.; Bi, since we clearly would then have

>n=|Ua| < I8 =TT

iel iel i€l i€l

iel i€l

<

by the definitions of cardinal sum and product, which is the desired result.

First, if I = @ then we have that Y, ; x; = |U;cy Ai| = |@] = 0. The only function with domain
I =@is @ itself so that [[,c; A = |[[;ep Bi| = {@}| = 1. Henceclearly Y-, ; ki =0 < 1=[,c; A
so that the hypothesis is true. So assume in what follows that I # @ so that there is an ig € 1.
Now, for every i € I, since 1 < k; < X\; = | By, it follows from Lemma 9.1.13.1 that 2 < |B;|. Hence,

for each 7 € I we can choose two distinct elements a; and §; from B;, though this requires the Axiom
of Choice. So, for any x € (J;.; Ai, there is an i, € I such that x € A;,. Them, for any i € I, set

T =1y

a; 1# iy and i =149 and z = «;,
a; =14 B 1#i, and i =1ip and = # a,

Bi i # iy and i #ip and z =

o; 1§ F iy and @ # ip and T # o,

and let f(x) = (a; | i € I). Clearly, for any such z and ¢ € I, we have a; = x € A;, = A; if i =i,
so that a; € B; since A; C B;. In the other cases either a; = a; € B; or a; = 8; € B;. Therefore
f(x) ={a; | i €I) €]];,c; Bi so that f is a function from (J,c; A; into [],c; Bi.

We also claim that f is injective. To see this, consider 2 and y in |J;c; A; where = # y, and let
i, and i, be those elements of I such that € A;, and y € A;,. Also let f(z) = (a; |7 € I) and
fly) = (i |i€l).

The following involves a lot of messy case work, so we shall number the cases for easy reference:

1. Case: iy =1i,. Then a;, =z #y =b;, = b;,.

2. Case: iy # iy.

(a) Case: iy # 1o and iy # .
i. Case: a;, = = q,,.
A. Case: b;, =y = «;,. Then, since i, # i, and i, # ip and y = «;,, we have
bi, = Bi, # i, = a,.
B. Case: b;, =y # «a;,. Then, since iy # i, and iy = ig and x = «;,, we have a;, =
a,. Also, since ig # iy and ig = ip and y # «;,, we have by, = B;; # a;, = a;,-
ii. Case: a;, = # .
A. Case: b;, =y = a;,. This is analogous to case 2.a.i.B with a;, = x and b;, =y
reversed so that again a;, 7 b;,.
B. Case: b;, = y # «;,. Then, since i, # i, and i, # ip and y # «;,, we have
biw = O‘iw 75 aim.
(b) Case: iy # ig and iy = ip.
i. Case: a;, = =q,.
A. Case: b;, =y = «;,. Since i, # i, and i, # ip and y = «; , we have b;, = 3;, #
aiz = aix.
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B. Case: b;, =y # «;,. Since iy # i, and i, = ig and ¥ = «;,, we have a;, = a;, #
bi,, -
ii. Case: a;, =2 # .
A. Case: b;, =y = «;,. Since iy # i, and iy, = ig and x # «;,, we have a;, = 3;, #
Oéiy = biy-
B. Case: b;, =y # «;,. Since iy # iy and i, # i and y # «;,, we have b;, = a;, #
(7
(c) Case: iy =1ip and 4, # i9. This is analogous to the previous case 2.b with the roles of i,
and 4, reversed.

(d) Case: iy =1ip and i, = ip. This is impossible since i, # 7.

Thus, in all cases, there is an ¢ € I such that a; # b; so that clearly f(z) = {a; |t € ) # (b |i e I) =
f(y). This shows that f is injective since & and y were arbitrary. This completes the proof as
described above. O

Exercise 9.1.14

Evaluate the cardinality of [T, ..., @ [Answer: 28]

Solution:

Lemma 9.1.14.1. If a and 8 are ordinals and o < (3, then Ngﬁ =288,
Proof. First we have that
2% < Ny’

by property (n) after Lemma 5.6.1 since clearly 2 < X,. We also have

NN? < (2N"‘)NB (again by property (n), and Theorems 5.1.8 and 5.1.9)
= NaRp (by Theorem 5.1.7b)
=2%s (by Corollary 7.2.2 since a < f3)
Hence it follows from the Cantor-Bernstein Theorem that Rg” = 2% as desired. O

Main Problem.

We claim that ’H0<a<w1 al =2%.

Proof. First, let I = {a |0 < a <wi} so that clearly [[o_,.,, @ = [[oe; @ It is trivial to show
that the mapping

a+l 0<a<wy
fla) =
« wo L a<w

for o € wy is a bijection from w; to I, and hence |I| = |wi| = Ry. Also, since a < wq for any « € I,
it follows from Lemma 7.2.1.5 that |a| < Rg. Therefore, we first have

IIe

acl

= H |a] (by the definition of the cardinal product)
acl
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< H Ny (by Exercise 9.1.8 since |a| < Rq for all o € I)

acl
= N(‘)I‘ (by Exercise 9.1.10)
= Ny! (since we have shown that |I| = Ry)
=N, (by Lemma 9.1.14.1)
Now, let J = {a |1 <a <w}. For any a = (az,as,...,0u,0u11,...) = (aa |a € J) € [[ e,
it is easy to show that the function that maps this to b = (0,a2,as,...,au,Gui1,...) € [[4eya is

bijective so that |[],c; | = [[Taes @|- It should also be clear that |J| = |I| = R;. Lastly, we clearly
have 2 < |a| for all @ € J since 1 < @. We then have

R — 9lJl (since |J| = Ny)

= H 2 (by Exercise 9.1.10)
acJ

< H || (by Exercise 9.1.8 since 2 < |¢] for all « € J)
acJ

= (by the definition of the cardinal product)

11«

acJ
= H e (by what was shown above)
acl
It therefore follows from the Cantor-Bernstein Theorem that [Ty qcy, @] = |[[Tae; @ = 2% as

desired.

Exercise 9.1.15

Justify the existence of the function f in the proof of Lemma 9.1.2 in detail by the axioms of set theory.

Solution:
First, for any ¢ € I, we know that |A;| = |A}| so that there exists a bijection from A; onto A;. It was
shown in Exercise 2.3.9a that the set AQA"' exists so that B; = {h; € A;A" | h; is a bijection ; exists

by the Axiom Schema of Comprehension. Clearly then B; # @ for every i € I. Since B; is uniquely
defined for each ¢ € I, it follows from the Axiom Schemas of Replacement and Comprehension that
the set {B; | i € I'} exists, which is a system of nonempty sets. It then follows from Exercise 2.3.9b
that [[,c; B; exists, and by the Axiom of Choice that there is an F' € [[;; B;, i.e. F'=(f;|i¢€I)
in the notation of the proof. Now F' is a function on I in which F(i) = f; € B; for every i € I. By
an application of the Axiom Schema of Comprehension, ran (F') = {f; | i € I} exists, and we have
that f = (Jran (F'), which exists by the Axiom of Union, noting that then f = (J,c; fi as in the
proof.
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