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Chapter 5 Cardinal Numbers

§5.1 Cardinal Arithmetic

Exercise 5.1.1

Prove properties (a)-(n) of cardinal arithmetic stated in the text of this section. These are

(a) κ+ λ = λ+ κ

(b) κ+ (λ+ µ) = (κ+ λ) + µ

(c) κ ≤ κ+ λ

(d) If κ1 ≤ κ2 and λ1 ≤ λ2, then κ1 + λ1 ≤ κ2 + λ2

(e) κ · λ = λ · κ
(f) κ · (λ · µ) = (κ · λ) · µ
(g) κ · (λ+ µ) = κ · λ+ κ · µ
(h) κ ≤ κ · λ if λ > 0

(i) If κ1 ≤ κ2 and λ1 ≤ λ2, then κ1 · λ1 ≤ κ2 · λ2
(j) κ+ κ = 2 · κ
(k) κ+ κ ≤ κ · κ, whenever κ ≥ 2

(l) κ ≤ κλ if λ > 0

(m) λ ≤ κλ if κ > 1

(n) If κ1 ≤ κ2 and λ1 ≤ λ2, then κλ1
1 ≤ κ

λ1
2

Solution:

For solutions (a) through (c) suppose that

κ = |K| λ = |L| µ = |M | ,

where K, L, and M are mutually disjoint sets.

(a)

Proof. It is obvious that
κ+ λ = |K ∪ L| = |L ∪K| = λ+ κ

since K ∪ L = L ∪K and K and L are disjoint.

(b)

Proof. First we note that clearly

K ∪ (L ∪M) = K ∪ L ∪M = (K ∪ L) ∪M .

Now suppose that there is an x ∈ K∩ (L∪M) so that x ∈ K and x ∈ L∪M If x ∈ L then x ∈ K∩L
and if x ∈ M then x ∈ K ∩M , either of which is a contradiction since all three sets are mutually
disjoint. Hence K and L∪M are disjoint. A similar argument show that K ∪L and M are disjoint.
Thus we have the following:

κ+ (λ+ µ) = |K|+ |L ∪M | = |K ∪ (L ∪M)| = |(K ∪ L) ∪M | = |K ∪ L|+ |M | = (κ+ λ) + µ

as desired.
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(c)

Proof. Define the function f : K → K∪L by simply the identity f(k) = k for any k ∈ K. Obviously
this is an injective function so that κ = |K| ≤ |K ∪ L| = κ+ λ.

(d)

Proof. Suppose that

κ1 = |K1| κ2 = |K2| λ1 = |L1| λ2 = |L2|

for sets K1, K2, L1, and L2 where K1 ∩ L1 = ∅ and K2 ∩ L2 = ∅. Also suppose that κ1 ≤ κ2
and λ1 ≤ λ2. Thus |K1| = κ1 ≤ κ2 = |K2| so that there is an injective function f from K1 to
K2. Similarly there is an injective function g : L1 → L2 since |L1| = λ1 ≤ λ2 = |L2|. Now define
h : K1 ∪ L1 → K2 ∪ L2 by

h(x) =

{
f(x) x ∈ K1

g(x) x ∈ L1 .

We show that h is injective so consider x and y in K1 ∪ L1 where x 6= y.

Case: x ∈ K1, y ∈ K1. Then
h(x) = f(x) 6= f(y) = h(y)

since f is injective and x 6= y.

Case: x ∈ L1, y ∈ L1. Then
h(x) = g(x) 6= g(y) = h(y)

since g is injective and x 6= y.

Case: x ∈ K1, y ∈ L1. Then we have h(x) = f(x) ∈ K2 and h(y) = g(y) ∈ L2 so that h(x) 6= h(y)
since K2 and L2 are disjoint. Note that this is the same as the case in which x ∈ L1 and y ∈ K1

since we simply switch x and y.

Since these cases are exhaustive and h(x) 6= h(y) in each this shows that h is injective. Hence we
have demonstrated that

κ1 + λ1 = |K1 ∪ L1| ≤ |K2 ∪ L2| = κ2 + λ2

as desired.

For solutions (e) through (h) suppose that

κ = |A| λ = |B| µ = |C|

for sets A, B, and C.

(e)

Proof. First we show that |A × B| = |B × A| by constructing a bijection f : A × B → B × A. For
(a, b) ∈ A×B define

f(a, b) = (b, a) ∈ B ×A ,

which is clearly a function. Then for (a, b) ∈ A × B and (c, d) ∈ A × B where f(a, b) = f(c, d) we
have

f(a, b) = (b, a) = f(c, d) = (d, c)

so that b = d and a = c. Hence (a, b) = (c, d) so that f is injective. Now consider any (b, a) ∈ B×A
so that clearly f(a, b) = (b, a), noting that (a, b) ∈ A×B. Clearly this shows that f is surjective.
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Hence f is bijective so that
κ · λ = |A×B| = |B ×A| = λ · κ

as required.

(f)

Proof. Similar part (e) above, it is trivial to find a bijection from A × (B × C) to (A × B) × C so
that

κ · (λ · µ) = |A× (B × C)| = |(A×B)× C| = (κ · λ) · µ

as desired.

(g)

Proof. Here suppose additionally that B∩C = ∅. First we note that since B and C are disjoint that
A×B and A×C are also disjoint. Suppose that this is not the case so that there is an (a, b) ∈ A×B
where (a, b) ∈ A × C also. Then clearly b ∈ B and b ∈ C, which is a contradiction since they are
disjoint. Now, it is also trivial to show the equality

A× (B ∪ C) = (A×B) ∪ (A× C) .

Hence we have that

κ · (λ+ µ) = κ · |B ∪ C| = |A× (B ∪ C)| = |(A×B) ∪ (A× C)| = |A×B|+ |A× C| = κ · λ+ κ · µ

as desired.

(h)

Proof. Here suppose that λ > 0 so that B 6= ∅. Here we construct a bijection f : A→ A×B, from
which it follows that

κ = |A| ≤ |A×B| = κ · λ .

Since B 6= ∅ there exists a b ∈ B. So for any a ∈ A define

f(a) = (a, b) ,

which is clearly a function. So for a1, a2 ∈ A where a1 6= a2 we have that

f(a1) = (a1, b) 6= (a2, b) = f(a2)

so that f is injective.

(i)

Proof. Suppose that

κ1 = |A1| κ2 = |A2| λ1 = |B1| λ2 = |B2|

for sets A1, A2, B1, and B2 where κ1 = |A1| ≤ |A2| = κ2 and λ1 = |B1| ≤ |B2| = λ2. Hence there
is an injective function f : A1 → A2 and injective function g : B1 → B2. We shall construct an
injective function h : A1 ×B1 → A2 ×B2 so that it immediately follows that

κ1 · λ1 = |A1 ×B1| ≤ |A2 ×B2| = κ2 · λ2
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as required. So for (a, b) ∈ A1 ×B1 define

h(a, b) = (f(a), g(b))

Suppose then (a, b) ∈ A1 ×B1 and (c, d) ∈ A1 ×B1 where (a, b) 6= (c, d). If a 6= c then f(a) 6= f(c)
since f is injective so that

h(a, b) = (f(a), g(b)) 6= (f(c), g(d)) = h(c, d)

Similarly if b 6= d then g(b) 6= g(d) since g is injective. Hence again

h(a, b) = (f(a), g(b)) 6= (f(c), g(d)) = h(c, d)

Thus in all cases h(a, b) 6= h(c, d) so that h is injective.

(j) This is adequately proven in the text.

For solutions (k) through (m) suppose that

κ = |A| λ = |B|

for sets A and B.

(k)

Proof. Suppose here that κ ≥ 2. Then 2 ≤ κ and κ ≤ κ so that by property (i) we have

2 · κ ≤ κ · κ .

Then by property (j) we have

κ+ κ = 2 · κ ≤ κ · κ

as desired.

(l)

Proof. Here suppose that λ = |B| > 0 so that B 6= ∅. Hence there exists a b ∈ B. We shall
construct an injective f : A→ AB , from which it follows that

κ = |A| ≤ |AB | = κλ .

So for any a ∈ A define f(a) = g where g : B → A is a function defined by g(b) = a for all b ∈ B,
noting that g 6= ∅ since B 6= ∅.

Now consider any a1, a2 ∈ A where a1 6= a2 so that for any b ∈ B we have

f(a1)(b) = a1 6= a2 = f(a2)(b) .

From this it follows that f(a1) 6= f(a2) so that f is injective.

(m)

Proof. Here suppose that κ = |A| > 1 so that there are a1, a2 ∈ A where a1 6= a2. We shall construct
an injective function f : B → AB so that

λ = |B| ≤ |AB | = κλ .
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So for any b ∈ B define f(b) = g where g : B → A is a function defined by

g(c) =

{
a1 c = b

a2 c 6= b

for c ∈ B. Now suppose that b1, b2 ∈ B where b1 6= b2. We then have

f(b1)(b1) = a1 6= a2 = f(b2)(b1)

since b1 6= b2. From this it follows that f(b1) 6= f(b2) so that f is injective.

(n)

Proof. Suppose that

κ1 = |A1| κ2 = |A2| λ1 = |B1| λ2 = |B2|

for sets A1, A2, B1, and B2 where κ1 = |A1| ≤ |A2| = κ2 and λ1 = |B1| ≤ |B2| = λ2.

The theorem as presented in the text is actually not true in full generality. As a counterexample
suppose that A1 = A2 = B1 = ∅ so that κ1 = κ2 = λ1 = 0 and B2 = 1 so that λ2 = 1. Then
certainly the hypotheses above are true but we also have

κλ1
1 = 00 = 1 > 0 = 01 = κλ2

2

where we have used the results of Exercises 5.1.2 and 5.1.3.

However, if we add the restriction that κ2 > 0 then it becomes true. To prove this first note that
this implies that A2 6= ∅ so that there is an a2 ∈ A2. Also there is an injective function f : A1 → A2

and an injective function g : B1 → B2. We shall construct an injective F : AB1
1 → AB2

2 , from which
it follows that

κλ1
1 = |AB1

1 | ≤ |A
B2
2 | = κλ2

2 .

So for any h1 ∈ AB1
1 define F (h1) = h2 where h2 ∈ AB2

2 is defined by

h2(b) =

{
f(h1(g−1(b))) b ∈ ran (h1)

a2 b /∈ ran (h1)

for any b ∈ B2, noting that g−1 is a function on ran (h1) since g is injective. Clearly F is a function
but now we show that it is injective.

So consider any h1, h2 ∈ AB1
1 where h1 6= h2. Then there is a b1 ∈ B1 such that h1(b1) 6= h2(b1). So

let b2 = g(b1) so that clearly b2 ∈ ran (g) and b1 = g−1(b2). Hence we have

F (h1)(b2) = f(h1(g−1(b2))) = f(h1(b1)) 6= f(h2(b1)) = f(h2(g−1(b2))) = F (h2)(b2)

since h1(b1) 6= h2(b1) and f is injective. It thus follows that F (h1) 6= F (h2) so that we have shown
that F is injective.

Exercise 5.1.2

Show that κ0 = 1 and κ1 = κ for all κ.
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Solution:

Proof. Suppose that κ = |A| for a set A.

We claim that A∅ = {∅} = 1 so that clearly

κ0 = |A∅| = |1| = 1 .

First consider any f ∈ A∅. Suppose that f 6= ∅ so that there is a (b, a) ∈ f ⊆ ∅ × A. But then
b ∈ ∅, which is a contradiction. Hence f = ∅. So if there are any f ∈ A∅ then f = ∅ but are there
any f ∈ A∅? Clearly the empty set is a function from ∅ to A since it is vacuously true that for
every b ∈ ∅ there is a unique a ∈ A such that (b, a) ∈ ∅. Hence ∅ ∈ A∅ so that A∅ = {∅} = 1.

We also claim that |A1| = |A| so that

κ1 = |A1| = |A| = κ .

To this end for any f ∈ A1 define F (f) = f(∅), noting that 1 = {∅}, so that clearly F : A1 → A.
Now consider any f, g ∈ A1 where f 6= g. Then it has to be that

F (f) = f(∅) 6= g(∅) = F (g)

so that F is injective. Now consider any a ∈ A and define f ∈ A1 by f(∅) = a. Then clearly

F (f) = f(∅) = a

so that F is surjective. Hence we’ve shown that F is bijective.

Exercise 5.1.3

Show that 1κ = 1 for all κ and 0κ = 0 for all κ > 0.

Solution:

Proof. Suppose that κ = |A| for a set A.

Note first that if κ = 0 then by Exercise 5.1.2 it follows that

1κ = 10 = 1 .

In the case where κ > 0 we claim that there is a unique f ∈ 1A so that clearly then

1κ = |1A| = 1 .

For existence define f : A → 1 by f(x) = ∅ for all x ∈ A so that clearly f ∈ 1A. For uniqueness
consider any f1, f2 ∈ 1A. Since 1 = {∅} it has to be that f1(x) = f2(x) = ∅ for all x ∈ A. Hence
f1 = f2.

Now suppose also that κ > 0 so that A 6= ∅. Hence there is an a ∈ A. We claim that in this case
that ∅A = ∅ so that

0κ = |∅A| = |∅| = 0 .

So suppose that ∅A 6= ∅ so that there is an f ∈ ∅A. Then it’s true that for every a ∈ A there is a
unique b ∈ ∅ such that f(a) = b. But since there is an a ∈ A this implies that there is also a b ∈ ∅,
which is a contradiction. Hence there can be no f ∈ ∅A so that ∅A = ∅.
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Exercise 5.1.4

Prove that κκ ≤ 2κ·κ.

Solution:

Proof. Suppose that κ = |A| for a set A. Then we construct an injective F : AA → 2A×A so that

κκ = |AA| ≤ |2A×A| = |2||A×A| = 2κ·κ .

So for any f ∈ AA define F (f) = g where g ∈ 2A×A is defined by

g(a1, a2) =

{
0 f(a1) 6= a2

1 f(a1) = a2

for (a1, a2) ∈ A × A. To show that F is injective consider any f, g ∈ AA where f 6= g. Then there
is an a ∈ A such that f(a) 6= g(a). Now let a1 = f(a) and a2 = g(a) so that

f(a) = a1 6= a2 = g(a) .

Since f(a) = a1 it follows by definition that F (f)(a, a1) = 1. Similarly since g(a) = a2 6= a1 it
follows that F (g)(a, a1) = 0. Hence we have

F (f)(a, a1) = 1 6= 0 = F (g)(a, a1)

so that clearly F (f) 6= F (g). Thus F is injective.

Exercise 5.1.5

If |A| ≤ |B| and if A 6= ∅, then there is a mapping of B onto A. We later show, with the help of the
Axiom of Choice, that the converse is also true: If there is a mapping of B onto A, then |A| ≤ |B|.

Solution:

Proof. Suppose that |A| ≤ |B| for sets A and B where A 6= ∅. Then there is an a ∈ A. There is
also an injective f : A→ B so that f−1 is a function from ran (f)→ A. So let g be a mapping from
B to A defined by

g(b) =

{
f−1(b) b ∈ ran (f)

a b /∈ ran (f) .

To show that g is onto consider any x ∈ A and let b = f(a). Thus b ∈ ran (f) so that

g(b) = f−1(b) = f−1(f(a)) = a .

Hence g is onto since a was arbitrary.

Exercise 5.1.6

If there is a mapping of B onto A, then 2|A| ≤ 2|B|. [Hint: Given g mapping B onto A, let f(X) = g−1[X],
for all X ⊆ A.]
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Solution:

Proof. Suppose that f is a mapping from B onto A. We shall construct an injective F : 2A → 2B

so that
2|A| = |2||A| = |2A| ≤ |2B | = |2||B| = 2|B| .

So for any g ∈ 2A let F (g) = h where h ∈ 2B is defined by

h(b) = g(f(b))

for b ∈ B. To show that F is injective consider any g1, g2 ∈ 2A where g1 6= g2. Then there is an
a ∈ A such that g1(a) 6= g2(a). Since f : B → A is onto there is a b ∈ B such that f(b) = a. Thus
we have

F (g1)(b) = g1(f(b)) = g1(a) 6= g2(a) = g2(f(b)) = F (g2)(b)

so that F (g1) 6= F (g2). Thus F is injective.

Exercise 5.1.7

Use Cantor’s Theorem to show that “the set of all sets” does not exist.

Solution:

Proof. Suppose that X is the set of all sets. Consider any Z ∈ P (X). Since clearly Z is a set
we have Z ∈ X. Thus since Z was arbitrary it follows that P (X) ⊆ X so that by Exercise 4.1.3
|P (X) | ≤ |X|. However, this contradicts Cantor’s Theorem, according to which |P (X) | > |X|.
Thus X cannot be the set of all sets.

Exercise 5.1.8

Let X be a set and let f be a one-to-one mapping of X into itself such that f [X] ⊂ X. Then X is
infinite.

Solution:

Proof. For a set X suppose that f : X → X is injective. Also suppose that ran (f) is a proper
subset of X.

Now suppose that X is finite so that there is an n ∈N such that there is a bijective g : n→ X. We
also note that clearly g−1 : X → n is also a bijection. Now define a function h : n→ n by

h(k) = (g−1 ◦ f ◦ g)(k) = g−1(f(g(k))

for any k ∈ n. Since g, f , and g−1 are all injective it follows from Exercise 2.3.5 that h is also
injective.

We now claim that ran (h) is proper subset of n. First we note that for any m ∈ n we have

g(h(m)) = g(g−1(f(g(m)))) = f(g(m))

since g is a function. Now, since ran (f) ⊂ X there is an x ∈ X such that x /∈ ran (f). So let
k = g−1(x) so that g(k) = x. Now suppose that there is an m ∈ n such that h(m) = k. Then per
the above we have

f(g(m)) = g(h(m)) = g(k) = x ,
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which is impossible since x /∈ ran (f). So it must be that there is no such m so that k /∈ ran (h)
Hence since k ∈ n it follows that ran (g) ⊂ n.

Now clearly h is a surjective mapping from n to ran (h). But since h is also injective it is thus a
bijection from n to ran (n). However, according to Lemma 4.2.2 there is no bijective mapping from
n to ran (n) since ran (h) ⊂ n. We have thus arrived at a contradiction so that, if the hypotheses
hold, then X cannot be finite. Hence by definition X is infinite.

Exercise 5.1.9

Every countable set is Dedekind infinite.

Solution:

Lemma 5.1.9.1. If sets X and Y are equipotent (i.e. |X| = |Y |) and Y is Dedekind infinite then
X is also Dedekind infinite.

Proof. Since X and Y are equipotent there is a bijective f : X → Y so that f−1 is also bijective.
Also since Y is Dedekind infinite there is a Z ⊂ Y such that there is a bijective g : Y → Z so that
g−1 is also bijective. So since Z ⊂ Y there is a y ∈ Y such that y /∈ Z. So let S = X −

{
f−1(y)

}
.

Clearly since f−1(y) ∈ X it follows that S ⊂ X since f−1(y) /∈ S. Now define h : X → S by

h(x) = (f−1 ◦ g ◦ f)(x) = f−1(g(f(x))))

for x ∈ X. Since f is a function this implies that

f(h(x)) = f(f−1(g(f(x)))) = g(f(x)) .

Now suppose for a moment that there is an x ∈ X such that h(x) = f−1(y). Then

g(f(x)) = f(h(x)) = f(f−1(y)) = y ,

which is impossible since y /∈ Z but ran (g) ⊆ Z. Hence there is no such x so that h really is a map
from X to S (as opposed to X to X).

Now, since f−1, g, and f are all injective it follows from Exercise 2.3.5 that h is injective as well.
Then consider any s ∈ S and let x = f−1(g−1(f(s))), noting that g−1(f(s)) exists since s 6= f−1(y).
Then we have

h(x) = f−1(g(f(f−1(g−1(f(s))))))) = f−1(g(g−1(f(s)))) = f−1(f(s)) = s

so that h is surjective since s was arbitrary. Hence h is a bijective map from X to S, and since
S ⊂ X this means that X is Dedekind infinite.

Lemma 5.1.9.2. N is Dedekind infinite.

Proof. Let N = N−{0} so that clearly N is proper subset of N . Then we define the map f : N → N
by

f(n) = n+ 1

for n ∈N . Consider any n,m ∈N where n 6= m. Then clearly

n 6= m

n+ 1 6= m+ 1
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f(n) 6= f(m)

so that f is injective. Now consider any n ∈ N so that clearly f(n − 1) = (n − 1) + 1 = n, noting
that since n 6= 0 we have n ≥ 1 so that n−1 ≥ 0. Hence n−1 ∈N . This shows that f is surjective.
Hence f is a bijection from N onto a proper subset N so that by definition N is Dedekind infinite.

Main Problem.

Proof. Suppose that X is a countable set. Then by definition X is equipotent to N . Hence since
N is Dedekind infinite (Lemma 5.1.9.2) it follows that X is as well by Lemma 5.1.9.1.

Exercise 5.1.10

If X contains a countable subset, then X is Dedekind infinite.

Solution:

Proof. Suppose that X is a set with a countable subset Y . Then by Exercise 5.1.9 Y is Dedekind
infinite so that there is a Z ⊂ Y ⊆ X such that there is a bijective f : Y → Z. So define the
following g : X → X by

g(x) =

{
f(x) x ∈ Y
x x /∈ Y

for any x ∈ X. Now since Z ⊂ Y there is a y ∈ Y such that y /∈ Z, noting that since Y ⊆ X, y ∈ X.

First we claim that y /∈ ran (g). So suppose that it is so that there is an x ∈ X such that g(x) = y. If
x ∈ Y then by definition g(x) = f(x) = y, but this is a contradiction since f : Y → Z but y /∈ Z. On
the other hand if x /∈ Y then we have g(x) = x = y, which is also a contradiction since y = x ∈ Y .
Since a contradiction follows in either case it must be that there is no such x so that y /∈ ran (g).
Hence ran (g) ⊂ X.

Clearly g is a surjective map from X to ran (g) so we now show that it is injective. So consider any
x1, x2 ∈ X where x1 6= x2.

Case: x1 ∈ Y and x2 ∈ Y . Then

g(x1) = f(x1) 6= f(x2) = g(x2)

since f is injective.

Case: x1 /∈ Y and x2 /∈ Y . Then

g(x1) = x1 6= x2 = g(x2) .

Case: x1 ∈ Y and x2 /∈ Y . Then g(x1) = f(x1) ∈ Z but g(x2) = x2 /∈ Y so that x2 /∈ Z either since
Z ⊂ Y . Hence f(x1) 6= x2 so that

g(x1) = f(x1) 6= x2 = g(x2) .

Thus in all cases g(x1) 6= g(x2) so that g is injective since x1 and x2 were arbitrary.

Therefore we have shown that g is a bijective map from X to ran (g) ⊂ X so that X is Dedekind
infinite by definition.
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Exercise 5.1.11

If X is Dedekind infinite, then it contains a countable subset. [Hint: Let x ∈ X − f [X]; define x0 = x,
x1 = f(x0), . . . , xn+1 = f(xn), . . . . The set {xn | n ∈N} is countable.]

Solution:

Proof. Suppose that X is a Dedekind infinite set. Then there is a Y ⊂ X such that there is a
bijective f : X → Y . Since Y ⊂ X there is an x ∈ X such that x /∈ Y . So first define x0 = x and
then for n ∈N define xn+1 = f(xn).

We claim that xn 6= xm for any n,m ∈N where n 6= m, from which it clearly follows that

Z = {xn | n ∈N}

is a countable set. So consider any n,m ∈ N where n 6= m Without loss of generality we can
assume that n < m. Suppose that xn = xm. We now show by induction that xn−k = xm−k for all
n ≥ k ≥ 0. If k = 0 then we clearly have

xn−k = xn−0 = xn = xm = xm−0 = xm−k .

Now suppose that xn−k = xm−k. We then have

f(xn−(k+1)) = f(xn−k−1) = xn−k = xm−k = f(xm−k−1) = f(xm−(k+1))

Since f is injective this implies that xn−(k+1) = xm−(k+1) so that inductive proof is complete. So
since this holds for k = n we have that

x0 = xn−n = xm−n = f(xm−n−1) ,

Noting that m− n− 1 ≥ 0 since m ≥ n+ 1. But x0 = x /∈ Y and f(xm−n−1) ∈ Y since f : X → Y
so that we have a contradiction. So it must be that xn 6= xm. Hence Z is countable. Since also
clearly Z ⊆ X the proof is complete.

Exercise 5.1.12

If A and B are Dedekind infinite, the A ∪B is Dedekind infinite. [Hint: Use Exercise 1.11.]

Solution:

Proof. Suppose that sets A and B are both Dedekind infinite. Then A contains a countable subset
C by Exercise 5.1.11. Clearly C ⊆ A ∪ B so that C is a countable subset of A ∪ B. Hence by
Exercise 5.1.10 A ∪B is Dedekind infinite.

Exercise 5.1.13

If A and B are Dedekind infinite, then A×B is Dedekind infinite. [Hint: Use Exercise 1.11.]

Solution:

Proof. Suppose that A and B are both Dedekind infinite. Then A contains a countable subset C
by Exercise 5.1.11. Also since B is Dedekind infinite it is not finite by Exercise 5.1.8. Hence B 6= ∅
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so that there is a b ∈ B. Clearly then the set

D = {(a, b) | a ∈ C}

is a countable subset of A×B so that A×B is Dedekind infinite by Exercise 5.1.10.

Exercise 5.1.14

If A is infinite, then P (P (A)) is Dedekind infinite. [Hint: For each n ∈N , let Sn = {X ⊂ A | |X| = n}.
The set {Sn | n ∈N} is a countable subset of P (P (A)).]

Solution:

Lemma 5.1.14.1. If A is an infinite set then for any n ∈N there is a B ⊆ A such that |B| = n.

Proof. Suppose that A is an infinite set and consider any n ∈N . Then ℵ0 ≤ |A| so that there is an
injective f : N → A. Now n ∈N but also n ⊆N . So define the set

B = {f(k) | k ∈ n} .

Clearly B ⊆ A and we show that |B| = n by defining a mapping g : n→ B by

g(k) = f(k)

for k ∈ n. Since f is injective clearly g is. Now consider any b ∈ B. By definition then there is a
k ∈ n such that f(k) = b. Hence g(k) = f(k) = b so that g is surjective. Hence since g is bijective
|B| = n as desired.

Main Problem.

Proof. Suppose that A is infinite. Then for any n ∈N define

Sn = {X ∈ P (A) | |X| = n} ,

noting that Sn 6= ∅ by Lemma 5.1.14.1. We also note that for n,m ∈ N where n 6= m we have
Sn 6= Sm since for any X ∈ Sn and Y ∈ Sm we have

|X| = n 6= m = |Y |

so that X 6= Y . From this it follows that

S = {Sn | n ∈N}

is a countable set. Also, for an Sn ∈ S we have that each X ∈ Sn is in P (A) so that Sn ⊆ P (A).
Hence each Sn ∈ P (P (A)). Thus S ⊆ P (P (A)). Since S is countable it then follows that P (P (A))
is Dedekind infinite by Exercise 5.1.10.

§5.2 The Cardinality of the Continuum

Exercise 5.2.1

Prove that the set of all finite sets of reals has cardinality 2ℵ0 . We remark here that the set of all
countable sets of reals also has cardinality 2ℵ0 , but the proof of this requires the Axiom of Choice.
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Solution:

Proof. Let F denote the set of all finite sets of reals. First we construct an injective f : F → RN

So consider any A ∈ F . Then |A| = n for an n ∈ N so that there is a finite sequence 〈ak | k ∈ n〉
where ran (a) = A. Now we define an infinite sequence of reals â ∈ RN by

âk =

{
ak k ∈ n (i.e. 0 ≤ k < n)

a0 k /∈ n (i.e. k ≥ n)

so that clearly we have ran (â) = A as well. Note that this only works if A 6= ∅ since otherwise
there is no a0. In the case where A = ∅ we set âk = k for k ∈N so that ran (â) = N . In any case
we set f(A) = â.

Now we claim that f is injective. So consider any A,B ∈ F where A 6= B. If one of them is the
empty set, say A, then since B is finite m = max(dmax(B)e + 1, 0) exists so that clearly m /∈ B.
Hence m /∈ ran (f(B)) = B. However m ∈ ran (f(A)) = N since m ∈ N . It thus follows that
ran (f(B)) 6= ran (f(A)) so that f(A) 6= f(B). On the other hand if neither A nor B is the empty
set (but still A 6= B) then there is an a ∈ A where a /∈ B or vice versa. Without loss of generality
we need only consider the first case. Clearly then a ∈ ran (f(A)) = A but a /∈ ran (f(B)) = B so
that again f(A) 6= f(B). Hence in all cases we’ve shown that f is injective.

Thus we have that
|F | ≤ |RN | = 2ℵ0 ,

where the last equality was shown in Theorem 5.2.3d. Now define

E = {{x} | x ∈ R}

so that clearly E ⊆ F and |E| = |R|. Hence we have

2ℵ0 = |R| = |E| ≤ |F |

by Exercise 4.1.3. Thus by the Cantor-Bernstein Theorem |F | = 2ℵ0 as required.

Exercise 5.2.2

A real number x is algebraic if it is a solution of some equation

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0 ,

where a0, . . . , an are integers. If x is not algebraic, it is called transcendental. Show that the set of
algebraic numbers is countable and hence the set of all transcendental numbers has cardinality 2ℵ0 .

Solution:

I did not prove this here as I have already done so when studying Rudin’s Principles of Mathematical
Analysis, Exercise 2.2.

Exercise 5.2.3

If a linearly ordered set P has a countable dense subset, then |P | ≤ 2ℵ0 .
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Solution:

Note that the countable dense subset is dense in P and not just in itself as explained in the errata
list.

Proof. Suppose that (P,<) is our linearly ordered set and R is the countable dense subset of P . We
construct an f : P → P (R) by defining

f(x) = {y ∈ R | y < x}

for any x ∈ P . Clearly for such x we have that f(x) ⊆ R so that f(x) ∈ P (R).

Now we claim that f is injective. So consider any x, y ∈ P such that x 6= y. Without loss of
generality we can assume that x < y. Since R is dense in P there is a z ∈ R where x < z < y.
From this it follows that z ∈ f(y) but that z /∈ f(x) since it is not true that z < x. Hence clearly
f(x) 6= f(y) so that we have shown that f is injective.

Thus we have
|P | ≤ |P (R) | = 2|R| = 2ℵ0 ,

where we have used Theorem 5.1.9.

Exercise 5.2.4

The set of all closed subsets of reals has cardinality 2ℵ0 .

Solution:

Proof. Let C denote all the closed subsets of R and O the open sets. We form a mapping f : C → O
defined by

f(A) = R−A

for A ∈ C. Clearly by definition f(A) is open for every A ∈ C since A is closed.

Now consider any A,B ∈ C where A 6= B. Then there is an a ∈ A such that a /∈ B or vice versa.
Without loss of generality we can assume the former. Then since a ∈ A it follows that a /∈ R − A.
But also since a /∈ B (but a ∈ R) we have that a ∈ R−B. Thus

f(A) = R−A 6= R−B = f(B)

so that f is injective.

Now consider any B ∈ O and let A = R−B.

f(A) = R−A = R− (R−B) = B

so that f is also surjective. Hence we have that

|C| = |O| = 2ℵ0

by Theorem 2.6b.

Exercise 5.2.5

Show that, for n > 0, n · 22ℵ0 = ℵ0 · 22
ℵ0

= 2ℵ0 · 22ℵ0 = 22
ℵ0 · 22ℵ0 =

(
22
ℵ0
)n

=
(

22
ℵ0
)ℵ0

=
(

22
ℵ0
)2ℵ0

=

22
ℵ0

.
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Solution:

Lemma 5.2.5.1. For any cardinal number κ

1 · κ = κ .

Proof. Suppose that κ = |A| for a set A. We define f : A→ 1×A by

f(a) = (0, a)

for a ∈ A, noting that 1 = {0}. Clearly by simple inspection this is bijective so that

1 · κ = |1×A| = |A| = κ

as desired.

Main Problem.

Proof. First we note that clearly since ℵ0 ≤ 2ℵ0 we have

2ℵ0 ≤ 22
ℵ0

by property (n) in section 5.1. So consider any cardinal n ∈N where n > 0 so that 1 ≤ n. We then
have

22
ℵ0

= 1 · 22
ℵ0

(by Lemma 5.2.5.1)

≤ n · 22
ℵ0 ≤ ℵ0 · 22

ℵ0 ≤ 2ℵ0 · 22
ℵ0 ≤ 22

ℵ0 · 22
ℵ0

(repeated property (i) of 5.1)

=
(

22
ℵ0
)2

(by property (o) of 5.1)

= 22·2
ℵ0

(by Theorem 5.1.7b)

= 22
ℵ0
. (by Theorem 5.2.2b)

We also have

22
ℵ0

=
(

22
ℵ0
)1

(by Exercise 5.1.2)

≤
(

22
ℵ0
)n
≤
(

22
ℵ0
)ℵ0
≤
(

22
ℵ0
)2ℵ0

(repeated property (n) of 5.1)

= 22
ℵ0 ·2ℵ0 (by Theorem 5.1.7b)

= 22
ℵ0

(by Theorem 5.2.2b)

Clearly these together with the Cantor-Bernstein Theorem shows the desired result.

Exercise 5.2.6

The cardinality of the set of all discontinuous functions is 22
ℵ0

. [Hint: Using Exercise 2.5, show that∣∣∣RR − C
∣∣∣ = 22

ℵ0
whenever |C| ≤ 2ℵ0 .]

Solution:
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Lemma 5.2.6.1. If B is a set with |B| = 22
ℵ0

and A is a subset of B with |A| ≤ 2ℵ0 then

|B −A| = 22
ℵ0

.

Proof. The proof is analogous to that of Theorem 5.2.4. So suppose that C is a set with |C| = 22
ℵ0

.
Let B = C × C so that by Exercise 5.2.5 we have

|B| = |C × C| = 22
ℵ0 · 22

ℵ0
= 22

ℵ0
.

Also suppose that A ⊆ B where |A| = 2ℵ0 . Now define a set

P = {x ∈ C | ∃y ∈ C((x, y) ∈ A)} .

Clearly then |P | ≤ |A| = 2ℵ0 . Since also |C| = 22
ℵ0

but P ⊆ C it follows that there is an x0 ∈ C
where x0 /∈ P . If we let X = {x0}×C then any (x, y) ∈ X is not in A so that (x, y) ∈ C ×C −A =
B −A. Hence X ⊆ B −A but also since there is an obvious bijection between X and C we have

22
ℵ0

= |C| = |X| ≤ |B −A| .

Since also clearly B −A ⊆ B we also have that

|B −A| ≤ |B| = 22
ℵ0
.

Hence by the Cantor-Bernstein Theorem |B −A| = 22
ℵ0

as desired.

Main Problem.

Proof. By Lemma 5.2.7 |RR| = 22
ℵ0

. Also by Theorem 5.2.6a the set C of all continuous f : R→ R
has cardinality of 2ℵ0 . Thus clearly the set of all discontinuous functions from R→ R is simply

D = RR − C .

But then by Lemma 5.2.6.1 above we have that

|D| = |RR| = 22
ℵ0

as desired.

Exercise 5.2.7

Construct a one-to-one mapping of R × R onto R. [Hint: If a, b ∈ [0, 1] have decimal expansions
0.a1a2a3 · · · and 0.b1b2b3 · · · , map the ordered pair (a, b) onto 0.a1b1a2b2a3b3 · · · ∈ [0, 1]. Make adjust-
ments to avoid sequences where the digit 9 appears from some place onward.]

Solution:

Skipping this problem due to the obviousness of it in principle but the fact that the details are
tedious, and I have proved similar problems when studying Rudin’s Principles of Mathematical
Analysis.
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Chapter 6 Ordinal Numbers

§6.1 Well-Ordered Sets

Exercise 6.1.1

Give an example of a linearly ordered set (L,<) and an initial segment S of L which is not of the form
{x | x < a}, for any a ∈ L.

Solution:

We claim that L = R and S = {x ∈ L | x ≤ 0} with the usual order meet the criteria.

Proof. First, clearly L = R is a linearly ordered set. So consider any a ∈ S and any x < a so that
we have

x < a ≤ 0 .

Hence x ∈ S also so that by definition S is an initial segment of R. Now suppose that S does have
the form

S = {x ∈ L | x < a}

for some a ∈ L. Since 0 ≤ 0 clearly 0 ∈ S by the original definition so that by the above 0 < a. But
now consider a/2, which is clearly in L = R. By the above a/2 < a since a > 0 so a/2 ∈ S but we
also have 0 < a/2 (hence it is not true that a/2 ≤ 0) since 0 < a so that by the original definition
a/2 /∈ S. Since we have a contradiction it must be that S cannot be expressed in such a form.

Exercise 6.1.2

ω + 1 is not isomorphic to ω (in the well-ordering by ∈).

Solution:

Proof. Since ω = N and ω + 1 = ω ∪ {ω} clearly ω is a proper subset of ω + 1 (since ω /∈ ω but
ω ∈ ω + 1). Now consider any a ∈ ω = N and any x < a. Then clearly also x ∈N so x ∈ ω. Thus
ω is an initial segment of ω + 1. Then, since it has already been shown that both ω and ω + 1 are
well-ordered sets, it follows from Corollary 6.1.5a that they cannot be isomorphic.

Exercise 6.1.3

There exist 2ℵ0 well-orderings of the set of natural numbers.

Solution:

Lemma 6.1.3.1. Suppose that A is a subset of N (including A = N). Then every initial segment
of A with the standard ordering is finite.

Proof. Consider any initial segment S of (A,<). Then by Lemma 6.1.2 there is an n ∈ A ⊆N such
that S = {k ∈ A | k < n}. So consider any k ∈ S so that k ∈ A ⊆ N and k < n. Then by the
definition of < we have that k ∈ n. Since k was arbitrary this shows that S ⊆ n so that |S| ≤ n.
From this it clearly follows that S is finite since n is.
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Main Problem.

Proof. Throughout the following let < denote the standard well-ordering on N and let R be the set
of all well-orderings defined on N .

First we construct an injective F : R→NN . So for any ≺∈ R we have that (N , <) and (N ,≺) are
two well-orderings of N . Consider then Theorem 6.1.3. We show that (c) cannot be the case, i.e.
that an initial segment of (N , <) cannot be isomorphic to (N ,≺). So suppose that this is the case
so that f is an isomorphism from an initial segment S of (N , <) to (N ,≺). Then by Lemma 6.1.3.1,
S is finite whereas N is infinite, but since f is a bijection this is impossible since it would imply
that |S| = |N | = ℵ0. Hence it must be that (a) (N , <) is isomorphic to (N ,≺) or (b) the former
is isomorphic to an initial segment of the latter. In either case such an isomorphism f is unique by
Corollary 6.1.5c. So define F (≺) = f , noting that clearly f ∈NN .

Now we show that F is injective by considering two ≺1,≺2∈ R where ≺1 6=≺2. Without loss of
generality we can the assume that there is an (n,m) ∈≺1 where (n,m) /∈≺2. Thus n ≺1 m but
since ≺2 is a linear, strict ordering and ¬(n ≺2 m) it has to be that m ≺2 n since n 6= m. Now let
f1 = F (≺1) and f2 = F (≺2). Since both f1 and f2 are bijective there are k1, l1, k2, l2 ∈N such that

f1(k1) = n f2(k2) = n

f1(l1) = m f2(l2) = m

Since f1 is an isomorphism and f1(k1) = n ≺1 m = f1(l1) it follows that

k1 < l1

and similarly since f2 is an isomorphism and f2(l2) = m ≺2 n = f2(k2) it follows that

l2 < k2 .

Now we claim that either f1(k1) 6= f2(k1) or f1(l1) 6= f2(l1). Either case shows that F (≺1) = f1 6=
f2 = F (≺2) so that F is injective. To this end suppose that f1(k1) = f2(k1) = n = f2(k2). Then
since f2 is injective it follows that k1 = k2. Hence with the above we have

l2 < k2 = k1 < l1

so that m = f2(l2) ≺2 f2(l1) and hence m 6= f2(l1). Thus we have f1(l1) = m 6= f2(l1) so that the
disjunction is shown (since ¬P → Q ≡ P ∨Q) and F is injective.

Hence since F : R→NN is injective we have that

|R| ≤ |NN | = ℵ0ℵ0 = 2ℵ0

by Theorem 5.2.2c.

Now suppose that B is the set of all bijections from N to N . We then construct an injective
G : 2N → B. So for any infinite sequence a ∈ 2N we define an f ∈NN by

f(2n) =

{
2n an = 0

2n+ 1 an = 1
f(2n+ 1) =

{
2n+ 1 an = 0

2n an = 1 .

for n ∈ N , i.e we swap 2n and 2n + 1 if an = 1 and leave them alone if an = 0. We then assign
G(a) = f . It is trivial but tedious to show that f is bijective so that indeed f ∈ B.

Now consider any a, b ∈ 2N where a 6= b and let f = G(a) and g = G(b). Since a 6= b there is an
n ∈ N where an 6= bn. Without loss of generality we can assume that an = 0 6= 1 = bn. Then we
have

f(2n) = 2n 6= 2n+ 1 = g(2n)
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since a1 = 0 but bn = 1. Hence f 6= g so that G is injective, from which it follows that |2N | ≤ |B|.
Lastly we construct an injective H : B → R. So for an f ∈ B define

≺= {(f(n), f(m)) | (n,m) ∈N ×N ∧ n < m}

and set H(f) =≺. Clearly by definition since f is bijective it is an isomorphism from (N , <) to
(N ,≺). This means that (N ,≺) is isomorphic to (N , <) so that clearly ≺ is a well-ordering since
< is. Hence indeed H(f) =≺∈ R.

Now we show that H is injective. So consider f1, f2 ∈ B where ≺1= H(f1) = H(f2) =≺2. Then
f−11 ◦ f2 is an isomorphism from (N ,≺1) to (N ,≺2) But since ≺1=≺2 these are the same well-
ordered set so that it follows from Corollary 6.1.5b that the only isomorphism between them is the
identity iN . Hence f−11 ◦ f2 = iN , from which it follows that f1 = f2. Therefore H is injective so
that |B| ≤ |R|.
Putting this together results in

2ℵ0 = |2N | ≤ |B| ≤ |R| .

It then follows from the Cantor-Bernstein Theorem that |R| = 2ℵ0 as desired.

Exercise 6.1.4

For every infinite subset A of N , (A,<) is isomorphic to (N , <).

Solution:

Proof. Let A be an infinite subset of N . Then (A,<) (where < is the standard well-ordering of N)
is a well-ordering since any B ⊆ A is also a subset of N and therefore has a least element. Hence
by Theorem 6.1.3 either:

1. (A,<) and (N , <) are isomorphic,

2. An initial segment of (A,<) is isomorphic to (N , <), or

3. (A,<) is isomorphic to an initial segment of (N , <)

We show that they must be isomorphic (1) by showing that (2) and (3) lead to contradictions.

Suppose (2), i.e. that an initial segment S of (A,<) is isomorphic to (N , <). Then since A ⊆ N
it follows from Lemma 6.1.3.1 that S is finite. But since this is isomorphic to N it means that
|S| = |N | = ℵ0, which is a contradiction!

Now suppose (3) so that (A,<) is isomorphic to an initial segment S of (N , <). Again Lemma 6.1.3.1
tells us that S is finite whereas A is infinite. But since they are isomorphic this implies that
|S| = |A| = ℵ0, which is again a contradiction!

Hence it has to be that (A,<) and (N , <) are isomorphic.

Exercise 6.1.5

Let (W1, <1) and (W2, <2) be disjoint well-ordered sets, each isomorphic to (N , <). Show that the
sum of the two linearly ordered sets (as defined in Lemma 4.5 in Chapter 4) is a well-ordering, and is
isomorphic to the ordinal number ω + ω = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . .}.
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Solution:

Proof. Suppose that (W,≺) is the sum and associated order as defined in Lemma 4.4.5. By that
lemma ≺ is a linear ordering but we must show that it is also a well-ordering.

First we note that clearly W1 and W2 are both well-orderings since they are both isomorphic to
(N , <). So consider any non-empty subset of A of W = W1∪W2. Let A1 = A∩W1 and A2 = A∩W2

so that clearly they are disjoint since W1 and W2 are and A1 ⊆ W1 and A2 ⊆ W2. Also since A is
not empty either A1 or A2 (or both) are also not empty. If A1 is not empty then since A1 ⊆ W1

and (W1, <1) is a well-ordering there is a least element a ∈ A1. Otherwise if A1 is empty then A2

is not and it has a least element a since it is a non-empty subset of the well-ordered (W2, <2). Now
consider any b ∈ A so that also b ∈W . If b ∈W1 then b ∈ A1 so that A1 is not empty. In this case
since a is the least element of A1 we have a ≤1 b so that by definition a 4 b. On the other hand if
b ∈ W2 then b ∈ A2. If A1 was empty then a is the least element of A2 and b ∈ A2 so that again
a ≤2 b, hence by definition a 4 b. If A1 is not empty then a ∈ A1 ⊆W1 so that by the definition of
the sum (W,≺) we have that a ≺ b since b ∈ W2. Hence also a 4 b. Thus in all cases a 4 b so that
a is the least element of A since b was arbitrary.

Now we show that (W,≺) is isomorphic to (ω + ω,<). First, since (W1, <1) and (W2, <2) are
both isomorphic to (N , <) let f1 : W1 → N and f2 : W2 → N be isomorphisms. Now we define
g : W → ω + ω by

g(w) =

{
f1(w) w ∈W1

ω + f2(w) w ∈W2

for w ∈ W = W1 ∪W2, noting that g is well defined since W1 and W2 are disjoint. Clearly since
ran (f1) = ran (f2) = N we have that g(w) ∈ ω + ω for all w ∈W .

Consider any k ∈ ω + ω so that k ∈ N or k = ω + n for some n ∈ N . In the former case let
w = f−11 (k), which exists since f1 is bijective. Thus w ∈W1 so that by definition g(w) = f1(w) = k.
In the latter case let w = f−12 (n), which exists since f2 is bijective. Thus w ∈ W2 so that by
definition g(w) = ω + f2(w) = ω + n = k. This shows that g is surjective.

Now we show that g is an increasing function. So consider any w1, w2 ∈W where w1 ≺ w2.

Case: w1, w2 ∈ W1. Then since w1 ≺ w2 we have that w1 <1 w2. It then follows that g(w1) =
f(w1) < f(w2) = g(w2) since f1 is an isomorphism.

Case: w1, w2 ∈ W2. Then since w1 ≺ w2 we have that w1 <2 w2. It then follows that f2(w1) <
f2(w2) since f2 is an isomorphism. Hence we clearly then have g(w1) = ω + f2(w1) < ω + f2(w2) =
g(w2).

Case: w1 ∈ W1 and w2 ∈ W2. Then we have that g(w1) = f1(w1) ∈ N and g(w2) = ω + f2(w2) so
that clearly g(w1) < ω ≤ g(w2) since f2(w2) ∈N .

Case: w2 ∈ W1 and w1 ∈ W2. If this were the case then by the definition of ≺ we would have that
w2 ≺ w1, which contradicts the established hypothesis that w1 ≺ w2. Hence this case is impossible.

Hence in all cases g(w1) < g(w2) so that g is increasing. Therefore it is also injective and an
isomorphism (since we’ve shown that it is surjective as well). Thus we’ve shown that W is isomorphic
to ω + ω as desired.

Exercise 6.1.6

Show that the lexicographic product (N ×N , <) (see Lemma 4.6 in Chapter 4) is isomorphic to ω · ω.
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Solution:

Proof. Suppose that ≺ is the lexicographic ordering of N ×N . Now we define f : N ×N → ω · ω
by

f(n,m) = ω · n+m

for any (n,m) ∈N ×N . Clearly f(n,m) ∈ ω × ω.

First we show that f is surjective. So consider any k ∈ ω · ω so that there are n,m ∈ N where
k = ω · n+m. Then we clearly have that f(n,m) = ω · n+m = k. Since clearly (n,m) ∈N ×N it
follows that f is surjective.

Now we show that f is an increasing function. To this end consider any (n1,m1), (n2,m2) ∈N ×N
where (n1,m1) ≺ (n2,m2).

Case: n1 = n2. Then since (n1,m1) ≺ (n2,m2) it must be that m1 < m2. Hence we have that
f(n1,m1) = ω · n1 +m1 = ω · n2 +m1 < ω · n2 +m2 = f(n2,m2).

Case: n1 6= n2. Then since (n1,m1) ≺ (n2,m2) it must be that n1 < n2. Hence we have that
f(n1,m1) = ω · n1 +m1 < ω · n2 ≤ ω · n2 +m2 = f(n2,m2).

Thus in all cases f(n1,m1) < f(n2,m2) so that f is increasing. It then follows that f is injective
and isomorphic. Hence (N ×N ,≺) is isomorphic to ω · ω.

Exercise 6.1.7

Let (W,<) be a well-ordered set, and let a /∈W . Extend < to W ′ = W ∪ {a} by making a greater than
all x ∈W . Then W has a smaller order type than W ′.

Solution:

This problem is looking ahead to future sections where order types and how to compare them are
defined.

Proof. Suppose that α is the order type of W and that f : W → α is the isomorphism. Now let
β = S(α) = α ∪ {α}. We then claim that W ′ is isomorphic to β. So define a g : W ′ → β by

g(w) =

{
f(w) w ∈W
α w /∈W

for w ∈W ′. Clearly we have that g(w) ∈ β for any w ∈W ′.
Now consider any x ∈ β. If x = α then set w = a /∈W so that g(w) = α = x. If x 6= α then x ∈ α so
set w = f−1(x) so that then w ∈ W . We then have that g(w) = f(w) = f(f−1(x)) = x. Therefore
g is surjective.

Now consider any w1, w2 ∈W ′ where w1 < w2

Case: w1, w2 ∈ W . Then since f is an isomorphism and w1 < w2 we have that g(w1) = f(w1) <
f(w2) = g(w2).

Case: w1 ∈ W and w2 = a. Then g(w1) = f(w1) ∈ α and w2 /∈ W so that g(w2) = α. Hence
g(w1) ∈ g(w2) so that by the definition of < we have that g(w1) < g(w2).

Note that these cases are exhaustive since it can’t be that w1 = w2 = α since w1 < w2 (and therefore
w1 6= w2). It also cannot be that w2 ∈ W but w1 = a since then it would be that w2 ≤ w1 since a
is the greatest element of W ′, which contradicts w1 < w2. Thus in all cases g(w1) < g(w2) so that
g is increasing, and therefore injective and an isomorphism.

Hence β is the order type of W ′, α is the order type of W , and α < β since α ∈ β.
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Exercise 6.1.8

The sets W = N×{0, 1} and W ′ = {0, 1}×N , ordered lexicographically, are nonisomorphic well-ordered
sets. (See the remark following Theorem 4.7 in Chapter 4.)

Solution:

Proof. Let ≺ be the lexicographic ordering of W = N ×{0, 1} and ≺′ be the lexicographic ordering
of W ′ = {0, 1} ×N .

First we define f : W → ω by
f(n,m) = 2n+m

for (n,m) ∈W . Clearly each f(n,m) ∈N = ω.

Now consider any k ∈ ω = N . If k is even then k = 2n for some n ∈ N so set w = (n, 0) ∈ W .
Then clearly f(w) = f(n, 0) = 2n = k. On the other hand if k is even then k = 2n + 1 for some
n ∈ N so set w = (n, 1) ∈ W . Then clearly f(w) = f(n, 1) = 2n + 1 = k. This shows that f is
surjective.

Now consider any w1 = (n1,m1) and w2 = (n2,m2) in W where w1 ≺ w2.

Case: n1 = n2. Then since w1 ≺ w2 it has to be that m1 < m2, and since m1,m2 ∈ {0, 1} it has to
be that m1 = 0 and m2 = 1. From this it follows that

f(w1) = f(n1,m1) = f(n1, 0) = 2n1 < 2n1 + 1 = 2n2 + 1 = f(n2, 1) = f(n2,m2) = f(w2) .

Case: n1 6= n2. Then since w1 ≺ w2 it has to be that n1 < n2. Then n1 + 1 ≤ n2 and since also
m1 < 2 we have

f(w1) = f(n1,m1) = 2n1 +m1 < 2n1 + 2 = 2(n1 + 1) ≤ 2n2 ≤ 2n2 +m2 = f(n1,m2) = f(w2) .

Hence in all cases f(w1) < f(w2) so that f is increasing and therefore injective and isomorphic.
Therefore W is isomorphic to ω.

Now we define g : W ′ → ω + ω by

g(n,m) =

{
m n = 0

ω +m n = 1

for (n,m) ∈W ′. Clearly since m ∈N we have that g(n,m) ∈ ω + ω for all (n,m) ∈W ′.
Now consider any α ∈ ω+ω. If α ∈ ω = N then (0, α) ∈W ′ and g(0, α) = α. On the other hand if
α = ω +m for some m ∈N then (1,m) ∈W ′ and g(1,m) = ω +m = α. Therefore g is surjective.

Now consider any w1 = (n1,m1) and w2 = (n2,m2) in W ′ where w1 ≺′ w2.

Case: n1 = n2. Then since w1 ≺′ w2 it has to be that m1 < m2. If n1 = n2 = 0 then

g(w1) = g(n1,m1) = g(0,m1) = m1 < m2 = g(0,m2) = g(n2,m2) = g(w2) .

On the other hand if n1 = n2 = 1 then

g(w1) = g(n1,m1) = g(1,m1) = ω +m1 < ω +m2 = g(1,m2) = g(n2,m2) = g(w2) .

Case: n1 6= n2. Then since w1 ≺′ w2 it has to be that n1 < n2. Moreover since n1, n2 ∈ {0, 1} it
has to be that n1 = 0 and n2 = 1 so that

g(w1) = g(n1,m1) = g(0,m1) = m1 < ω +m2 = g(1,m2) = g(n2,m2) = g(w2) .
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Hence in all cases g(w1) < g(w2) so that g is increasing and therefore injective and an isomorphism.
Therefore W ′ is isomorphic to ω + ω.

Now, since w ∈ ω+ω we have that ω < ω+ω and so are distinct ordinals. Therefore by the remarks
following Theorem 6.2.10 ω and ω + ω are not isomorphic. If W and W ′ were isomorphic with h as
the isomorphism then g ◦ h ◦ f−1 would be an isomorphism from ω to ω + ω, which is impossible.
So it must be that W and W ′ are not isomorphic.

§6.2 Ordinal Numbers

Exercise 6.2.1

A set X is transitive if and only if X ⊆ P (X).

Solution:

Proof. (→) Suppose that X is a transitive set and consider any x ∈ X. Then x ⊆ X since X is
transitive. Thus x ∈ P (X) so that, since x was arbitrary, X ⊆ P (X).

(←) Now suppose that X ⊆ P (X) and consider any x ∈ X. Then also x ∈ P (X) so that x ⊆ X.
Hence, since x was arbitrary, X is transitive by definition.

Exercise 6.2.2

A set X is transitive if and only if
⋃
X ⊆ X.

Solution:

Proof. (→) Suppose that X is transitive and consider any y ∈
⋃
X. Then there is an x ∈ X such

that y ∈ x. Since X is transitive and x ∈ X we have that x ⊆ X so that y ∈ X as well. Since y was
arbitrary this shows that

⋃
X ⊆ X.

(←) Now suppose that
⋃
X ⊆ X and consider any x ∈ X. If x = ∅ then clearly x ⊆ X. So suppose

that x 6= ∅ and consider any y ∈ x. Then since x ∈ X it follows that y ∈
⋃
X so that also y ∈ X.

So since y was arbitrary it follows that x ⊆ X. Since x was arbitrary by definition X is transitive.

Exercise 6.2.3

Are the following sets transitive?

(a) {∅, {∅} , {{∅}}},
(b) {∅, {∅} , {{∅}} , {∅, {∅}}},
(c) {∅, {{∅}}}.

Solution:

(a) We claim that X = {∅, {∅} , {{∅}}} is transitive.
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Proof. Suppose x ∈ X. If x = ∅ then obviously x ⊆ X. If x = {∅} then x ⊆ X since ∅ ∈ X.
If x = {{∅}} then x ⊆ X since {∅} ∈ X. Thus since the cases are exhaustive we’ve shown that
x ⊆ X so that X is transitive by definition.

(b) We claim that X = {∅, {∅} , {{∅}} , {∅, {∅}}} is transitive.

Proof. For x ∈ X the three cases in part (a) above have the same results and, if x = {∅, {∅}}, then
x ⊆ X since ∅ ∈ X and {∅} ∈ X. Hence again X is transitive by definition.

(c) We claim that X = {∅, {{∅}}} is not transitive.

Proof. If x = {{∅}} we have that x is not a subset of X since {∅} ∈ x but {∅} /∈ X. Hence X is
not transitive.

Exercise 6.2.4

Which of the following statements are true?

(a) If X and Y are transitive, then X ∪ Y is transitive.

(b) If X and Y are transitive, then X ∩ Y is transitive.

(c) If X ∈ Y and Y is transitive, then X is transitive.

(d) If X ⊆ Y and Y is transitive, then X is transitive.

(e) If Y is transitive and S ⊆ P (Y ), then Y ∪ S is transitive.

Solution:

(a) We claim that this is true.

Proof. Consider any x ∈ X ∪ Y . If x ∈ X then x ⊆ X since X is transitive. Since also X ⊆ X ∪ Y
we clearly have that x ⊆ X ⊆ X ∪ Y . We can make the same argument if it is the case that x ∈ Y .
Hence since x was arbitrary this shows that X ∪ Y is indeed transitive.

(b) We claim that this is true.

Proof. Consider any x ∈ X ∩ Y . Then x ∈ X and x ∈ Y . Since X and Y are transitive this means
that x ⊆ X and x ⊆ Y . So consider any y ∈ x then y ∈ X and y ∈ Y so that y ∈ X ∩ Y . Hence
since y was arbitrary it follows that x ⊆ X ∩ Y so that X ∩ Y is transitive since x was arbitrary.

(c) We claim that this is not true.

Proof. It was shown in Exercise 6.2.3 part (a) that Y = {∅, {∅} , {{∅}}} is transitive. So let
X = {{∅}} so that clearly X ∈ Y . If then x = {∅} then x ∈ X but x is not a subset of X since
∅ /∈ X. Hence the original hypothesis is not true.

(d) We claim that this is not true.

Proof. Again Y = {∅, {∅} , {{∅}}} is transitive so let X = {{∅} , {{∅}}} so that clearly X ⊆ Y .
Then if x = {∅} then x ∈ X but x is not a subset of X because ∅ /∈ X. Thus the original hypothesis
is false.

(e) We claim that this is true.
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Proof. Consider any x ∈ Y ∪ S. If x ∈ Y then since Y is transitive x ⊆ Y . Hence x ⊆ Y ⊆ Y ∪ S.
On the other hand if x ∈ S then x ∈ P (Y ) since S ⊆ P (Y ) Hence x ⊆ Y ⊆ Y ∪ S. Since in all
cases x ⊆ Y ∪ S and x was arbitrary this shows that Y ∪ S is transitive by definition.

Exercise 6.2.5

If every X ∈ S is transitive, then
⋃
S is transitive.

Solution:

Proof. Consider any x ∈
⋃
S. Then there is an X ∈ S where x ∈ X. Since X is transitive it follows

that x ⊆ X. So consider any y ∈ x so that also y ∈ X. Thus also y ∈
⋃
S since X ∈ S. Since y

was arbitrary this shows that x ⊆
⋃
S. Since x was arbitrary this shows by definition that

⋃
S is

transitive.

Exercise 6.2.6

An ordinal α is a natural number if and only if every nonempty subset of α has a greatest element.

Solution:

Proof. (→) Suppose that n is a natural number and consider any nonempty subset A of n. Since
A ⊆ n it follows that |A| ≤ |n| = n so that A is finite. Thus A is a finite set of natural numbers and
so has a greatest element. This can be proven by a trivial inductive argument.

(←) We show this by contrapositive. Suppose that α is an ordinal such that α /∈ N . Then
α /∈ ω = N so that α ≮ ω, from which it follows that α ≥ ω Hence α = ω or α > ω, in which
case ω ∈ α so that ω ⊆ α since α is transitive. Thus in either case N = ω ⊆ α. Clearly N has
no greatest element (since if n were such a greatest element then n+ 1 ∈ N but n < n+ 1). Thus
there is a nonempty subset A of α such that A has no greatest element.

Exercise 6.2.7

If a set of ordinals X does not have a greatest element, then supX is a limit ordinal.

Solution:

Lemma 6.2.7.1. If α and β are ordinals and α < β then α+ 1 ≤ β.

Proof. To the contrary, suppose that α + 1 > β. Then by the definition of < we have that β ∈
α+ 1 = α∪ {α} and since β 6= α it has to be that β ∈ α. But then β < α, which is a contradiction.

Lemma 6.2.7.2. If α and β are ordinals and α < β + 1 then α ≤ β.

Proof. Since α < β + 1 we have that α ∈ β + 1 = β ∪ {β}. Hence α ∈ β or α = β. Thus α < β or
α = β, i.e. α ≤ β.

Main Problem.
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Proof. Suppose that X is a set of ordinals with no greatest element. Let β = supX =
⋃
X. Then

by the remarks following the proof of Theorem 6.2.6 β /∈ X since X has no greatest element. Now
also suppose that β is a successor so that there is an ordinal α such that β = α+ 1.

If α ∈ X then since X has no greatest element there is a γ ∈ X such that α < γ. Then by
Lemma 6.2.7.1 β = α + 1 ≤ γ. It cannot be that γ = β since γ ∈ X but β /∈ X so it must be that
β < γ. But then since β is an upper bound of X it follows that γ is also. However, since γ ∈ X this
would make γ the greatest element of X, which is a contradiction.

On the other hand if α /∈ X then consider any γ ∈ X. Then γ < β = α+1 so that by Lemma 6.2.7.2
γ ≤ α. Since γ was arbitrary this shows that α is an upper bound of X. However, since α < β this
contradicts the definition of β as being the least upper bound of X, according to which α ≥ β.

Since all cases lead to a contradiction it cannot be that β = supX is a successor and therefore by
definition is a limit ordinal.

Exercise 6.2.8

If X is a nonempty set of ordinals, then
⋂
X is an ordinal. Moreover

⋂
X is the least element of X.

Solution:

Proof. Suppose that X is a set of ordinals. Then by Theorem 6.2.6d X has a least element α. We
shall show that α =

⋂
X, which simultaneously shows that

⋂
X is an ordinal and the least element

of X.

Consider any β ∈ X. Since α is the least element α ≤ β so that α = β or α < β. Clearly α ⊆ α = β
in the former case. In the latter case we have α ∈ β so that α ⊆ β as well since β is transitive (since
it is an ordinal). Since β was arbitrary any x ∈ α is also in every β ∈ X so that x ∈

⋂
X so that

α ⊆
⋂
X since x was arbitrary.

Now consider any x ∈
⋂
X. Then clearly x ∈ α since α ∈ X so that

⋂
X ⊆ α since x was arbitrary.

Thus we have shown that α =
⋂
X as desired.

§6.3 The Axiom of Replacement

Exercise 6.3.1

Let P(x, y) be a property such that for every x there is at most one y for which P(x, y) holds. Then for
every set A there is a set B such that, for all x ∈ A, if P(x, y) holds for some y, then P(x, y) holds for
some y ∈ B.

Solution:

Proof. Define a property R(x, y) such that R(x, y) holds if and only if

1. P(x, y) holds, or

2. y = ∅ and there is not a z such that P(x, z) holds.

Clearly this property is such that for every x there is a unique y for which R(x, y) holds.
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Now consider any set A. Then by the Axiom Schema of Replacement there is a set B such that,
for every x ∈ A, there is a y ∈ B for which R(x, y) holds. Consider any x ∈ A. Then by the above
there is a y ∈ B such that R(x, y) holds. Now suppose that P(x, z) holds for some z. Then option
2 above cannot be the case so that, P(x, y) holds (option 1) since R(x, y) does. Thus P(x, y) holds
for some y ∈ B as we were required to show.

Exercise 6.3.2

Use Theorem 6.3.6 to prove the existence of

(a) The set {∅, {∅} , {{∅}} , {{{∅}}} , . . .}.
(b) The set {N ,P (N) ,P (P (N)) , . . .}.
(c) The set ω + ω = ω ∪ {ω, ω + 1, (ω + 1) + 1, . . .}.

Solution:

(a)

Proof. Define the operation G(x, n) for set a x and n ∈N by

G(x, n) = {x} .

Then by Theorem 6.3.6 there is a unique sequence 〈an | n ∈N〉 where

a0 = ∅
an+1 = G(an, n) = {an}

for all n ∈N . Clearly the range of 〈an〉 is the set we seek.

(b)

Proof. Similarly define the operation G(x, n) for a set x and n ∈N by

G(x, n) = P (x) ,

noting that this set exists by the Axiom of Power Set. Then by Theorem 6.3.6 there is a sequence
〈an | n ∈N〉 defined by

a0 = N

an+1 = G(an, n) = P (an) ,

noting that a0 = N exists by the Axiom of Infinity. Clearly then the range of 〈an〉 is the set we
seek.

(c)

Proof. Define the operation G(x, n) for a set x and n ∈N by

G(x, n) = S(x) = x ∪ {x} ,

Then by Theorem 6.3.6 there is a sequence 〈an | n ∈N〉 defined by

a0 = ω

an+1 = G(an, n) = S(an) = an + 1 ,

noting that a0 = ω = N exists by the Axiom of Infinity. Clearly then the range of 〈an〉 is A =
{ω, ω + 1, ω + 2, . . .}. It then follows that ω + ω = ω ∪A is the set we seek.
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Exercise 6.3.3

Use Theorem 6.3.6 to define

V0 = ∅;

Vn+1 = P (Vn) (n ∈ ω);

Vω =
⋃
n∈ω

Vn .

Solution:

Proof. Define the operation G(x, n) for a set x and n ∈N by

G(x, n) = P (x) ,

noting that this set exists by the Axiom of Power Set. Then by Theorem 6.3.6 there is a sequence
〈Vn | n ∈N〉 defined by

V0 = ∅
Vn+1 = G(Vn, n) = P (Vn) ,

noting that V0 = ∅ exists by the Axiom of Existence. Then we let

Vω =
⋃
n∈ω

Vn ,

noting that ω = N . This set exists by the Axiom of Union.

Exercise 6.3.4

(a) Every x ∈ Vω is finite.

(b) Vω is transitive.

(c) Vω is an inductive set.

Solution:

(a)

Proof. First we show by induction that every Vn is finite (for n ∈ N). For n = 0 we have Vn =
V0 = ∅, which is clearly finite. Now suppose that Vn is finite then we have Vn+1 = P (Vn), which is
finite by Theorem 4.2.8.

Now consider any x ∈ Vω =
⋃
n∈ω Vn so that there is an n ∈ ω such that x ∈ Vn. We note that n 6= 0

since V0 = ∅ so it cannot be that x ∈ V0 = ∅. Hence Vn−1 is a set and moreover Vn = P (Vn−1).
So since x ∈ Vn it follows that x ∈ P (Vn−1) so that x ⊆ Vn−1. Thus it follows that |x| ≤ |Vn−1| so
that clearly x is finite since Vn−1 is (shown above).

(b)

Proof. Consider any x ∈ Vw. Then by the same argument as in part (a) above it follows that x ∈ Vn
where n 6= 0. Hence again Vn−1 is a set and Vn = P (Vn−1) so that x ⊆ Vn−1. Then for any y ∈ x
we have that y ∈ Vn−1, from which it follows that clearly y ∈

⋃
k∈ω Vk = Vω. Hence since y was

arbitrary x ⊆ Vω, and since x was arbitrary this shows that Vω is transitive by definition.
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(c)

Proof. First we show by induction that each Vn (where n ∈ ω) is transitive. For n = 0 we have
Vn = V0 = ∅, which is clearly vacuously transitive. Now suppose that Vn is transitive and consider
any x ∈ Vn+1 = P (Vn) so that x ⊆ Vn. Now consider any y ∈ x so that also y ∈ Vn. But since Vn is
transitive y ⊆ Vn so that y ∈ P (Vn) = Vn+1. Hence since y was arbitrary this shows that x ⊆ Vn+1

and since x was arbitrary this shows by definition that Vn+1 is transitive, thereby completing the
inductive proof.

Now we show that Vω is inductive. So first note that V1 = P (V0) = P (∅) = {∅} so that 0 = ∅ ∈ V1.
From this is clearly follows that 0 ∈

⋃
n∈ω Vn = Vω.

Now suppose that n ∈ Vω =
⋃
k∈ω Vk so that there is an m ∈ ω such that n ∈ Vm. Since it was

shown above that Vm is transitive we have that n ⊆ Vm as well. So consider any x ∈ n+1 = n∪{n}.
If x ∈ n then also x ∈ Vm since n ⊆ Vm. On the other hand if x ∈ {n} then x = n ∈ Vm. Since
x was arbitrary this shows that n + 1 ⊆ Vm so that n + 1 ∈ P (Vm) = Vm+1. From this it clearly
follows that n+ 1 ∈

⋃
k∈ω Vk = Vω. This shows that Vω is inductive by definition.

Exercise 6.3.5

(a) If x ∈ Vω and y ∈ Vω, then {x, y} ∈ Vω.

(b) If X ∈ Vω, then
⋃
X ∈ Vω and P (X) ∈ Vω.

(c) If A ∈ Vω and f is a function on A such that f(x) ∈ Vω for each x ∈ A, then f [X] ∈ Vω.

(d) If X is a finite subset of Vω, then X ∈ Vω.

Note that part (c) differs slightly from the book; see the Errata List.

Solution:

(a)

Proof. First we show that if x ∈ Vn for some n ∈ ω then x ∈ Vm for all m ≥ n. We show this by
induction on m. So for m = n clearly x ∈ Vn = Vm. Now suppose that x ∈ Vm. Then it was shown
in Exercise 6.3.4 part (c) that Vm is transitive so that x ⊆ Vm. Hence x ∈ P (Vm) = Vm+1, thereby
completing the inductive proof.

Now suppose that x, y ∈ Vω. Then there are n,m ∈ ω such that x ∈ Vn and y ∈ Vm. Without loss
of generality we can assume that n ≤ m (since if this is not the case then we simply reverse the roles
of x and y). So since m ≥ n it follows from what was shown above that x ∈ Vm as well. Hence we
have that clearly {x, y} ⊆ Vm since both x ∈ Vm and y ∈ Vm. Then {x, y} ∈ P (Vm) = Vm+1 from
which it clearly follows that {x, y} ∈

⋃
k∈ω Vk = Vω.

(b)

Proof. Suppose that X ∈ Vω =
⋃
k∈ω Vk. Then there is an n ∈ ω such that X ∈ Vn. It was shown

in Exercise 6.3.4 part (c) that Vn is transitive so that X ⊆ Vn.

First we show that
⋃
X ∈ Vω. So consider any x ∈

⋃
X so that there is a Y ∈ X such that x ∈ Y .

Then since X ⊆ Vn we have that Y ∈ Vn. Since again Vn is transitive we have that Y ⊆ Vn so that
x ∈ Vn since x ∈ Y . Since x was arbitrary it follows that

⋃
X ⊆ Vn so that

⋃
X ∈ P (Vn) = Vn+1.

From this it clearly follows that
⋃
X ∈

⋃
k∈ω Vk = Vω.

Next we show that P (X) ∈ Vω. So consider any Y ∈ P (X) so that Y ⊆ X. Now consider any
y ∈ Y so that also y ∈ X. Since X ⊆ Vn we have that y ∈ Vn. But since y ∈ Y was arbitrary
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it follows that Y ⊆ Vn so that Y ∈ P (Vn) = Vn+1. Then since Y ∈ P (X) was arbitrary it
follows that P (X) ⊆ Vn+1 so that P (X) ∈ P (Vn+1) = Vn+2. From this it clearly follows that
P (X) ∈

⋃
k∈ω Vk = Vω.

(c)

Proof. Note the issue with this part in the errata list. Since A ∈ Vω we have by Exercise 6.3.4 part
(a) that A is finite. Then by Theorem 2.2.5 it follows that f [A] is finite. Also clearly f [A] is a subset
of Vω and hence is a finite subset. Therefore by part (d) below f [A] ∈ Vω.

(d)

Proof. Consider any finite X ⊆ Vω. Suppose then that |X| = n for some n ∈ N . Then for each
xk ∈ X, where k ∈ n, we have that xk ∈ Vω =

⋃
m∈ω Vm so that there is an mk ∈ ω where xk ∈ Vmk .

Now let m = maxk∈nmk, which exists since n is finite. Then, for any k ∈ n, by what was shown in
Exercise 6.3.5 part (a) we have xk ∈ Vm since xk ∈ Vmk and m ≥ mk. Hence it follows that X ⊆ Vm
so that X ∈ P (Vm) = Vm+1. Clearly then X ∈

⋃
k∈ω Vk = Vω.

§6.4 Transfinite Induction and Recursion

Exercise 6.4.1

Prove a more general Transfinite Recursion Theorem (Double Recursion Theorem): Let G be an opera-
tion in two variables. Then there is an operation F such that F(α, β) = G(F � (β × α)) for all ordinals
β and α. [Hint: Computations are functions on (β + 1)× (α+ 1).]

Solution:

Proof. Since in these Recursion Theorems the arguments of interest of the given operation G are
typically functions, we assume that G still takes a single variable despite what the text says. Hence
for each x there is a unique y such that y = G(x). It just happens that in this case the variables of
interest are functions of two variables.

For ordinals α and β we let fα,β be the isomorphism from the ordinal (β + 1) · (α + 1) to the
lexicographic ordering of (α + 1) × (β + 1), which exists by Theorem 6.5.8. We also note that
according to Exercise 6.5.2 we have

(β + 1) · (α+ 1) = (β + 1) · α+ (β + 1) · 1 = (β + 1) · α+ (β + 1) = [(β + 1) · α+ β] + 1

so that (β + 1) · (α+ 1) is a successor ordinal. Then for γ < (β + 1) · (α+ 1) define

Xα,β,γ : {(δ, ε) ∈ (α+ 1)× (β + 1) | (δ, ε) ≺ fα,β(γ)}

Then for γ < (β+ 1) · (α+ 1) we say that t is a computation of length γ if t is a transfinite sequence
whose domain is γ + 1 and such that t(δ) = G(t ◦ (f−1α,β � Xα,β,δ)) for all δ ≤ γ. We note that since
(β + 1) · (α+ 1) is a successor that γ + 1 ≤ (β + 1) · (α+ 1).

Now we define the property P(x, y, z) such that P(x, y, z) holds if and only if

1. x and y are ordinal numbers and z = t(f−1x,y(x, y)) for some computation t of length (y+1)·x+y
(with respect to G), or
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2. x or y is not an ordinal and z = ∅.

We prove that P defines an operation. Hence we have to show that for any x and y there is a unique
z such that P(x, y, z) holds. So consider any sets α and β. If α or β is not an ordinal than clearly
P(α, β,∅) holds and ∅ is unique. So suppose that both α and β are ordinals. Then it suffices to
show that there is a unique computation of length (y + 1) · x+ y (with respect to G) since this will
make z = t(f−1α,β(α, β)) unique. We show this via transfinite induction.

So consider any ordinal γ < (β+ 1) · (α+ 1) so that γ ≤ (y+ 1) ·x+ y and assume that for all δ < γ
that there is a unique computation of length δ and we show that there exists a unique computation
of length γ, which completes the proof that P defines an operation.

Existence. First define a property R(x, y) such that R(x, y) holds if and only if

1. x is an ordinal where x < γ and y is a computation of length x (with respect to G), or

2. x is is an ordinal and x ≥ γ and y = ∅, or

3. x is not an ordinal and y = ∅ .

Clearly by the induction hypothesis this property has a unique y for every x. Hence we can apply
the Axiom Schema of Replacement, according to which there is a set T such that for every δ ∈ γ
(so that δ < γ) there is a t in T such that R(δ, t) holds. That is

T = {t | t is the unique computation of length δ for all δ < γ}

Now, T is a system of transfinite sequences (which are functions) so define t̄ =
⋃
T and let τ =

t̄ ∪
{

(γ,G(t̄ ◦ (f−1α,β � Xα,β,γ))
}

.

Claim 1: dom (τ) = γ + 1. So consider any ε ∈ dom (τ). Clearly if ε = γ then ε ∈ γ + 1. On the
other hand if ε ∈ dom (t̄) then there is a t ∈ T such that ε ∈ dom (t). But since t is a computation
of length δ and δ < γ it follows that ε ≤ δ < γ < γ+1 so that ε ∈ γ+1. Hence since ε was arbitrary
dom (τ) ⊆ γ + 1.

Now consider any ε ∈ γ + 1 so that ε ≤ γ. If ε = γ then clearly by definition ε ∈ dom (τ). On the
other hand if ε 6= γ then ε < γ. So consider the t ∈ T where t is the unique computation of length
ε (which exists since ε < γ). Then clearly ε ∈ dom (t) so that ε ∈ dom (t̄). From this it follows that
clearly ε ∈ dom (τ) so that γ + 1 ⊆ dom (τ) since ε was arbitrary. This proves the claim.

Claim 2: τ is a function. Consider any ε ∈ dom (τ) = γ + 1 so that again ε ≤ γ. If ε = γ then
clearly τ(ε) = τ(γ) = G(t̄ ◦ (f−1α,β � Xα,β,γ)) is unique since G is an operation. On the other hand if
ε < γ then τ is a function so long as t̄ is, and this is the case so long as T is a compatible system of
functions since t̄ =

⋃
T . We show this presently.

So consider any arbitrary t1, t2 ∈ T where t1 is the computation of length ε1 and t2 is the computation
of length ε2. Without loss of generality we can assume that ε1 ≤ ε2. We must show that t1(δ) = t2(δ)
for all δ ≤ ε1. This we show by transfinite induction. So suppose that t1(κ) = t2(κ) for all κ < δ ≤ ε1.
Then clearly t1 � δ = t2 � δ, from which it follows that t1 ◦ (f−1α,β � Xα,β,δ) = t2 ◦ (f−1α,β � Xα,β,δ) and

since G is an operation we have t1(δ) = G(t1 ◦ (f−1α,β � Xα,β,δ)) = G(t2 ◦ (f−1α,β � Xα,β,δ)) = t2(δ).
This completes the proof of the claim.

Claim 3: τ(δ) = G(τ ◦ (f−1α,β � Xα,β,δ)) for all δ ≤ γ. So consider any such δ. If δ = γ then

since τ � γ = t̄ we clearly have τ(δ) = τ(γ) = G(t̄ ◦ (f−1α,β � Xα,β,γ)) = G(τ ◦ (f−1α,β � Xα,β,γ)) =

G(τ ◦ (f−1α,β � Xα,β,δ)) . On the other hand if δ < γ then let t ∈ T be the computation of length δ

(which exists since δ < γ). Then τ(δ) = t(δ) = G(t ◦ (f−1α,β � Xα,β,δ)) = G(τ ◦ (f−1α,β � Xα,β,δ)) since
t is a computation (with respect to G) and clearly t ⊆ τ .
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Claims 1 through 3 show that τ is a computation of length γ and hence that such a computation
exists.

Uniqueness. Now let σ be another computation of length γ. We show that σ = τ , which proves
uniqueness. Since both σ and τ are functions with dom (σ) = γ + 1 = dom (τ) it suffices to
show that σ(δ) = τ(δ) for all δ ≤ γ. We show this once again by using transfinite induction.
So suppose that σ(ε) = τ(ε) for all ε < δ ≤ γ. It then follows that σ � δ = τ � δ so that
σ ◦ (f−1α,β � Xα,β,δ) = τ ◦ (f−1α,β � Xα,β,δ). Then since σ and τ are computations we have that

σ(δ) = G(σ ◦ (f−1α,β � Xα,β,δ)) = G(τ ◦ (f−1α,β � Xα,β,δ)) = τ(δ), thereby completing the uniqueness
proof.

This completes the proof that P defines an operation.

So let F be the operation defined by P. The last thing we need to show to complete the proof of
the entire theorem is that F(α, β) = G(F � (α × β)) for all ordinals α and β, noting that we are
treating F as a function even though it is an operation. Thus, for any set X, F � X denotes the
set {(x,F(x)) | x ∈ X}, which forms a function with domain X. The range of this function is a set
whose existence is guaranteed by the Axiom Schema of Replacement since F is an operation.

So consider any ordinals α and β and the unique computation t of length (β+1) ·α+β. Then clearly
for any γ ≤ (β + 1) · α + β we have that tγ = t � (γ + 1) is a computation of length γ. Since this
computation is the unique computation of length γ, by the definition of F as it relates to P we have
F(f(γ)) = tγ(γ) = t(γ). Since γ was arbitrary this shows that F � (α×β) = t � (β+1) ·α+β. Then
clearly we have F(α, β) = t((β+1) ·α+β) = G(t◦ (f−1α,β � Xα,β,(β+1)·α+β)) = G(t � (β+1) ·α+β) =
G(F � (α× β)) by what was just shown above.

NOTE: This is a very nasty exercise and there may be a simpler way to do this.

Exercise 6.4.2

Using the Recursion Theorem 6.4.9 show that there is a binary operation F such that

(a) F(x, 1) = 0 for all x.

(b) F(x, n+ 1) = 0 if and only if there exist y and z such that x = (y, z) and F(y, n) = 0.

We say that x is an n-tuple (where n ∈ ω, n > 0) if F(x, n) = 0. Prove that this definition of n-tuples
coincides with the one given in Exercise 5.17 in Chapter 3.

Solution:

Proof. Note that there is no such operation that can exactly satisfy both conditions as they actually
contradict each other. To see this suppose there is such an operation F. Then define the set x = ∅
and n = 0 Then by (a) we have that F(x, n+ 1) = F(x, 1) = 0. It then follows from (b) that there
are a y and z such that x = (y, z), but clearly this is not the case for x = ∅. Hence a contradiction.

To remedy this we simply add a condition to (b), which when restated becomes

(b) n > 0 and F(x, n+1) = 0 if and only if there exists y and z such that x = (y, z) and F(y, n) = 0.

Now, define an operation G by z = G(x, yu) if and only if either

1. yu is a function with parameter u, dom (yu) = 1, and z = 0, or

2. yu is a function with parameter u, dom (yu) = α + 1 for some ordinal α, there are p and q
where x = (p, q), yp(α) = 0, and z = 0 or

3. None of the above hold and z = 1.
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Then by Theorem 6.4.9 there is an operation F such that F(x, α) = G(x,Fx � α) for all ordinals α
and sets x.

Then for any set x we have that clearly F � 1 is a function with domain 1 (and parameter x) so that
by definition

F(x, 1) = G(x,Fx � 1) = 0 .

This shows (a).

To show (b) consider any ordinal n and set x.

(→) Suppose that n > 0 and F(x, n+ 1) = 0 so that clearly (3) above cannot be the case. Also (1)
cannot be the case since F(x, n + 1) = G(x,Fx � n + 1) and dom (Fx � n + 1) = n + 1 > 1. Hence
(2) is the case so that there are y and z such that x = (y, z) and (Fy � n + 1)(n) = 0. Hence it
follows that F (y, n) = 0.

(←) Now suppose that there are y and z such that x = (y, z) and F (y, n) = 0. Then F (y, n) =
G(y,Fy � n) = 0.

So if n = 0 then dom (Fy � n) = dom (Fy � 0) = 0 6= 1 so (1) cannot be the case. Also since 0 is
not a successor ordinal (2) cannot be the case either (since dom (Fy � 0) 6= α+ 1 for any ordinal α).
Hence (3) must be the case, but this implies that F (y, n) = 1, which is a contradiction. So we must
have that n 6= 0 so n > 0.

Since F(y, n) = 0 clearly we have that (Fy � n+ 1)(n) = 0. Since also dom (Fx � n+ 1) = n+ 1 we
find that (2) holds for G(x,Fx � n+1). From this it follows that F(x, n+1) = G(x,Fx � n+1) = 0.

This completes the proof.

§6.5 Ordinal Arithmetic

Exercise 6.5.1

Prove the associate law (α · β) · γ = α · (β · γ).

Solution:

Lemma 6.5.1.1. 0 · α = 0 for all ordinals α.

Proof. We show this by transfinite induction on α. For α = 0 we have 0 · α = 0 · 0 = 0 by
Definition 6.5.6a. Now suppose that 0 · α = 0 so that we have

0 · (α+ 1) = 0 · α+ 0 = 0 + 0 = 0

by the induction hypothesis, Definition 6.5.6b, and Definition 6.5.1a. Lastly, suppose that α 6= 0 is
a limit ordinal and that 0 · β = 0 for all β < α. Then by Definition 6.5.6c we have that

0 · α = sup {0 · β | β < α} = sup {0 | β < α} = sup {0} = 0

by the induction hypothesis. This completes the proof.

Lemma 6.5.1.2. Ordinal α is a limit ordinal if and only if β + 1 < α for every ordinal β < α.

Proof. (→) We show this by contrapositive. So suppose that there is a β < α such that β + 1 ≥ α.
Then by Lemma 6.2.7.1 we have also that β + 1 ≤ α, from which it follows that α = β + 1 so that
α is a successor ordinal and not a limit ordinal.
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(←) Suppose that β + 1 < α for every β < α. Suppose also that α = γ + 1 is a successor ordinal.
Then clearly γ < γ + 1 = α so that also γ + 1 < α, which is an immediate contradiction. Hence it
must be that α is a limit ordinal.

Note that the bi-conditional is vacuously true for α = 0.

Lemma 6.5.1.3. Suppose that α 6= 0 is an ordinal and β 6= 0 is a limit ordinal. Then α · β is a
limit ordinal and α · β 6= 0.

Proof. Since α 6= 0 we have that α ≥ 1. Now consider any γ < α · β. We claim that γ ≤ α · δ for
some δ < β. Suppose to the contrary that γ > α · δ for all δ < β. Then γ is an upper bound of the
set {α · δ | δ < β}. But from this it follows that

γ ≥ sup {α · δ | δ < β} = α · β

by Definition 6.5.6c, which contradicts the definition of γ. Hence the claim is true so that γ ≤ α · δ
for some δ < β. Then we have by Lemma 6.5.4a and the fact that 1 ≤ α that

γ + 1 ≤ α · δ + 1 ≤ α · δ + α = α · (δ + 1) < α · β

by Exercise 6.5.7a since δ+1 < β since β is a limit ordinal. Note that we also used Definition 6.5.6b.
Thus since γ + 1 < α · β and γ was arbitrary it follows from Lemma 6.5.1.2 that α · β is a limit
ordinal.

We also have that α 6= 0 and 0 < β (since 0 6= β) so that by Exercise 6.5.7a above and Defini-
tion 6.5.6a

0 = α · 0 < α · β .
Thus α · β 6= 0.

Main Problem.

Proof. We show this by transfinite induction on γ.

First for γ = 0 we have

(α · β) · γ = (α · β) · 0 = 0 = α · 0 = α · (β · 0) = α · (β · γ) ,

where we have used Definition 6.5.6a repeatedly. Now suppose that (α ·β) ·γ = α · (β ·γ) for ordinal
γ. Then

(α · β) · (γ + 1) = (α · β) · γ + α · β (by Definition 6.5.6b)

= α · (β · γ) + α · β (by the induction hypothesis)

= α · [β · γ + β] (by the distributive law, see Exercise 6.5.2)

= α · [β · (γ + 1)] . (by Definition 6.5.6b)

Now suppose that γ 6= 0 is a limit ordinal and (α ·β) · δ = α · (β · δ) for all δ < γ. First if β = 0 then

(α · β) · γ = (α · 0) · γ = 0 · γ = 0 = α · 0 = α · (0 · γ) = α · (β · γ)

where we have used Definition 6.5.6a and Lemma 6.5.1.1. So assume that β 6= 0. Then we have
(α · β) · γ = sup {(α · β) · δ | δ < γ} = sup {α · (β · δ) | δ < γ} by Definition 6.5.6c and the induction
hypothesis. Then, since β 6= 0, by Lemma 6.5.1.3 we have that β · γ is a limit ordinal and β · γ 6= 0.
From this and Definition 6.5.6c we have that

(α · β) · γ = sup {α · (β · δ) | δ < γ} = sup {α · δ | δ < β · γ} = α · (β · γ)

as desired. This completes the inductive proof.
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Exercise 6.5.2

Prove the distributive law α · (β + γ) = α · β + α · γ.

Solution:

Proof. We show this by transfinite induction on γ. So for γ = 0 we have

α · (β + γ) = α · (β + 0) = α · β (by Definition 6.5.1a)

= a · β + 0 (by Definition 6.5.1a)

= α · β + α · 0 (by Definition 6.5.6a)

= α · β + α · γ .

Now suppose that α · (β + γ) = α · β + α · γ for ordinal γ. We then have

α · [β + (γ + 1)] = α · [(β + γ) + 1] (by Definition 6.5.1b)

= α · (β + γ) + α (by Definition 6.5.6b)

= (α · β + α · γ) + α (by the induction hypothesis)

= α · β + (α · γ + α) (by the associativity of addition, Lemma 6.5.4c)

= α · β + α · (γ + 1) . (by Definition 6.5.6b)

Lastly, suppose that γ 6= 0 is a limit ordinal and that α · (β+ δ) = α ·β+α · δ for all δ < γ. If α = 0
then we have

α · (β + γ) = 0 · (β + γ) = 0 = 0 + 0 = 0 · β + 0 · γ = α · β + α · γ ,

where we have used Lemma 6.5.1.1 above. So suppose that α 6= 0 so that α ≥ 1. Now, if ξ < β + γ
then ξ ≤ β+δ for some δ < γ. Then by Lemma 6.5.4 we have that ξ+1 ≤ (β+δ)+1 = β+(δ+1) <
β + γ since γ is a limit ordinal. Hence β + γ is a limit ordinal so that by Definition 6.5.6c we
have α · (β + γ) = sup {α · ξ | ξ < β + γ}. But then by Definition 6.5.1c we have that β + γ =
sup {β + δ | δ < γ}. It then follows that

α · (β + γ) = sup {α · ξ | ξ < β + γ} = sup {α · (β + δ) | δ < γ} = sup {α · β + α · δ | δ < γ}

by the induction hypothesis. Then by Definition 6.5.6c we have that sup {α · δ | δ < γ} = α · γ since
γ is a limit ordinal. It then follows from Lemma 6.5.1.3 that α ·γ is also a limit ordinal and α ·γ 6= 0
since α 6= 0. From this and Definition 6.5.1c we have that

α · (β + γ) = sup {α · β + α · δ | δ < γ} = sup {α · β + δ | δ < α · γ} = α · β + α · γ

as desired. This completes the inductive proof.

Exercise 6.5.3

Simplify

(a) (ω + 1) + ω.

(b) ω + ω2.

(c) (ω + 1) · ω2.
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Solution:

(a) By Lemma 6.5.4c we have

(ω + 1) + ω = ω + (1 + ω) = ω + ω = ω · 2 .

(b) We simply have
ω + ω2 = ω · 1 + ω · ω = ω · (1 + ω) = ω · ω = ω2

(c)

Lemma 6.5.3.1. (ω + 1) · n = ω · n+ 1 for all n ∈ ω where n > 0.

Proof. We show this by standard (as opposed to transfinite) induction on n. For n = 1 we have

(ω + 1) · n = (ω + 1) · 1 = ω + 1 = ω · 1 + 1 = ω · n+ 1 .

Now suppose that (ω + 1) · n = ω · n+ 1 so that we have

(ω + 1) · (n+ 1) = (ω + 1) · n+ (ω + 1) (by Definition 6.5.6b)

= (ω · n+ 1) + (ω + 1) (by the induction hypothesis)

= ω · n+ (1 + ω) + 1 (by the associativity of addition)

= ω · n+ ω + 1

= ω · (n+ 1) + 1 . (by Definition 6.5.6b)

This completes the inductive proof.

Lemma 6.5.3.2. (ω + 1) · ω = ω2.

Proof. Since ω is a limit ordinal we have by Definition 6.5.6c

(ω + 1) · ω = sup {(ω + 1) · n | n ∈ ω} = sup {ω · n+ 1 | n ∈ ω}

by Lemma 6.5.3.1. Now, since we have

ω · n+ 1 < (ω · n+ 1) + ω = ω · n+ (1 + ω) = ω · n+ ω = ω · (n+ 1)

it is clear that we have

(ω + 1) · ω = sup {ω · n+ 1 | n ∈ ω} = sup {ω · n | n ∈ ω} = ω · ω = ω2

by Definition 6.5.6c.

Main Problem.

We have
(ω + 1) · ω2 = (ω + 1) · (ω · ω) = [(ω + 1) · ω] · w = ω2 · ω = ω2+1 = ω3 ,

where we have used Lemma 6.5.3.2 and Definition 6.5.9b.

Exercise 6.5.4

For every ordinal α, there is a unique limit ordinal β and a unique natural number n such that α = β+n.
[Hint: β = sup {γ ≤ α | γ is limit}.]
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Solution:

Lemma 6.5.4.1. If α and β are ordinals and β 6= 0 is a limit ordinal then α+ β is a limit ordinal.

Proof. First we note that since β 6= 0 we have 1 ≤ β. Consider any γ < α + β. If γ < α then
γ + 1 ≤ α < α + 1 ≤ α + β. On the other hand if γ ≥ α then by Lemma 6.5.5 there is an ordinal
δ such that α + δ = γ. Then since α + δ = γ < α + β it follows from Lemma 6.5.4a that δ < β,
and so by Lemma 6.5.1.2 we have that δ + 1 < β since β is a limit ordinal. Therefore we have
γ + 1 = (α + δ) + 1 = α + (δ + 1) < α + β by Lemma 6.5.4 parts c and a. Hence in all cases
γ + 1 < α+ β so that α+ β is a limit ordinal by Lemma 6.5.1.2 since γ was arbitrary.

Lemma 6.5.4.2. If α is a limit ordinal and β is another ordinal such that β < α then β + n < α
for any natural number n.

Proof. We show this by normal (not transfinite) induction on n. For n = 0 we clearly have β + n =
β + 0 = β < α. So suppose that β + n < α so that we have

β + (n+ 1) = (β + n) + 1 < α

by Definition 6.5.1b. The inequality follows from Lemma 6.5.1.2 and the induction hypothesis since
α is a limit ordinal. This completes the inductive proof.

Main Problem.

Proof. Existence. First for any ordinal α let

B = {γ ∈ α+ 1 | γ is a limit ordinal}

and define β = supB.

First we show that β is a limit ordinal. To this end consider any δ < β. Then since β is the least
upper bound of B it follows that δ is not an upper bound of B so that there is a γ ∈ B such that
δ < γ. Since γ ∈ B it is a limit ordinal so that also δ+ 1 < γ by Lemma 6.5.1.2. Then since β is an
upper bound of B we have that δ + 1 < γ ≤ β so that β is a limit ordinal by Lemma 6.5.1.2 since δ
was arbitrary.

Now, since each γ ∈ B is in α+ 1 we have that γ < α+ 1 so that γ ≤ α. Hence α is an upper bound
of B, and since β is the least upper bound of B it follows that β ≤ α. Because of this there is a
unique ordinal ξ such that β + ξ = α by Lemma 6.5.5.

We claim that ξ < ω so that ξ is a natural number. To the contrary, suppose that ξ ≥ ω. It then
follows from Lemma 6.5.4 that β + ω ≤ β + ξ = α. Also, β + ω is a limit ordinal by Lemma 6.5.4.1
above since ω is so that β + ω ∈ B since also β + ω ∈ α + 1 (since β + ω ≤ α). Then β + ω ≤ β
since β is an upper bound of B, but this is a contradiction since clearly β = β + 0 < β + ω by
Lemma 6.5.4a since 0 < ω. Hence it must be that ξ < ω.

Thus α = β + ξ for a limit ordinal β and natural number ξ, thereby proving existence.

Uniqueness. Suppose that α = β1 + n1 = β2 + n2 where β1 and β2 are limit ordinals and n1 and n2
natural numbers. First suppose that β1 6= β2 so that without loss of generality we can assume that
β1 < β2. It then follows from Lemma 6.5.4.2 that β1 + n1 < β2 as well since β2 is a limit ordinal
and n1 is a natural number. But then we have β1 + n1 < β2 = β2 + 0 ≤ β2 + n2, which contradicts
the fact that β1 + n1 = α = β2 + n2. So it must be that in fact β1 = β2. But then it follows from
Lemma 6.5.4b that n1 = n2 also, which shows uniqueness.

Exercise 6.5.5
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Let α ≤ β. The equation ξ + α = β may have 0, 1, or infinitely many solutions.

Solution:

Lemma 6.5.5.1. If α and β are ordinals and n a natural number then α < β if and only if
α+ n < β + n.

Proof. (→) We show this by induction on n. So for n = 0 and any ordinals α and β where α < β
we clearly have

α+ n = α+ 0 = α < β = β + 0 = β + n .

Now suppose that α+ n < β + n for any ordinals α and β where α < β. Suppose that α and β are
such ordinals so that by Lemma 6.2.7.1 we have α + 1 ≤ β < β + 1. Hence α + 1 and β + 1 are
ordinals such that α+ 1 < β + 1. It then follows from the induction hypothesis that

α+ (n+ 1) = α+ (1 + n) = (α+ 1) + n < (β + 1) + n = β + (1 + n) = β + (n+ 1) ,

noting that clearly natural numbers commute with respect to addition. This completes the proof
by induction.

(←) Suppose that α + n < β + n for ordinals α and β and natural number n. It cannot be that
β < α for then it would follow that β + n < α + n by what was just shown. Nor can it be that
α = β since then clearly α + n = β + n. Hence by the linearity of the ordinal ordering it follows
that α < β.

Corollary 6.5.5.2. If α and β are ordinals and n a natural number then α = β if and only if
α+ n = β + n.

Proof. This follows directly from Lemma 6.5.5.1 in the same way as the proof of Lemma 6.5.4b.

Lemma 6.5.5.3. If α ≥ ω is an ordinal and n a natural number then n+ α = α.

Proof. For any natural number n we show this by transfinite induction on α. So if α = ω then as
explained in the text we have n+α = n+ω = ω = α. Now suppose that n+α = α so that we have
n+ (α+ 1) = (n+α) + 1 = α+ 1. Lastly, suppose that α > ω is a limit ordinal and that n+ γ = γ
for all γ < α. We then have by Definition 6.5.1c that

n+ α = sup {n+ γ | γ < α} = sup {γ | γ < α} = α

by the induction hypothesis and comments in the text after Theorem 6.2.10. This completes the
inductive proof.

Main Problem.

Proof. In what follows suppose generally that α = γ + n and β = δ + m where γ and δ are limit
ordinals and n and m are natural numbers. Note that α and β can be expressed in this way uniquely
by Exercise 6.5.4.

Case: β = 0. If α = 0 then clearly ξ = 0 is the only solution since for any other ξ 6= 0 we have
ξ + α = ξ + 0 = ξ 6= 0 = β. On the other hand if α 6= 0 then there is no solution since for any ξ we
have by Lemma 6.5.4 that ξ + α > ξ + 0 = ξ ≥ 0 = β so that ξ + α 6= β.

Case: β is a successor. From this it follows that clearly m 6= 0 since otherwise β = δ+m = δ+0 = δ
would be a limit ordinal.

Now, if α = 0 then clearly ξ = β is the only solution so that ξ + α = ξ + 0 = ξ = β.
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If α is a successor then similarly n 6= 0. Suppose that γ = 0 so that since α ≤ β we have
0 + n = n ≤ δ +m = β. Then if n ≤ m then ξ = δ + (m− n) is a solution since then

ξ + α = [δ + (m− n)] + n = δ + [(m− n) + n] = δ +m = β .

Moreover clearly this is the only solution since if ξ 6= δ + (m− n) then

ξ + α = ξ + n 6= [δ + (m− n)] + n = δ +m = β

by Corollary 6.5.5.2. On the other hand if n > m then for any ordinal ξ = ε+ k where ε is a limit
ordinal and k is a natural number, we have that k + n > 0 + n = n > m so that clearly k + n 6= m.
From this it follows that

ξ + α = (ε+ k) + n = ε+ (k + n) 6= δ +m = β

since both the limit ordinal and the natural number part of ordinals must be equal for the overall
ordinals to be equal. Hence this case has no solutions. Now suppose that γ 6= 0. Then if n 6= m
then there are no solutions since for any ordinal ξ we have

ξ + α = ξ + (γ + n) = (ξ + γ) + n 6= δ +m

since n 6= m and ξ + γ is a limit ordinal by Lemma 6.5.4.1. On the other hand if n = m then since
γ+n = α ≤ β = δ+m = δ+n it follows from Lemma 6.5.5.1 and Corollary 6.5.5.2 that γ ≤ δ, and
since γ 6= 0 we have that 0 < γ ≤ δ.
Then we have that ξ is a solution if and only if ξ + γ = δ. For, supposing that ξ + γ = δ, we have

ξ + α = ξ + (γ + n) = (ξ + γ) + n = δ + n = δ +m = β

and if it is not the case then

ξ + α = ξ + (γ + n) = (ξ + γ) + n 6= δ + n = δ +m = β

by Corollary 6.5.5.2. Since γ and δ are both nonzero limit ordinals it then follows from the final
case below (where both α and β are nonzero limit ordinals) there are either zero or infinite such ξ.

If α is a nonzero limit ordinal then clearly there are no solutions since, for any ordinal ξ, Lemma 6.5.4.1
tells us that ξ + α is a limit ordinal whereas β is a successor so that it has to be that ξ + α 6= β.

Case: β is a nonzero limit ordinal.

If α = 0 then clearly ξ = β is the only solution since ξ + α = ξ + 0 = ξ.

If α is a successor ordinal then n 6= 0 and for any ordinal ξ we have that ξ+α = ξ+(γ+n) = (ξ+γ)+n,
which is a successor ordinal as well since ξ + γ is a limit ordinal again by Lemma 6.5.4.1. Hence
there are no solutions since β is a limit ordinal and ξ was arbitrary.

Lastly, suppose that α is also a nonzero limit ordinal. Suppose that there at least one solution ξ
such that ξ + α = β. Now consider any natural number k so that we have

(ξ + k) + α = ξ + (k + α) = ξ + α = β

by Lemma 6.5.5.3 since α is a nonzero limit ordinal and therefore clearly α ≥ ω. Hence ξ+ k is also
a solution and so there are an infinite number of solutions since k was arbitrary. Thus there are
either zero solutions or an infinite number of solutions (since a nonzero number of solutions implies
an infinite number of solutions). This completes the case structure.

These results are summarized in the following table:
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β α Other Other Solutions

0
0 1 (ξ = 0)
> 0 0

Successor

0 1 (ξ = β)

Successor
γ = 0

n ≤ m 1 (ξ = δ +m− n)
n > m 0

γ > 0
n 6= m 0
n = m 0 or ∞

Limit > 0 0

Limit > 0
0 1 (ξ = β)

Successor 0
Limit > 0 0 or ∞

Since this case structure is exhaustive the result follows.

Exercise 6.5.6

Find the least α > ω such that ξ + α = α for all ξ < α.

Solution:

Definition 6.5.6.1. We call an ordinal α an additive ordinal if it has the property that β + α = α
for all β < α.

Lemma 6.5.6.2. If α is a limit ordinal and β is any ordinal then α · β is a limit ordinal.

Proof. We show this by transfinite induction on β.

So for β = 0 we clearly have α · β = α · 0 = 0, which is a limit ordinal.

Now suppose that α · β is a limit ordinal. Then we have α · (β + 1) = α · β +α by Definition 6.5.6b.
If α = 0 then α · (β + 1) = α · β + α = α · β + 0 = α · β, which is a limit ordinal by the induction
hypothesis. On the other hand if α 6= 0 then by Lemma 6.5.4.1 α · (β + 1) = α · β + α is a limit
ordinal since α is.

Lastly suppose that β is a limit ordinal and that α · γ is a limit ordinal for all γ < β. Let A =
{α · γ | γ < β} so that by Definition 6.5.6b we have α · β = supA. Consider any δ < α · β so that
δ is not an upper bound of A. Hence there is a γ < β such that δ < α · γ. Then by the induction
hypothesis α · γ is a limit ordinal so that δ + 1 < α · γ by Lemma 6.5.1.2. But then we have
δ + 1 < α · γ ≤ supA = α · β. Thus by Lemma 6.5.1.2 this shows that α · β is also a limit ordinal,
which completes the inductive proof.

Lemma 6.5.6.3. An ordinal α = ω · n for a natural number n if and only if α is a limit ordinal
and α < ω2.

Proof. (→) Suppose that α = ω ·n for natural number n. Then by Lemma 6.5.6.2 α is a limit ordinal
since ω is. Also clearly by Exercise 6.5.7a α = ω · n < ω · (n+ 1) ≤ sup {ω · k | k < ω} = ω · ω = ω2.

(←) Now suppose that α is a limit ordinal and α < ω2. We have a < ω2 = ω ·ω = sup {ω · n | n < ω}
so that α is not an upper bound of {ω · n | n < ω}. Hence there is a k < ω such that α < ω · k.
It therefore follows that the set A = {n ∈ ω | α ≤ ω · n} is nonempty. Since A is nonempty set of
natural numbers (which are well-ordered) it follows that A has a least element n. If n = 0 it follows
that α = 0 = ω · 0 since α ≤ ω · n = ω · 0 = 0 and 0 is the only ordinal for which this is true. Then
if n > 0 we have that n− 1 is a natural number and moreover it follows that ω · (n− 1) < α since
otherwise n− 1 would have been the least element of A.
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Thus we have that ω · (n− 1) < α ≤ ω ·n. But since ω ·n = ω · [(n− 1) + 1] = ω · (n− 1) +ω clearly
any ordinal γ where ω · (n− 1) + 0 = ω · (n− 1) < γ < ω · n = ω · (n− 1) + ω must have the form
ω · (n−1) +m for a natural number m > 0. From this it clearly follows that γ is a successor ordinal.
Since α is a limit ordinal it can thus not be such a γ so that it cannot be that α < ω · n. But since
we have established that α ≤ ω · n (since n ∈ A) it has to be that α = ω · n.

Lemma 6.5.6.4. An ordinal α = ω · n+ k for natural numbers n and k if and only if α < ω2.

Proof. (→) Suppose that α = ω · n+ k for natural numbers n and k. We then have

α = ω · n+ k = (ω · n+ k) + 0

< (ω · n+ k) + ω (by Lemma 6.5.4a since 0 < ω)

= ω · n+ (k + ω) (by the associative property)

= ω · n+ ω (by Lemma 6.5.5.3)

= ω · (n+ 1) (by Definition 6.5.6b)

≤ sup {ω ·m | m < ω}
= ω · ω (Definition 6.5.6c)

= ω2 (by Example 6.5.10a)

as desired.

(←) Now suppose that α < ω2. By Exercise 6.5.4 we have that α = β + k for a unique limit ordinal
β and natural number k. We also have by Lemma 6.5.4 that β+0 ≤ β+k = α < ω2 since obviously
0 ≤ k. Hence β is a limit ordinal such that β < ω2 so that by Lemma 6.5.6.3 there is a natural
number n such that β = ω ·n, thereby proving the result since this means that α = β+k = ω ·n+k.

Main Problem.

We claim that ω2 is the first additive ordinal after ω.

Proof. To see this we first show that ω2 is a limit ordinal. So consider any α < ω2 so that by
Lemma 6.5.6.4 there are natural numbers n and k such that α = ω · n + k. We then have α + 1 =
(ω ·n+ k) + 1 = ω ·n+ (k+ 1) < ω2 again by Lemma 6.5.6.4 since k+ 1 is a natural number. Hence
ω2 is a limit ordinal by Lemma 6.5.1.2.

Next we show that ω2 is an additive ordinal. So again consider α < ω2 so that by Lemma 6.5.6.4
there are natural numbers n and k such that α = ω · n+ k. We then have

α+ ω2 = (ω · n+ k) + ω2 = ω · n+ (k + ω2) = ω · n+ ω2 = ω · n+ ω · ω = ω · (n+ ω) = ω · ω = ω2

since k + ω2 = ω2 and n+ ω = ω by Lemma 6.5.5.3.

Lastly we show that if ω < α < ω2 then α is not an additive ordinal. Clearly by Lemma 6.5.6.4
there are natural numbers n and k such that α = ω · n + k. Now let β = ω so that clearly β < α.
We then have that

β + α = ω + ω · n+ k = ω · 1 + ω · n+ k = ω · (1 + n) + k = ω · (n+ 1) + k .

We also clearly have

n < n+ 1

ω · n < ω · (n+ 1) (by Exercise 6.5.7a)

ω · n+ k < ω · (n+ 1) + k (by Lemma 6.5.5.1)

α < β + α

so that β + α 6= α. Since β < α this shows that α is not an additive ordinal.
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Exercise 6.5.7

(a) If α1, α2, and β are ordinals and β 6= 0, then α1 < α2 if and only if β · α1 < β · α2.

(b) For all ordinals α1, α2, and β 6= 0, β · α1 = β · α2 if and only if α1 = α2.

Solution:

(a)

Proof. (→) We show this by transfinite induction on α2. So suppose and that α1 < δ implies that
β · α1 < β · δ for all δ < α2 and that α1 < α2. If α2 is a successor ordinal then α2 = δ + 1 for some
ordinal δ where α1 ≤ δ since α1 < α2. Then we have

β · α1 ≤ β · δ (by the induction hypothesis if α1 < δ and trivially if α1 = δ)

< β · δ + β (by Lemma 6.5.4a since 0 < β)

= β · (δ + 1) (by Definition 6.5.6b)

= β · α2 .

On the other hand if α2 is a limit ordinal then α1 + 1 < α2 since α1 < α2. Then we have that

β · α1 < β · (α1 + 1) (by the induction hypothesis since α1 < α1 + 1 < α2)

≤ sup
δ<α2

β · δ (since the supremum is an upper bound)

= β · α2 . (by Definition 6.5.6c)

This completes the inductive proof.

(←) For this we assume that β · α1 < β · α2. If it were the case that α1 > α2 than it would follow
by the implication already shown that β ·α1 > β ·α2, which is a contradiction. Similarly if α1 = α2

then β · α1 = β · α2, another contradiction. Hence by the linearity of the order < it must be that
α1 < α2 as desired.

(b)

Proof. This follows from part (a) in the same way as the proof of Lemma 6.5.4b but is repeated for
completeness.

(→) We prove this part by contrapositive, so suppose that α1 6= α2. Then either α1 < α2 or α1 > α2.
In the former case then part (a) implies that β ·α1 < β ·α2 so that β ·α1 6= β ·α2. In the latter case
part (a) similarly implies that β · α1 > β · α2 so that again β · α1 6= β · α2.

(←) If α1 = α2 then we trivially have β · α1 = β · α2.

Exercise 6.5.8

Let α, β, and γ be ordinals, and let α < β. Then

(a) α+ γ ≤ β + γ

(b) α · γ ≤ β · γ.

Solution:

(a)
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Proof. We show this by transfinite induction on γ. For γ = 0 we clearly have

α+ γ = α+ 0 = α < β = β + 0 = β + γ

so that α+ γ ≤ β + γ is true. Now suppose that α+ γ ≤ β + γ so that we have

α+ (γ + 1) = (α+ γ) + 1 ≤ (β + γ) + 1 = β + (γ + 1)

by Lemma 6.5.5.1 and Corollary 6.5.5.2 since α+γ ≤ β+γ (induction hypothesis) and 1 is a natural
number.

Lastly, suppose that γ is a nonzero limit ordinal and that α + δ ≤ β + δ for all δ < γ. Let
A = {α+ δ | δ < γ} and tentatively suppose that α + γ > β + γ. Then β + γ < α + γ = supA so
that β + γ is not an upper bound of A. Hence there is a δ < γ such that β + γ < α + δ. We then
have that

β + δ ≤ sup {β + ε | ε < γ} = β + γ < α+ δ ,

but this contradicts the induction hypothesis since δ < γ. So it has to be that α + γ ≤ β + γ as
desired. This completes the inductive proof.

Furthermore we give an example that shows that the ≤ cannot be replaced with < in the conclusion.
Let α = 1, β = 2, and γ = ω. Then clearly α = 1 < 2 = β but we also have

α+ γ = 1 + ω = ω = 2 + ω = β + γ

so that clearly α+ γ < β + γ is not true since they are equal.

Note also that clearly if α = β then α + γ = β + γ so that α + γ ≤ β + γ is still true. Hence the
conclusion is also true in the slightly more general case of α ≤ β.

(b)

Proof. We also show this by transfinite induction on γ. For γ = 0 we clearly have

α · γ = α · 0 = 0 = β · 0 = β · γ

so that α · γ ≤ β · γ is true. Now suppose that α · γ ≤ β · γ so that we have

α · (γ + 1) = α · γ + α (by Definition 6.5.6b)

< α · γ + β (by Lemma 6.5.4 since α < β)

≤ β · γ + β (by part (a) and the induction hypothesis)

= β · (γ + 1) (by Definition 6.5.6b again) .

Lastly, suppose that γ is a nonzero limit ordinal and that α · δ < β · δ for all δ < γ. The argument
is analogous to that in part (a). Let A = {α · δ | δ < γ} and tentatively suppose that α · γ > β · γ.
Then β · γ < α · γ = supA so that β · γ is not an upper bound of A. Hence there is a δ < γ such
that β · γ < α · δ. We then have that

β · δ ≤ sup {β · ε | ε < γ} = β · γ < α · δ ,

but this contradicts the induction hypothesis since δ < γ. So it has to be that α ·γ ≤ β ·γ as desired.
This completes the inductive proof.

A case in which α < β but α · γ = β · γ is clearly provided when γ = 0 so that ≤ in the conclusion
cannot be replaced with <. Similarly here if α = β then α · γ = β · γ so that α · γ ≤ β · γ is still
true. Hence the conclusion is also true in the slightly more general case of α ≤ β.
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Exercise 6.5.9

Show that the following rules to not hold for all ordinals α, β, and γ:

(a) If α+ γ = β + γ then α = β.

(b) If γ > 0 and α · γ = β · γ, then α = β.

(c) (β + γ) · α = β · α+ γ · α.

Solution:

Lemma 6.5.9.1. If n > 0 is a natural number then n · ω = ω.

Proof. By Definition 6.5.6 we have that n · ω = sup {n · k | k < ω} but clearly n · k is a natural
number for any k < ω so that n · ω = sup {n · k | k < ω} = sup {k | k < ω} = ω.

Main Problem.

(a) Let α = 1, β = 2, and γ = ω so that

α+ γ = 1 + ω = ω = 2 + ω = β + γ

by Lemma 6.5.5.3 but α = 1 < 2 = β so that α 6= β.

(b) Again let α = 1, β = 2, and γ = ω so that γ = ω > 0 and

α · γ = 1 · ω = ω = 2 · ω = β · γ

by Lemma 6.5.9.1. Clearly though α = 1 < 2 = β so that α 6= β.

(c) Here let α = ω, β = 1, and γ = 2. Then we have

(β + γ) · α = (1 + 2) · ω = 3 · ω = ω

by Lemma 6.5.9.1, whereas

β · α+ γ · α = 1 · ω + 2 · ω = ω + ω = ω · 2 ,

where we have used Lemma 6.5.9.1 here as well as Example 6.5.7b. That (β + γ) · α = ω = ω · 1 6=
ω · 2 = β · α+ γ · α follows from Exercise 6.5.7b.

Exercise 6.5.10

An ordinal α is a limit ordinal if and only if α = ω · β for some β.

Solution:

Lemma 6.5.10.1. If α is an ordinal then α < α + ω and α + ω is the next limit ordinal after α,
i.e. every ordinal β such that α < β < α+ ω is a successor ordinal.

Proof. Consider any ordinal α. First we note that clearly α = α+ 0 < α+ω by Lemma 6.5.6a since
0 < ω. It also clearly follows from Lemma 6.5.4.1 that α+ ω is a limit ordinal.

Now suppose that β is any ordinal such that α < β < α+ ω. Since α < β there is a unique ordinal
γ such that α + γ = β by Lemma 6.5.5. Now, since α + 0 = α < β = α + γ it follows again from
Lemma 6.5.6a that 0 < γ. Similarly we have α+ γ = β < α+ ω so that by the same lemma γ < ω.
Hence 0 < γ < ω so that γ is a nonzero natural number. In particular γ ≥ 1 so that n = γ − 1 is
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also a natural number and γ = n+ 1. We then have that β = α+ γ = α+ (n+ 1) = (α+ n) + 1 so
that clearly β is a successor ordinal.

Main Problem.

Proof. (→) Suppose to the contrary that not every limit ordinal is equal to ω · β for some β. Then
let α be a limit ordinal such that α 6= ω · γ for every ordinal γ. Now let β be the set of ordinals δ
such that ω · δ < α, noting that it could potentially be the empty set. We claim that β is an ordinal
number and that moreover it is a limit ordinal.

Clearly if β = ∅ = 0 then it is a limit ordinal, so assume that β 6= ∅. Then consider any δ ∈ β so
that ω · δ < α. Also consider any x ∈ δ so that x is also an ordinal number by Lemma 6.2.8 and
moreover that x < δ. It then follows from Exercise 6.5.7a that ω ·x < ω · δ < α. Hence we have that
x ∈ β so that δ ⊆ β since x was arbitrary. Since δ was also arbitrary this shows that β is transitive.
Also since β is nonempty set of ordinals it follows from Theorem 6.2.6d that β is well-ordered. Thus
by definition β is an ordinal number.

Now consider any δ < β so that δ ∈ β so that ω · δ < α. By Lemma 6.5.10.1 we have that
ω · δ + ω = ω · (δ + 1) is the next limit ordinal after ω · δ (i.e. there are no limit ordinals between
them) so it has to be that ω · (δ + 1) ≤ α since otherwise α would be a limit ordinal between ω · δ
and ω · (δ+ 1). But since α 6= ω · γ for all ordinals γ it cannot be that α = ω · (δ+ 1). Thus it must
be that ω · (δ + 1) < α so that δ + 1 ∈ β so that δ + 1 < β. This shows that β is a limit ordinal by
Lemma 6.5.1.2.

Now we claim that ω ·β = α, which is of course is a contradiction that proves the desired result. To
see this let A = {ω · δ | δ < β} so that by Definition 6.5.6c we have that ω · β = supA since β is a
limit ordinal. Now since δ < β means that δ ∈ β so that ω · δ < α by the definition of β, clearly α
is an upper bound of A so that ω · β = supA ≤ α. However, if it were the case that ω · β < α then
we would have by definition that β ∈ β which contradicts Lemma 6.2.7 since we have shown that β
is an ordinal. Thus the only possibility is that ω · β = α, which gives rise to the contradiction.

Moreover, we can show that β is unique. To see this, consider β1 and β2 where α = ω · β1 and
α = ω · β2. Then clearly ω · β1 = ω · β2 so that β1 = β2 by Exercise 6.5.7b since clearly ω 6= 0.

(←) Suppose that α = ω · β for some ordinal β. Then the result that α is a limit ordinal follows
immediately from Lemma 6.5.6.2 since ω is a limit ordinal.

Exercise 6.5.11

Find a set A of rational numbers such that (A,≤Q) is isomorphic to (α ≤) where

(a) α = ω + 1,

(b) α = ω · 2,

(c) α = ω · 3,

(d) α = ωω,

(e) α = ε.

[Hint: {n− 1/m | m,n ∈N − {0}} is isomorphic to ω2, etc.]

Solution:

Lemma 6.5.11.1. If β is an initial segment of an ordinal α then β is also an ordinal.

Proof. By Lemma 6.1.2 there is an a ∈ α such that β = {x ∈ α | x < a}. Also, since a ∈ α and α is
an ordinal, a is an ordinal as well by Lemma 6.2.8. Finally, by the comments after Theorem 6.2.10, β
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is simply the ordinal a since β = {x ∈ α | x < a} and each x in that set is an ordinal (by Lemma 6.2.8
since each x ∈ α and α is an ordinal).

Lemma 6.5.11.2. If A is a set of ordinals then ordinal α = supA if and only if α is the least upper
bound of A, i.e. α is an upper bound of A and β is not an upper bound of A for any β < α.

Proof. (→) First suppose that α = supA. Then by the remarks following the proof of Theorem 6.2.6
in the text α is an upper bound of A and if β is an upper bound of A then α ≤ β. This last statement
is simply the contrapositive of the statement that β < α implies that β is not an upper bound of A
and hence is logically equivalent.

(←) We show that an ordinal α with the least upper bound property for A is unique, which suffices
to show the result since if β has this property then β = supA since supA does as well (by what was
just shown above) and the ordinal having this property is unique.

So suppose that ordinals α and β both have the least upper bound property for A but that α 6= β.
Without loss of generality we can assume then that α < β. But then, since β has the least upper
bound property, α cannot be an upper bound of A, which contradicts the fact that α also has the
least upper bound property! Hence it has to be that α = β, which shows the uniquness.

Next we need to build up a little theory.

Definition 6.5.11.3. For an ordinal α we call a set Eα an embedding of α if it has the following
properties:

1. Eα is a subset of Q.

2. Eα is order isomorphic to α under the usual ordering of the rationals.

3. For some a and b in Q, a ≤ x < b for every x ∈ Eα. We denote this by saying a ≤ Eα < b or
that Eα is an embedding in [a, b).

We call Uα a unit embedding of α if it is an embedding of α in [0, 1).

Theorem 6.5.11.4. If Eα is an embedding of α in [a, b) then for each x ∈ Eα there is a ∆x ∈ Q+

such that x + ∆x ≤ b and if y ∈ Q and x < y < x + ∆x then y is not in Eα. That is, x is not a
limit point from the right.

Proof. Consider any x ∈ Eα, noting that x < b.

If x is the greatest element of Eα then let ∆x = b − x, noting that ∆x > 0 since b > x. We also
have

x+ ∆x = x+ b− x = b ≤ b .

Then consider any y ∈ Q where x < y < x+ ∆x so that clearly y /∈ Eα since otherwise x would not
be the greatest element of Eα.

On the other hand if x is not the greatest element of Eα then let f be the isomorphism between α
and Eα and let β = f−1(x). It follows that β is not the greatest element of α so that β + 1 ∈ α
as well. Then let ∆x = f(β + 1) − x, noting that ∆x > 0 since f(β + 1) > f(β) = x since f is an
isomorphism. We also have

x+ ∆x = x+ f(β + 1)− x = f(β + 1) < b

since f(β + 1) ∈ Eα. Now consider any y ∈ Q where f(β) = x < y < x+ ∆x = f(β + 1). If it were
the case that y ∈ Eα then we would have that β < f−1(y) < β+ 1 since f is an isomorphism, which
is impossible since β is an ordinal. So it must be that y /∈ Eα as desired.
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Corollary 6.5.11.5. If Eα is an embedding and x and y are in Eα where x < y then x+ ∆x ≤ y,
where ∆x ∈ Q+ is that guaranteed by Theorem 6.5.11.4.

Proof. If it were the case that x + ∆x > y then we have that x < y < x + ∆x, which is in direct
contradiction to Theorem 6.5.11.4 since y ∈ Eα.

For an embedding Eα consider p ∈ Q+ and q ∈ Q. We define a set denoted by pEα + q to be the
set {px+ q | x ∈ Eα}.

Theorem 6.5.11.6. If Eα is an embedding in [a, b) then Fα = pEα + q is also an embedding of α
for any p ∈ Q+ and q ∈ Q. Moreover pa+ q ≤ Fα < pb+ q.

Proof. So first consider any y ∈ Fα so that y = px+ q for some x ∈ Eα. Since Eα is an embedding
x ∈ Q so that clearly y = px + q ∈ Q as well since p, q ∈ Q. Hence since y was arbitrary we have
that Fα ⊆ Q so that (1) is satisfied.

Now consider the mapping f : Eα → Fα defined by f(x) = px + q for x ∈ Eα. Clearly Fα =
{f(x) | x ∈ Eα} so that f is onto. Consider then x, y ∈ Eα where x < y so that we have

x < y

px < py (since p > 0)

px+ q < py + q

f(x) < f(y) .

Hence f is an isomorphism. Thus Fα is isomorphic to Eα so that clearly it is also isomorphic to α
since Eα is, thereby showing (2).

Lastly for any y ∈ Fα we have y = px+ q for some x ∈ Eα. We then have

a ≤ x < b

pa ≤ px < pb (since p > 0)

pa+ q ≤ px+ q < pb+ q

pa+ q ≤ y < pb+ q .

This shows both (3) and the last statement.

For an embedding Eα in [a, b) and a unit embedding Uβ for ordinals α and β we define the product

Eα · Uβ =
⋃
x∈Eα

(∆x · Uβ + x) ,

where ∆x ∈ Q+ is that guaranteed to exist by Theorem 6.5.11.4.

Theorem 6.5.11.7. For an embedding Eα in [a, b) and a unit embedding Uβ the product Eα ·Uβ is
an embedding of β · α in [a, b).

Proof. First consider any y ∈ Eα · Uβ so that there is an x ∈ Eα such that y ∈ ∆x · Uβ + x. Since
y ∈ ∆x · Uβ + x is an embedding by Theorem 6.5.11.6 it follows that y ∈ Q, which shows (1) since
y was arbitrary.

Now since Eα is an embedding of α there is an isomorphism f : α → Eα. Similarly there is an
isomorphism g : β → Uβ since Uβ is an embedding of β. Consider α×β with lexicographic ordering
≺. Then define a mapping h : α× β → Eα · Uβ by

h(δ, ε) = ∆f(δ) · g(ε) + f(δ)
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for (δ, ε) ∈ α× β, noting that ∆f(δ) is that guaranteed by Theorem 6.5.11.4 since f(δ) ∈ Eα.

First we claim that h is surjective. So consider any z ∈ Eα ·Uβ so that there is an x ∈ Eα such that
z ∈ ∆x ·Uβ + x. By definition then there is a y ∈ Uβ such that z = ∆x · y + x. Now let δ = f−1(x)
and ε = g−1(y) so that x = f(δ) and y = g(ε), which can be done since f and g are bijections. We
then have that

h(δ, ε) = ∆f(δ) · g(ε) + f(δ) = ∆x · y + x = z ,

which shows that h is surjective since z was arbitrary.

We also claim that h is an isomorphism and therefore also injective. So consider any (δ1, ε1) and
(δ2, ε2) in α × β where (δ1, ε1) ≺ (δ2, ε2). By the definition of lexicographic ordering we have the
following:

Case: δ1 < δ2. Then since f is an isomorphism f(δ1) < f(δ2), and also by Corollary 6.5.11.5 it
follows that f(δ1) < f(δ1) + ∆f(δ1) ≤ f(δ2). We also have that

∆f(δ1) · g(ε1) + f(δ1) < ∆f(δ1) + f(δ1)

by Theorem 6.5.11.6 since g(ε1) ∈ Uβ and Uβ is a unit embedding. Also since g(ε2) ≥ 0 (since
g(ε2) ∈ Uβ) and ∆f(δ2) > 0 (by Theorem 6.5.11.4) that

f(δ2) ≤ ∆f(δ2) · g(ε2) + f(δ2) .

Combining all this results in

h(δ1, ε1) = ∆f(δ1) · g(ε1) + f(δ1) < ∆f(δ1) + f(δ1) ≤ f(δ2) = h(δ2, ε2) .

Case: δ1 = δ2 and ε1 < ε2. Then obviously f(δ1) = f(δ2) so that ∆f(δ1) = ∆f(δ2) but also
g(ε1) < g(ε2) since g is an isomorphism. We then have

g(ε1) < g(ε2)

∆f(δ1) · g(ε1) < ∆f(δ1) · g(ε2) (since ∆f(δ1) > 0)

∆f(δ1) · g(ε1) + f(δ1) < ∆f(δ1) · g(ε2) + f(δ1)

∆f(δ1) · g(ε1) + f(δ1) < ∆f(δ2) · g(ε2) + f(δ2) (since ∆f(δ1) = ∆f(δ2) and f(δ1) = f(δ2))

h(δ1, ε1) < h(δ2, ε2) .

Thus in all cases h(δ1, ε1) < h(δ2, ε2), which shows that h is an isomorphism since (δ1, ε1) and (δ2, ε2)
were arbitrary. Hence Eα ·Uβ is isomorphic to the lexicographic ordering of α×β and therefore also
to β · α by Theorem 6.5.8. This shows part (2) of the embedding definition.

Lastly consider any z ∈ Eα · Uβ so that there is an x ∈ Eα such that z ∈ ∆x · Uβ + x. Then since
Uβ < 1 we have that z < ∆x + x ≤ b by Theorems 6.5.11.6 and 6.5.11.4. Also since 0 ≤ Uβ it
follows from Theorem 6.5.11.6 that a ≤ x ≤ z since a ≤ Eα. Since z was arbitrary this shows that
a ≤ Eα · Uβ < b, which shows (3). This completes the proof.

Theorem 6.5.11.8. Suppose that α is a limit ordinal and that {αn} is a sequence (n ∈ ω) of nonzero
ordinals in α. Also suppose that Eω is an embedding of ω in [a, b) and Uαn is a unit embedding of
αn for each n ∈ ω. Suppose further that α = supn∈ω αn and that αn+αn+1 = αn+1 for every n ∈ ω,
noting that clearly n+ 1 ∈ ω as well. Lastly, suppose that f is the isomorphism from ω to Eω. Let

An = ∆f(n) · Uαn + f(n)

for n ∈ ω. Then the set

Eα =
⋃
n∈ω

An

is an embedding of α in [a, b).
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Proof. First consider any n and m in ω where n 6= m. We can assume without loss of generality n <
m. Then f(n) < f(m) since f is an isomorphism and, moreover, it follows from Corollary 6.5.11.5
that ∆f(n) + f(n) ≤ f(m). Hence by Theorem 6.5.11.6 we have that

An = ∆f(n) · Uαn + f(n) < ∆f(n) + f(n) ≤ f(m) ≤ ∆f(m) · Uαm + f(m) = Am

since Uαn and Uαm are unit embeddings. Hence all the An are disjoint and moreover A0 < A1 <
A2 < . . .. Also clearly by Theorem 6.5.11.6 each An is isomorphic to αn since Uαn is.

Now for p, q ∈ Q let [p, q) = {x ∈ Q | q ≤ x < q}. We then claim that Eα ∩ [a, f(n + 1)) for
any n ∈ ω is isomorphic to αn, which we shall show by induction on n. For n = 0 we clearly
have that a ≤ A0 ≤ ∆f(0) + f(0) ≤ f(1) ≤ Am for any m ≥ 1. From this it follows that
Eα ∩ [a, f(n+ 1)) = Eα ∩ [a, f(1)) = A0, which is isomorphic to α0 = αn by what was shown above.

Now suppose that Eα ∩ [a, f(n + 1)) is isomorphic to αn. We clearly have Eα ∩ [a, f(n + 2)) =
[Eα ∩ [a, f(n+ 1))] ∪ [Eα ∩ [f(n+ 1), f(n+ 2))] and that Eα ∩ [f(n + 1), f(n + 2)) = An+1, which
is isomorphic to αn+1 by what was shown above. Then Eα ∩ [a, f(n + 2)) is the sum of Eα ∩
clopa, f(n+ 1) and Eα ∩ [f(n + 1), f(n + 2)) = An+1 so that by Theorem 6.5.3, the induction
hypothesis, and the given property of {αn} it is isomorphic to αn + αn+1 = αn+1. This completes
the inductive proof.

We also show that Eα ∩ [a, f(n+ 1)) is an initial segment of Eα for any n ∈ ω. So consider any such
n, any x ∈ Eα∩ [a, f(n+1)), and any y ∈ Eα where y < x. Since a ≤ Eα clearly a ≤ y. We also have
y < x < f(n+ 1) (since x ∈ [a, f(n+ 1))). Hence y ∈ [a, f(n+ 1)) so that also y ∈ Eα∩ [a, f(n+ 1)),
which shows that Eα ∩ [a, f(n+ 1)) is an initial segment of Eα by definition.

Now we claim that Eα is a well-ordered set. So consider any nonempty subset B of Eα. Then there is
some x ∈ B and since x ∈ Eα there is an n ∈ ω such that x ∈ An. Then clearly x ∈ B ∩ [a, f(n+ 1)]
so that B ∩ [a, f(n + 1)] is a nonempty subset of Eα ∩ [a, f(n + 1)). It was shown above that
Eα ∩ [a, f(n + 1)) is isomorphic to αn so that it is a well-ordered set. Hence B ∩ [a, f(n + 1)]
has a least element y. We claim that this is the least element of B, so consider any z ∈ B. If
z < f(n+ 1) then clearly z ∈ B ∩ [a, f(n+ 1)) so that obviously y ≤ z since y is the least element of
B ∩ [a, f(n+ 1)). On the other hand if z ≥ f(n+ 1) then y < f(n+ 1) ≤ z (since y ∈ [a, f(n+ 1)))
so that again y ≤ z. Since z was arbitrary this shows that y is in fact the least element of B. Since
B was an arbitrary subset of Eα this shows that Eα is well-ordered.

Since Eα is a well-ordered set it is isomorphic to some ordinal γ by Theorem 6.3.1. We then
claim that γ = α. Letting C = {αn | n ∈ ω}, we show this by showing that γ is the least upper
bound of C, which shows that γ = α by the least upper bound property (Lemma 6.5.11.2) since
α = supC by definition. So first consider any αn ∈ C. It was shown above that αn is isomorphic to
Eα ∩ [a, f(n+ 1)), and this was shown to be an initial segment of Eα, which itself is isomorphic to
γ. Thus it follows that that αn < γ so that αn ≤ γ is true. Since αn was arbitrary this shows that
γ is an upper bound of C.

Now consider any ordinal δ < γ so that δ ∈ γ. Let g be the isomorphism from γ to Eα since it
has been shown that they are isomorphic. Then since g(δ) ∈ Eα so that there is an n ∈ ω such
that g(δ) ∈ An. Then also g(δ) ∈ Eα ∩ [a, f(n + 1)). Since Eα ∩ [a, f(n + 1)) is an initial segment
of Eα (just shown above) it follows that g−1[Eα ∩ [a, f(n + 1))] is an initial segment of γ. Since
γ is an ordinal it follows from Lemma 6.5.11.1 that g−1[Eα ∩ [a, f(n + 1))] is an ordinal. Since
g−1 � Eα ∩ [a, f(n + 1)) is an isomorphism (since g is) and Eα ∩ [a, f(n + 1)) is isomorphic to αn
(shown above), it follows that g−1[Eα∩[a, f(n+1))] is in fact αn! Then, since g(δ) ∈ Eα∩[a, f(n+1))
we have that δ ∈ g−1[Eα ∩ [a, f(n+ 1))] = αn so that δ < αn. Hence δ is not an upper bound of C.
Since δ was arbitrary this shows that γ is in fact the least upper bound of C so that γ = α.

Parts (1) and (3) of the definition of an embedding are trivial to show by the same arguments as
those used in the proof of Theorem 6.5.11.7. Hence Eα is an embedding of α in [a, b).
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Main Problem.

(a) Define f : ω → Q by

f(n) = 1− 1

n+ 1
=

n

n+ 1

for n ∈ ω. Then let Uω = {f(n) | n ∈ ω}. We claim that Uω is a unit embedding of ω.

Proof. Clearly Uω ⊆ Q so that (1) is satisfied. To show (2) let g : ω → Uα be defined by g(n) =
f(n) = 1− 1/(n+ 1), which is clearly onto based on the definition of Uα. We also claim that g is an
isomorphism. To this end consider any n,m ∈ ω where n < m. We then have

n < m

n+ 1 < m+ 1

n+ 1

m+ 1
< 1 (since m+ 1 ≥ 1 > 0 since m ≥ 0)

1

m+ 1
<

1

n+ 1
(since n+ 1 ≥ 1 > 0 since n ≥ 0)

− 1

m+ 1
> − 1

n+ 1

1− 1

m+ 1
> 1− 1

n+ 1

g(m) > g(n)

g(n) < g(m) .

Hence g is an isomorphism so that Uω is indeed isomorphic to ω, which shows (2).

Lastly consider any x ∈ Uω so that x = f(n) = 1− 1/(n+ 1) for some n ∈ ω. Then we have

n ≥ 0 > −1

n+ 1 ≥ 1 > 0

1 ≥ 1

n+ 1
> 0 (since n+ 1 ≥ 1 > 0)

−1 ≤ − 1

n+ 1
< 0

0 ≤ 1− 1

n+ 1
< 1

0 ≤ x < 1 .

Since x was arbitrary this shows that 0 ≤ Uω < 1 so that (3) holds and Uω is a unit embedding.

Now let E1 = {1}. Clearly this is an embedding of the ordinal 1. Moreover we have 0 ≤ Uω < 1 ≤
E1 < 2 so that Uω and E1 are disjoint. Then clearly Uω ∪ E1 is the sum of Uω and E1 so that it
is isomorphic to ω + 1 by Theorem 6.5.3 and thus an embedding of ω + 1 since it is trivial to show
that 0 ≤ Uω ∪ E1 < 2.

(b) Now consider the same Uω from part (a) and let Eω = 1 · Uω + 1 so that by Theorem 6.5.11.6
this is another embedding of ω and 1 ≤ Eω < 2. Hence we have that 0 ≤ Uω < 1 ≤ Eω < 2 so
that Uω and Eω are disjoint. Also clearly Eω·2 = Uω ∪ Eω is the sum of Uω and Eω so that it is
isomorphic to ω + ω = ω · 2 by Theorem 6.5.3. Hence since also 0 ≤ Eω·2 < 2 (it is trivial to show)
it is an embedding of ω · 2 as desired.

(c) Considering the same Eω·2 from part (b) let Fω = 1·Uω+2 so that it is yet another an embedding
of ω and 2 ≤ Fω < 3 by Theorem 6.5.11.6. Then by the same arguments as in part (b) it follows
that Eω·2 ∪ Fω is an embedding of ω · 2 + ω = ω · 2 + ω · 1 = ω · (2 + 1) = ω · 3 as desired.
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(d) We first aim to construct a unit embedding of ωn for any n ∈ ω. We do this recursively. For
n = 0 clearly Uω0 = {0} is a unit embedding of ω0 = 1. We have also already constructed Uω
as a unit embedding of ω in part (a). Now suppose we have constructed Uωn , a unit embedding
of ωn. Then we let Uωn+1 = Uω · Uωn so that Uωn+1 is a unit embedding of ωn · ω = ωn+1 by
Theorem 6.5.11.7.

Clearly then {ωn} is a sequence of ordinals in ωω and by definition ωω = supn∈ω ω
n. We also have

in hand the embedding Uω and Uωn for each n ∈ ω as just constructed recursively. Now consider
any n ∈ ω so that we have we have

ωn + ωn+1 = ωn · 1 + ωn · ω = ωn · (1 + ω) = ωn · ω = ωn+1 .

We can therefore apply Theorem 6.5.11.8 to construct a unit embedding Uωω of ωω.

(e) Here we use the operation of tetration, which we define recursively for all ordinals. So for all
ordinals β we define:

1. 0β = 1

2. α+1β = β
αβ for all α

3. αβ = sup {γβ | γ < α} for all limit α 6= 0 .

Thus we have 1ω = ω, 2ω = ωω, 3ω = ωω
ω

, etc. We then have that ε = ωω = supn<ω
nω by

definition.

Despite working and thinking about this problem for weeks I have been unable to come up with
a way to embed ε. To be sure we can easily construct embeddings of ordinals larger than ωω,
for example we can embed ωω · ωω = ωω+ω = ωω·2 by simply applying Theorem 6.5.11.7 to our
just-constructed embedding of ωω. However, I could think of no way to get to ε easily using this
approach. Ideally what we would have is a way to construct an embedding of ωα for any ordinal
α for which we already have an embedding. This would easily lead to an embedding of ε using
Theorem 6.5.11.8 after constructing the embeddings for nω recursively. However, I was unable to
think of how to construct this and eventually had to admit defeat and move on.

Exercise 6.5.12

Show that (ω · 2)2 6= ω2 · 22.

Solution:

Proof. We have

(ω · 2)
2

= (ω · 2) · (ω · 2) (by Example 6.5.10a)

= [ω · (2 · ω)] · 2 (by the associativity of multiplication)

= (ω · ω) · 2 (by Lemma 6.5.9.1)

= ω2 · 2

whereas

ω2 · 22 = ω2 · 4

so that the two are clearly not equal by Exercise 6.5.7b since 2 6= 4 and ω2 6= 0.
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Exercise 6.5.13

(a) αβ+γ = αβ · αγ .

(b)
(
αβ
)γ

= αβ·γ .

Solution:

Lemma 6.5.13.1. Suppose that α is an ordinal, β 6= 0 is a limit ordinal, and {γδ} for δ < α + β
is a non-decreasing transfinite sequence of ordinals. Then

sup
δ<α+β

γδ = sup
δ<β

γα+δ .

Proof. First we note that α+β is a nonzero limit ordinal by Lemma 6.5.4.1 Let A = {γδ | δ < α+ β}
and

γ = sup
δ<β

γα+δ .

We show that γ is the least upper bound of A, which shows the result by the least upper bound
property (Lemma 6.5.11.2). First consider any γδ in A so that δ < α+ β.

If δ < α then γδ ≤ γα = γα+0 ≤ γ since the sequence is non-decreasing and 0 < β. On the other
hand if δ ≥ α then by Lemma 6.5.5 there is a unique ordinal ε such that α + ε = δ. Then, since
δ = α + ε < α + β it follows from Lemma 6.5.4a that ε < β. Hence by the definition of γ we have
that γδ = γα+ε ≤ γ. Thus in all cases γδ ≤ γ, which shows that γ is an upper bound of A since γδ
was arbitrary.

Now consider any ε < γ. Then by the definition of γ it follows that there is a δ < β such that
ε < γα+δ since ε is not an upper bound {γα+ζ | ζ < β}. Thus again by Lemma 6.5.4a we have that
α+ δ < α+ β so that γα+δ ∈ A. Hence since ε < γα+δ it cannot be that ε is an upper bound of A.
Since ε < γ was arbitrary this completes the proof that γ = supA as desired.

Lemma 6.5.13.2. If α is an ordinal such that α > 0 then 0α = 0. Otherwise if α = 0 then
0α = 00 = 1.

Proof. First if α = 0 then clearly 0α = 00 = 1 by Definition 6.5.9a. Then if α > 0 we show the
result by transfinite induction on α. First if α = 1 then we have

0α = 01 = 00+1 = 00 · 0 = 1 · 0 = 0 ,

where we have used Definitions 6.5.9b and 6.5.6a. Now suppose that 0α = 0 so that we have

0α+1 = 0α · 0 = 0 ,

where we again have used the same two definitions. Lastly suppose that α is a nonzero limit ordinal
and that 0β = 0 for all β < α. Then we have by Definition 6.5.9c that

0α = sup
β<α

0β = sup
β<α

0 = 0 ,

where we have used the induction hypothesis.

Lemma 6.5.13.3. If α is an ordinal then 1α = 1.

Proof. We show this by transfinite induction on α. First for α = 0 we have 1α = 10 = 1 by
Definition 6.5.9a. Now assume that 1α = 1 so that 1α+1 = 1α · 1 = 1α = 1 by Definition 6.5.9b and
the induction hypothesis.
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Lastly suppose that α is a nonzero limit ordinal and that 1β = 1 for all β < α. We then clearly have
by Definition 6.5.9c that

1α = sup
β<α

1β = sup
β<α

1 = 1 .

This completes the inductive proof.

Lemma 6.5.13.4. If α, β, and γ are ordinals where α > 0 and β ≤ γ then αβ ≤ αγ .

Proof. Clearly if β = γ then αβ = αγ so that the conclusion holds. So assume that β < γ.

Case: α = 1. Then by Lemma 6.5.13.3 we have

αβ = 1β = 1 = 1γ = αγ .

Case: α > 1. Then it follows from Exercise 6.5.14b that αβ < αγ .

Hence in either case αβ ≤ αγ is true.

(a)

Proof. We show this by transfinite induction on γ. First for γ = 0 we have

αβ+γ = αβ+0

= αβ (by Definition 6.5.1a)

= αβ · 1 (by Example 6.5.7a )

= αβ · α0 (by Definition 6.5.9a)

= αβ · αγ .

Now assume that αβ+γ = αβ · αγ so that we have

αβ+(γ+1) = α(β+γ)+1 (by Definition 6.5.1b)

= αβ+γ · α (by Definition 6.5.9b)

=
(
αβ · αγ

)
· α (by the induction hypothesis)

= αβ · (αγ · α) (by the associativity of multiplication)

= αβ · αγ+1 . (by Definition 6.5.9b)

Lastly suppose that γ is a nonzero limit ordinal and that αβ+δ = αβ ·αδ for all δ < γ. First if α = 0
then αβ+γ = 0β+γ = 0 by Lemma 6.5.13.2 since β + γ > 0 since γ > 0. Hence we have

αβ+γ = 0 = 0β · 0 = 0β · 0γ = αβ · αγ ,

where we have used Definition 6.5.6a and the fact that 0γ = 0 by Lemma 6.5.13.2 since γ > 0.

On the other hand if α > 0 then we have by Definition 6.5.9c that

αβ+γ = sup
δ<β+γ

αδ .

It then follows from Lemma 6.5.13.4 that
{
αδ
}

for δ < β + γ is a non-decreasing sequence since
α > 0. Thus we can apply Lemma 6.5.13.1 so that

αβ+γ = sup
δ<β+γ

αδ = sup
δ<γ

αβ+δ = sup
δ<γ

(
αβ · αδ

)
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by the induction hypothesis. It then follows from statement (6.6.1) in the text that

αβ+γ = sup
δ<γ

(
αβ · αδ

)
= αβ · sup

δ<γ
αδ = αβ · αγ

by Definition 6.5.9c. This completes the transfinite induction.

(b)

Proof. We show this by transfinite induction on γ as well. First for γ = 0 we have(
αβ
)γ

=
(
αβ
)0

= 1 (by Definition 6.5.9a)

= α0 (again by Definition 6.5.9a)

= αβ·0 = αβ·γ . (by Definition 6.5.6a)

Next suppose that
(
αβ
)γ

= αβ·γ so that we have(
αβ
)γ+1

=
(
αβ
)γ · αβ (by Definition 6.5.9b)

= αβ·γ · αβ (by the induction hypothesis)

= αβ·γ+β (by part a)

= αβ·(γ+1) . (by Definition 6.5.6b)

Lastly, suppose that γ is a nonzero limit ordinal and that
(
αβ
)δ

= αβ·δ for all δ < γ.

Case: α = 0. Then if β = 0 we have(
αβ
)γ

=
(
00
)γ

= 1γ (by Definition 6.5.9a)

= 1 (by Lemma 6.5.13.3)

= 00 (by Definition 6.5.9a)

= 00·γ (by Lemma 6.5.1.1)

= αβ·γ .

On the other hand if β > 0 then first we note that 0 = β · 0 < β · γ by Definition 6.5.6a and
Exercise 6.5.7a since both β 6= 0 and 0 < γ. We then have(

αβ
)γ

=
(
0β
)γ

= 0γ (by Lemma 6.5.13.2 since β > 0)

= 0 (by Lemma 6.5.13.2 again since γ > 0)

= 0β·γ (by Lemma 6.5.13.2 yet again since β · γ > 0 as shown above)

= αβ·γ .

Case: α > 0. Then we have(
αβ
)γ

= sup
δ<γ

(
αβ
)δ

(by Definition 6.5.9c)

= sup
δ<γ

αβ·δ (by the induction hypothesis)

= αsupδ<γ β·δ (by statement (6.6.1) in the text since α > 0)

= αβ·γ (by Definition 6.5.6c)

Since these cases are exhaustive this completes the inductive proof.
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Exercise 6.5.14

(a) If α ≤ β then αγ ≤ βγ .

(b) If α > 1 and if β < γ, then αβ < αγ .

Solution:

Lemma 6.5.14.1. Suppose that γ is a nonzero limit ordinal and {αν} and {βν} for ν < γ are two
transfinite sequences. Also suppose that αν ≤ βν for every ν < γ. Then

sup
ν<γ

αν ≤ sup
ν<γ

βν .

Proof. First let A = {αν | ν < γ} and B = {βν | ν < γ} be the ranges of the sequences so that we
must show that supA ≤ supB. Now consider any α ∈ A so that α = αν for some ν < γ. We then
have that

α = αν ≤ βν ≤ supB

so that supB is an upper bound of A since α was arbitrary. It then follows from the least upper
bound property that supA ≤ supB as desired.

Main Problem.

(a)

Proof. We show this by transfinite induction on γ. So first suppose that α ≤ β. Then for γ = 0 we
clearly have

αγ = α0 = 1 = β0 = βγ ,

where we have used Definition 6.5.9a twice. Then αγ ≤ βγ clearly holds.

Now suppose that αγ ≤ βγ so that we have

αγ+1 = αγ · α (by Definition 6.5.9b)

≤ βγ · α (follows from Exercise 6.5.8b and the induction hypothesis)

≤ βγ · β (follows from Exercise 6.5.7 since α ≤ β)

= βγ+1 . (by Definition 6.5.9b)

Lastly suppose that γ is a nonzero limit ordinal and that αδ ≤ βδ for all δ < γ. We then have

αγ = sup
δ<γ

aδ (by Definition 6.5.9c)

≤ sup
δ<γ

βδ (by Lemma 6.5.14.1 and the induction hypothesis)

= βγ , (by Definition 6.5.9c again)

which completes the transfinite induction.

(b)

Proof. Suppose that α > 1. We then show the result by transfinite induction on γ similarly to the
proof of Exercise 6.5.7a. Suppose that β < δ implies that αβ < αδ for all δ < γ and that β < γ.

Case: γ is a successor ordinal. Then γ = δ + 1 for an ordinal δ and β ≤ δ since β < γ = δ + 1. We
then have

αβ ≤ αδ (by the induction hypothesis if β < δ and trivially if β = δ)
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= αδ · 1
< αδ · α (by Exercise 6.5.7a since 1 < α and αδ 6= 0)

= αδ+1 (by Definition 6.5.9b)

= αγ .

Case: γ is a limit ordinal. Here we have that β + 1 < γ as well since β < γ. We then have

αβ < αβ+1 (by the induction hypothesis since β < β + 1 < γ)

≤ sup
δ<γ

αδ (since the supremum is an upper bound)

= αγ . (by Definition 6.5.9c)

Thus in either case αβ < αγ , thereby completing the transfinite induction.

Exercise 6.5.15

Find the least ξ such that

(a) ω + ξ = ξ.

(b) ω · ξ = ξ, ξ 6= 0.

(c) ωξ = ξ.

[Hint for part (a): Let ξ0 = 0, ξn+1 = ω + ξn, ξ = sup {ξn | n ∈ ω}.]

Solution:

Lemma 6.5.15.1. Suppose that α and γ are a nonzero limit ordinals, that {αδ} is a transfinite
sequence indexed by γ, and that

α = sup
δ<γ

αδ .

Also suppose that βδ is another non-decreasing transfinite sequence indexed by α. Then

sup
δ<α

βδ = sup
δ<γ

βαδ .

Proof. First, let A = {αδ | δ < γ}, B = {βδ | δ < α}, and C = {βαδ | δ < γ} so that α = supA and
we must show that supB = supC. We show this by showing that supC has the least upper bound
property of B.

So first consider any βδ ∈ B so that δ < α. It then follows that δ is not an upper bound of A so
that there is a ξ < γ such that δ < αξ. From this we have that βδ ≤ βαξ ≤ supC since {βδ} is
a non-decreasing sequence and βαξ ∈ C. Since βδ was arbitrary this shows that supC is an upper
bound of B.

Now consider any δ < supC. Then δ is not an upper bound of C so that there is a ξ < γ such
that δ < βαξ . And since ξ < γ we have that αξ ∈ A so that αξ < supA = α since α is a limit
ordinal. Thus βαξ ∈ B. Since we have that δ < βαξ this show that δ is not an upper bound of B.
Hence since δ was arbitrary this concludes the proof that supB = supC by the least upper bound
property (Lemma 6.5.11.2).

Main Problem.

(a) We claim that the least such ordinal here is ξ = ω2.

Page 56



Proof. That this has the desired property (i.e. that ω + ξ = ξ) was shown in Exercise 6.5.3b.

Now we show that any ordinal α < ω2 does not have this property. So consider any such α so that
by Lemma 6.5.6.4 there are natural numbers n and k such that α = ω · n+ k. Thus we have

ω + α = ω + ω · n+ k = ω · 1 + ω · n+ k = ω · (1 + n) + k = w · (n+ 1) + k

We then have that

α = ω · n+ k = (ω · n+ k) + 0

< (ω · n+ k) + ω (by Lemma 6.5.4a since 0 < ω)

= ω · n+ (k + ω) (associativity of addition)

= ω · n+ ω = ω · n+ ω · 1
= ω · (n+ 1) (distributive law)

= ω · (n+ 1) + 0

≤ ω · (n+ 1) + k (by Lemma 6.5.4 since 0 ≤ k)

= ω + α

so that clearly ω + α 6= α. Since α < ω2 was arbitrary this shows our result.

(b) We claim that ξ = ωω is the first nonzero ordinal to have this property.

Proof. First we have

ω · ξ = ω · ωω = ω1 · ωω = ω1+ω = ωω = ξ

where we have used Exercise 6.5.13a. Thus ξ = ω2 has the desired property.

Now consider any 0 < α < ωω. Since by Definition 6.5.9c we have that ωω = supn<ω ω
n it follows

from the least upper bound property (Lemma 6.5.11.2) that there is an n < ω such that α < ωn since
α is not an upper bound of {ωn | n < ω}. From this is follows that the set A =

{
k ∈ ω | α < ωk

}
is not empty. Since this is a set of natural numbers (which is well-ordered) it has a least element
m. Note also that it has to be that m > 0 since were it the case that m = 0 then we would have
α < ωm = ω0 = 1, which implies that α = 0, which contradicts our initial supposition that 0 < α.
Thus m ≥ 1 so that m− 1 is still a natural number.

Since m is the least element of A it follows that α ≥ ωm−1 since otherwise m− 1 would be the least
element of A. Hence we have

ωm−1 ≤ α < ωm .

It then follows from Exercise 6.5.8b that

ω · ωm−1 ≤ ω · α
ω1 · ωm−1 ≤ ω · α
ω1+m−1 ≤ ω · α (by Exercise 6.5.13a)

ωm ≤ ω · α .

Putting this together, we have that
α < ωm ≤ ω · α

so that clearly ω · α 6= α. Since 1 < α < ωω was arbitrary, this shows that ωω is the least such
ordinal

(c) We claim here that ε = ωω is the least such ordinal, where we use the notation for tetration
introduced in Exercise 6.5.11e.
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Proof. To show that ε has the required property we must first show that the sequence defined by
{nω} for n < ω is non-decreasing even though this is somewhat obvious. We show this by induction.
For n = 0 we have

nω = 0ω = 1 < ω = ω1 = ω
0ω = 1ω = n+1ω

Now suppose that nω < n+1ω so that we have

n+1ω = ω
nω

< ω
n+1ω (by Exercise 6.5.14b and the induction hypothesis)

= n+2ω ,

which completes the induction.

Returning to the main problem, we then have

ωε = sup
α<ε

ωα (by Definition 6.5.9c since ε is clearly a limit ordinal)

= sup
n<ω

ω
nω (by Lemma 6.5.15.1 since {nω} is non-decreasing)

= sup
n<ω

n+1ω = ωω = ε

so that ε does have the desired property.

Now we must show that it is the least such ordinal that has this property. So consider any α < ε
then since ε = supn<ω

nω it follows that there is an n < ω such that α < nω by the least upper
bound property (Lemma 6.5.11.2). It then follows that the set A =

{
k ∈ ω | α < kω

}
is not empty.

Since this is a set of natural numbers it follows that it has a least element m.

Case: m = 0. Then α < mω = 0ω = 1 so that it must be that α = 0. But then we have

ωα = ω0 = 1 6= 0 = α

so that α does not have the property.

Case: m > 0. Then m ≥ 1 so that m − 1 is still a natural number. It then follows that α ≥ m−1ω
since otherwise m− 1 would be the least element of A. Thus we have

m−1ω ≤ α < mω .

It then follows from Exercise 6.5.14b that

ω
m−1ω ≤ ωα
mω ≤ ωα .

Thus we have
α < mω ≤ ωα

so that clearly α does not have the property since ωα 6= α. Since α was arbitrary and the cases
exhaustive this shows that ε is indeed the least such ordinal.

Exercise 6.5.16

(Characterization of Ordinal Exponentiation) Let α and β be ordinals. For f : β → α, let s(f) =
{ξ < β | f(ξ) 6= 0}. Let S(β, α) = {f | f : β → α and s(f) is finite}. Define ≺ on S(β, α) as follows:
f ≺ g if and only if there is ξ0 < β such that f(ξ0) < g(ξ0) and f(ξ) = g(ξ) for all ξ > ξ0. Show that
(S(β, α),≺) is isomorphic to (αβ , <).

Page 58



Solution:

First we define summation notation for ordinals. Since ordinal addition is not commutative we
define summation notation such that each additional term is pre-added to the previous terms, i.e.
added on the left. So, for example, we have

5∑
n=1

αn = α5 + α4 + α3 + α2 + α1 .

We also adopt the convention that
m∑
k=n

αk = 0

any time n > m.

Proof. First we note that if β = 0 = ∅ then the only function from β to α (it could even be here that
α = 0 = ∅) is the vacuous function ∅. Hence S(β, α) = {∅}, which is clearly vacuously isomorphic
to (in fact identical to) αβ = α0 = 1 = {0} = {∅}. Thus in the following we assume that β 6= 0,
which implies that α 6= 0 as well since functions from β to α cannot exist when β 6= 0 = ∅ but
α = 0 = ∅.

Also if α = 1 = {0} (and still β 6= 0) then there is clearly only a single function f : β → α, namely
that where f(ξ) = 0 for all ξ ∈ β. Hence S(β, α) = {f}, which is clearly trivially isomorphic to
αβ = 1β = 1 = {0}. Thus in what follows we shall assume the more interesting case when α > 1
(and β > 0).

Now we define a function h : S(β, α)→ αβ . For any f ∈ S(β, α) since s(f) is a finite set of ordinals
it follows that it is isomorphic to some natural number n. Thus its elements can be expressed as a
strictly increasing sequence {sk} for k < n where each sk ∈ β since s(f) ⊆ β. We now set

h(f) =

n−1∑
k=0

αsk · f(sk) ,

noting that it could be the case that n = 0 so that h(f) = 0, consistent with our convention.

First we show that h(f) ∈ αβ so that the range of h is in fact a subset of αβ . We begin by showing
by induction on m that

m∑
k=0

αsk · f(sk) < αsm+1 .

First for m = 0 we have

m∑
k=0

αsk · f(sk) =

0∑
k=0

αsk · f(sk)

= αs0 · f(s0)

< αs0 · α (by Exercise 6.5.7a since α 6= 0 and f(s0) < α)

= αs0+1 = αsm+1 (by Definition 6.5.9b)

Now suppose that
m∑
k=0

αsk · f(sk) < αsm+1 .

It follows from Exercise 6.5.14b that
αsm+1 ≤ αsm+1
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since {sk} is a strictly increasing sequence so that sm + 1 ≤ sm+1. We then have

m+1∑
k=0

αsk · f(sk) = αsm+1 · f(sm+1) +

m∑
k=0

αsk · f(sk)

< αsm+1 · f(sm+1) + αsm+1 (by the induction hypothesis and Lemma 6.5.4a)

≤ αsm+1 · f(sm+1) + αsm+1 (follows from Lemma 6.5.4 and the above)

= αsm+1 · [f(sm+1) + 1] (by Definition 6.5.6b)

= αsm+1 · α (by Exercise 6.5.7 since f(sm+1) + 1 ≤ α)

= αsm+1+1 , (by Definition 6.5.9b)

which completes the induction. Hence we have

h(f) =

n−1∑
k=0

αsk · f(sk) < αsn−1+1 ≤ αβ

by Exercise 6.5.14b since sn−1 + 1 ≤ β since sn−1 < β. Clearly then h(f) ∈ αβ by definition of
ordinal ordering.

Now we show that h is an increasing function and therefore also injective. So consider any f and g
in S(β, α) such that f ≺ g. Then by the definition of ≺ there is a ξ0 < β such that f(ξ0) < g(ξ0) and
f(ξ) = g(ξ) for all ξ0 < ξ < β. Now let S = s(f)∪ s(g), which is clearly a finite set of ordinals since
s(f) and s(g) are. Hence it is also isomorphic to a natural number n so that it can be expressed as
a strictly increasing sequence {sk} for k < n. Moreover

h(f) =

n−1∑
k=0

αsk · f(sk) h(g) =

n−1∑
k=0

αsk · g(sk)

since for each term where sk /∈ s(f) we have that f(sk) = 0 so that the term contributes nothing
to the sum by Definition 6.5.6a (and similarly for g). Also since f(ξ0) < g(ξ0) is has to be that
0 < g(ξ0) so that ξ0 ∈ s(g) and hence ξ0 ∈ S. From this it follows that there is an m < n such that
sm = ξ0.

We then have

αsm · f(sm) +

m−1∑
k=0

αsk · f(sk)

< αsm · f(sm) + αsm−1+1 (by Lemma 6.5.4a and the above)

≤ αsm · f(sm) + αsm (since {sk} is an increasing sequence)

= αsm · [f(sm) + 1] (by Definition 6.5.6b)

≤ αsm · g(sm) (since f(sm) < g(sm))

≤ αsm · g(sm) +

m−1∑
k=0

αsk · g(sk) . (by Lemma 6.5.4)

Thus it follows yet again from Lemma 6.5.4a that

h(f) =

n−1∑
k=0

αsk · f(sk)

=

n−1∑
k=m+1

αsk · f(sk) + αsm · f(sm) +

m−1∑
k=0

αsk · f(sk)
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<

n−1∑
k=m+1

αsk · g(sk) + αsm · g(sm) +

m−1∑
k=0

αsk · g(sk)

=

n−1∑
k=0

αsk · g(sk) = h(g) ,

which shows that h is indeed increasing.

Lastly we show that h is a surjective function, which then completes the proof that h is an isomor-
phism so that (S(β, α),≺) is isomorphic to (αβ , <) as desired. So consider any γ ∈ αβ so that by
definition γ < αβ .

We construct a function f : β → α recursively by first initializing f(ξ) = 0 for all ξ ∈ β. We then
initialize ρ = γ and perform the following iteratively:

If ρ < α then we set f(0) = ρ, noting that by definition ρ ∈ α and 0 ∈ β since β > 0. We then
terminate the iteration, noting that it could be that f(0) = ρ = 0.

If ρ ≥ α then 1 < α ≤ ρ so that by Lemma 6.6.2 there is a greatest ordinal σ such that ασ ≤ ρ. Then
clearly we have ασ ≤ ρ ≤ γ < αβ so that it follows from Exercise 6.514b that σ < β since α > 1
(the exercise only asserts implication in one direction but the other direction follows immediately
similarly to the proof of Lemma 6.5.4a). Then since clearly ασ 6= 0 it follows from Theorem 6.6.3
that there are unique ordinals τ and ρ′ such that

ασ · τ + ρ′ = ρ

and ρ′ < ασ. We claim the following about these:

1. τ < α. To the contrary, assume that τ ≥ α so that we have

ρ = ασ · τ + ρ′ ≥ ασ · τ + 0 = ασ · τ ≥ ασ · α = ασ+1

by Lemma 6.5.4, Exercise 6.5.7 since ασ 6= 0, and Definition 6.5.9b. However, this contradicts
the definition of σ, i.e. that it is greatest ordinal ξ such that ρ ≥ αξ. Hence it must be that
τ < α.

2. 0 < τ . Were it the case that τ = 0 then we would have

ρ = ασ · τ + ρ′ = ασ · 0 + ρ′ = 0 + ρ′ = ρ′ .

However, we then would have both ρ ≥ ασ and ρ = ρ′ < ασ, which is clearly a contradiction.
So it must be that τ 6= 0 so τ > 0.

3. ρ′ < ρ. We have

ρ′ < ασ = ασ · 1 ≤ ασ · τ = ασ · τ + 0 ≤ ασ · τ + ρ′ = ρ

by Exercise 6.5.7 since ασ 6= 0 and Lemma 6.5.4 since 0 ≤ ρ′, noting that we also just showed
that 1 ≤ τ since 0 < τ .

We therefore set f(σ) = τ , noting that we have shown that σ < β and τ < α (so that σ ∈ β and
τ ∈ α). We then repeat the above, setting ρ′ as the new ρ, noting that ρ′ < ρ ≤ γ so that ρ′ ≤ γ is
still true.

Now it has to be that this construction terminates after a finite number of iterations since each ρ in
the iterations forms a strictly decreasing sequence of ordinals. Hence this sequence has to be finite
since otherwise the range of this sequence would be a set of ordinals with no least element. It thus
follows that f(ξ) 6= 0 for a finite number of ξ ∈ β so that s(f) is finite and f ∈ S(β, α). The fact
that h(f) = γ follows immediately from the construction of f so that h is surjective since γ was
arbitrary.
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In conclusion we note that h maps f ∈ S(β, α) to its corresponding ordinal γ ∈ αβ by expanding
γ in base-α with digits in the range of f . Running through the above procedures for finite α and
β shows that this is the usual base expansion in base-α. However, this is much more general since
α or β (or both) might be transfinite. The interesting conclusion here is that any ordinal can be
expressed with a finite number of (potentially transfinite) digits with respect to any other ordinal
(potentially transfinite) as a base. It would seem that Theorem 6.6.4 (the normal form) is a special
case of this in which the base is ω.

§6.6 The Normal Form

Exercise 6.6.1

Show that ωε = ε.

Solution:

This was shown in Exercise 6.5.15c.

Exercise 6.6.2

Find the first few terms of the Goodstein sequence starting at m = 28.

Solution:

We show the first 5 terms of the Goodstein sequences for m = 28:

m0 = m = 28 = 22
2

+ 22+1 + 22

m1 = 33
3

+ 33+1 + 33 − 1 = 33
3

+ 33+1 + 32 · 2 + 3 · 2 + 2 ≈ 7.626× 1012

m2 = 44
4

+ 44+1 + 42 · 2 + 4 · 2 + 1 ≈ 1.341× 10154

m3 = 55
5

+ 55+1 + 52 · 2 + 5 · 2 ≈ 1.911× 102182

m4 = 66
6

+ 66+1 + 62 · 2 + 6 · 2− 1 = 66
6

+ 66+1 + 62 · 2 + 6 + 5 ≈ 2.659× 1036305 .

Chapter 7 Alephs

§7.1 Initial Ordinals

Exercise 7.1.1

If X is an infinite well-orderable set, then X has nonisomorphic well-orderings.

Solution:

Lemma 7.1.1.1. If α is an infinite ordinal then |α| = |α+ 1|, i.e. α and α+ 1 are equipotent.
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Proof. First we note that since α is infinite we have α + 1 > α ≥ ω. We then construct a bijection
from α+ 1 to α. So define f : α+ 1→ α by

f(β) =


β + 1 β < ω

β β ≥ ω and β 6= α

0 β = α

for β ∈ α+ 1.

First we show that f is injective. So consider any β and γ in α + 1 where β 6= γ. Without loss of
generality we can assume that β < γ. We then have the following:

Case: β < ω. Then clearly f(β) = β + 1 < ω since β < ω and ω is a limit ordinal, but we also
clearly have that 0 < β + 1 = f(β). Now, if also γ < ω then clearly f(β) = β + 1 < γ + 1 = f(γ)
since β < γ. If γ ≥ ω and γ 6= α then we have f(β) < ω ≤ γ = f(γ). Lastly if γ = α then we have
f(γ) = 0 < f(β).

Case: β ≥ ω and β 6= α. Here since β < γ we have ω ≤ β < γ. Thus if also γ 6= α then clearly we
have f(β) = β < γ = f(γ). On the other hand if γ = α then f(γ) = 0 < ω ≤ β = f(β).

Thus in every case we have f(β) 6= f(γ), thereby showing that f is injective. We note that the case
in which β = α is impossible since α is the greatest element of α+ 1 but γ > β and γ ∈ α+ 1.

Next we show that f is surjective. So consider any β ∈ α.

Case: β < ω. If β = 0 then clearly f(α) = 0 = β. On the other hand if 0 < β < ω then β is a
successor ordinal, say β = γ + 1, so that γ < β < ω hence clearly γ ∈ α+ 1 and f(γ) = γ + 1 = β.

Case: β ≥ ω. Then since β ∈ α we have β < α < α+ 1 so that β 6= α but β ∈ α+ 1. Then clearly
f(β) = β.

Hence in all cases there is a γ ∈ α+ 1 such that f(γ) = β so that f is injective. Therefore we have
shown that f is a bijection so that by definition α+ 1 and α are equipotent.

Lemma 7.1.1.2. If an infinite set A with order ≺ is isomorphic to an ordinal α then it can also
be re-ordered to be isomorphic to α+ 1.

Proof. Since A is infinite and the isomorphism from A to α is a bijective function, it follows that
they are equipotent so that α is also infinite. Then by Lemma 7.1.1.1 α is equipotent to α + 1 so
that A is also equipotent to α+ 1. Hence there is an f : A→ α+ 1 that is bijective. We then simply
re-order A according to α+ 1, i.e. we create the following order on A:

R = {(a, b) ∈ A×A | f(a) < f(b)}

so that clearly (A,R) is isomorphic to (α+ 1, <).

Main Problem.

Proof. For an infinite well-orderable set X we show that X has an infinite number of non-isomorphic
well-orderings. So let ≺ be a well-ordering of X so that by Theorem 6.3.1 (X,≺) is isomorphic to
some ordinal α. We then show by induction that, for any natural number n, there is an ordering
Rn of X such that it is isomorphic to α+ n. For n = 0 we have that, for R0 =≺, clearly (X,R0) is
isomorphic to (α,<) by what has already been established. Now suppose that there is an ordering
Rn of X such that (X,Rn) is isomorphic to (α+n,<). Then since X is an infinite set it follows from
Lemma 7.1.1.2 that there is an ordering Rn+1 such that X is isomorphic to (α+n)+1 = α+(n+1).
This completes the inductive proof. We note that clearly each of these re-orderings are mutually
non-isomorphic since different ordinals are not isomorphic to each other.

Page 63



Exercise 7.1.2

If α and β are at most countable ordinals then α+β, α ·β, and αβ are at most countable. [Hint: Use the
representation of ordinal operations from Theorems 5.3 and 5.8 and Exercise 5.16 in Chapter 6. Another
possibility is a proof by transfinite induction.]

Solution:

First we show that α+ β is at most countable.

Proof. First we define two sets:

W1 = {(0, γ) | γ ∈ α} W2 = {(1, γ) | γ ∈ β} .

We also define the order <1 on W1 so that (0, γ) <1 (0, δ) if and only if γ < δ for (0, γ) and (0, δ)
in W1 (so that γ and δ are in α). Similarly we define the order <2 on W2 so that (1, γ) <2 (1, δ) if
and only if γ < δ for (1, γ) and (1, δ) in W2 (so that γ and δ are in β).

Clearly W1 and W2 are disjoint, (W1, <1) is isomorphic to α, and (W2, <2) is isomorphic to β. It
then follows from Theorem 6.5.3 that the sum (W,<) is isomorphic to α+ β.

Now, since they are isomorphic, clearly W1 is equipotent to α and therefore is at most countable.
Similarly W2 is at most countable by virtue of being isomorphic to β. It then follows from The-
orem 4.2.6 and Theorem 4.3.5 that W = W1 ∪ W2 is at most countable. Then, since (W,<) is
isomorphic to α+β, W and α+β are equipotent so that α+β must be at most countable too.

Next we show that α · β is at most countable.

Proof. Since α and β are at most countable it follows from Exercise 4.2.2 and Theorem 4.3.7 that
α×β is at most countable. Then, since α ·β is isomorphic to the antilexicographic ordering of α×β
by Theorem 6.5.8, it follows that α · β is equipotent to α× β and there for at most countable.

Lastly we show that αβ is at most countable.

Proof. First if we have that α = 0 then then either αβ = 0β = 1 (if β = 0) or αβ = 0β = 0 (if
β > 0). Clearly both 0 and 1 are both at most countable so in the following we assume that α 6= 0.

Now, let Seq(α · β) be the set of all finite sequences of elements of α · β, and S(β, α) be the set as
defined in Exercise 6.5.16 such that S(β, α) with the order defined there is isomorphic (and therefore
equipotent) to αβ . We shall construct a function g : S(β, α)→ Seq(α · β).

So consider any f ∈ S(β, α) so that f : β → α and s(f) = {ξ < β | f(ξ) 6= 0} (as defined in the
exercise) is finite. Hence there is a natural number n such that s(f) can be expressed as an increasing
sequence h : n→ s(f). We now define another sequence t : n→ α · β by

t(k) = α · h(k) + f(h(k))

for k ∈ n. We then set g(f) = t.

The first thing we show is that g(f) is really a sequence whose elements are in α·β for any f ∈ S(β, α).
Hence for any such f again let h be the increasing finite sequence whose range is s(f) and let t = g(f).
Then for any k ∈ n we we note that h(k) < β since h(k) ∈ s(f) so that h(k) + 1 ≤ β. We also note
that f(h(k)) ∈ α since f : β → α so that f(h(k)) < α. Thus we have by definition that

t(k) = α · h(k) + f(h(k))

< α · h(k) + α (by Lemma 6.5.4)

= α · (h(k) + 1) (by Definition 6.5.6b)
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≤ α · β . (by Exercise 6.5.7 since α 6= 0)

Hence t(k) < α · β so that t(k) ∈ α · β. Thus t : n→ α · β and since clearly this sequence is finite it
follows that t ∈ Seq(α · β).

Now we show that g is injective. So consider f1 and f2 in S(β, α) such that f1 6= f2. Let h1, n1
and h2, n2 be the increasing sequences and natural numbers for f1 and f2, respectively, as defined
above. Also let t1 = g(f1) and t2 = g(f2).

Case: n1 6= n2. In this case the sequences are different sizes so that clearly t1 6= t2 since t1 and t2
are sequences of sizes n1 and n2, respectively.

Case: n1 = n2. Since f1 6= f2 there must be a γ ∈ β such that f1(γ) 6= f2(γ). Without loss of
generality we can assume that f1(γ) < f2(γ).

If f1(γ) = 0 then by definition γ /∈ s(f1) but γ ∈ s(f2). Hence there is a k ∈ n2 such that h2(k) = γ.
Also since n1 = n2 clearly k ∈ n1. However, it must be that h1(k) 6= γ = h2(k) since otherwise it
would be that γ ∈ s(f1). Suppose that h1(k) < h2(k) so that h1(k) + 1 ≤ h2(k) and we have

t1(k) = α · h1(k) + f1(h1(k))

< α · h1(k) + α (by Lemma 6.5.4)

= α · (h1(k) + 1) (by Definition 6.5.6b)

≤ α · h2(k) (by Exercise 6.5.7 since α 6= 0)

≤ α · h2(k) + f2(h2(k))

= t2(k)

so that t1(k) 6= t2(k) and therefore t1 6= t2. The case in which h1(k) > h2(k) is analogous.

On the other hand if f1(γ) 6= 0 then 0 < f1(γ) < f2(γ) so that γ ∈ s(f1) and γ ∈ s(f2). Thus there
are k1 and k2 in n1 = n2 such that h1(k1) = h2(k2) = γ. If k1 = k2 then we have

t1(k1) = α · h1(k1) + f1(h1(k1))

= α · γ + f1(γ)

6= α · γ + f2(γ) (by Lemma 6.5.4b since f1(γ) 6= f2(γ))

= α · h2(k2) + f2(h2(k2))

= t2(k2) = t2(k1)

so that t1 6= t2. If k1 < k2 then since h1 is increasing we have h2(k2) = h1(k1) < h1(k2) so that
h2(k2) + 1 ≤ h1(k2) and so

t2(k2) = α · h2(k2) + f2(h2(k2))

< α · h2(k2) + α (by Lemma 6.5.4)

= α · (h2(k2) + 1) (by Definition 6.5.6b)

≤ α · h1(k2) (by Exercise 6.5.7 since α 6= 0)

≤ α · h1(k2) + f1(h1(k2))

= t1(k2)

and t1 6= t2. The final sub-case in which k1 > k2 is analogous.

Hence in all cases and sub-cases g(f1) = t1 6= t2 = g(f2), which shows that g is injective. From this
it follows from Definition 4.1.4 that |S(β, α)| ≤ |Seq(α · β)|. However, from what was shown above
it follows that α ·β is at most countable since α and β are. Thus Seq(α ·β) is also at most countable
by Exercise 4.2.4 and Theorem 4.3.10 so that S(β, α) must be at most countable since it was just
shown that |S(β, α)| ≤ |Seq(α · β)|. Lastly, since S(β, α) is equipotent to αβ it follows that αβ is at
most countable as well.
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Exercise 7.1.3

For any set A, there is a mapping of P (A×A) onto h(A). [Hint: Define f(R) = the ordinal isomorphic
to R, if R ⊆ A×A is a well-ordering of its field; f(R) = 0 otherwise.]

Solution:

Lemma 7.1.3.1. For a set A and ordinal α, if α is equipotent to a subset of A then α < h(A).

Proof. Suppose that α is equipotent to X ⊆ A but that α ≥ h(A). Clearly if α = h(A) then h(A) is
equipotent to X ⊆ A (since α is), which contradicts the definition of the Hartogs number. On the
other hand if α > h(A) then let f be a bijection from α to X. Then, since h(A) < α we have that
h(A) ∈ α and h(A) ⊆ α since ordinals are transitive. It then follows that f � h(A) is a bijection
from h(A) to f [h(A)] ⊆ X ⊆ A. Hence again h(A) is equipotent to a subset of A, contradicting the
definition of the Hartogs number. So it has to be that α < h(A) as desired.

Main Problem.

Proof. We define a function f : P (A×A)→ h(A). So for any R ∈ P (A×A) clearly R ⊆ A×A so
that R is a relation on A. If R is a well-ordering of some X ⊆ A then by Theorem 6.3.1 there is a
unique ordinal α such that (X,R) is isomorphic to α. We then set

f(R) =

{
α R is a well-ordering of some X ⊆ A
0 R is not a well-ordering of any X ⊆ A

.

First we show that f(R) really is in h(A) for any R ∈ P (A×A). So for any such R, if R is not a
well-ordering of some X ⊆ A then clearly f(R) = 0. Then, since clearly ∅ ⊆ A and ∅ is equipotent
to 0, it follows that 0 < h(A) by Lemma 7.1.3.1. Hence f(R) = 0 ∈ h(A). On the other hand if R
is a well-ordering of some X ⊆ A then let α be the ordinal isomorphic to (X,R) so that f(R) = α.
Since this means that α is equipotent to X ⊆ A, it again follows from Lemma 7.1.3.1 that α < h(A)
so that f(R) = α ∈ h(A).

To show that f is surjective consider any α ∈ h(A) so that α < h(A). Since by definition h(A)
is the least ordinal that is not equipotent to a subset of A it follows that α has to be equipotent
to an X ⊆ A. Then let R be the well-ordering of X such that (X,R) is isomorphic to α. Clearly
R is a relation on X and therefore also a relation on A since X ⊆ A. Thus R ⊆ A × A so that
R ∈ P (A×A). Clearly also f(R) = α and since α was arbitrary this shows that f is surjective.

Note that this does not mean that h(A) ≤ |P (A×A)| unless the Axiom of Choice is employed.

Exercise 7.1.4

|A| < |A|+ h(A) for all A.

Solution:

Lemma 7.1.4.1. |h(A)| � |A| for any set A.

Proof. Suppose to the contrary that |h(A)| ≤ |A| so that there is an injective f from h(A) to A.
Then let X = f [h(A)] so that clearly X ⊆ A. But then f considered as function from h(A) to X
is a bijection so that h(A) is equipotent to a subset of A, which contradicts the definition of the
Hartogs number. Hence it must be that |h(A)| � |A| as desired.
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Note that this does not imply that h(a) > |A| without using the Axiom of Choice.

Main Problem.

Proof. Since we are only interested in the cardinalities of A and h(A) and their cardinal sum we
can assume that they are disjoint. Clearly f : A → A ∪ h(A) defined by f(x) = x for x ∈ A is an
injective function so that |A| ≤ |A| + h(A) by the definition of cardinal addition. So suppose that
|A| = |A|+ h(A). Then there is a bijective function f from A ∪ h(A) into A so that f � h(A) is an
injective function from h(A) to A. By definition this means that h(A) ≤ |A|, but this contradicts
Lemma 7.1.4.1. So it must be that |A| < |A|+ h(A) as desired.

Exercise 7.1.5

|h(A)| < |P (P (A×A))| for all A. [Hint: Prove that |P (h(A))| ≤ |P (P (A×A))| by assigning to each
X ∈ P (h(A)) the set of all well orderings R ⊆ A× A for which the ordinal isomorphic to R belongs to
X.]

Solution:

Proof. First we show that |P (h(A))| ≤ |P (P (A×A))| by constructing an injective f : P (h(A))→
P (P (A×A)). So consider any X ∈ P (h(A)) so that X ⊆ h(A). Then let Y be the set of well-
orderings R ⊆ A × A (so that R ∈ P (A×A)) of subsets B ⊆ A such that (B,R) is isomorphic to
some α ∈ X. We then set f(X) = Y , noting that clearly f(X) = Y ∈ P (P (A×A)) since for any
R ∈ Y we have that R ∈ P (A×A) so that Y ⊆ P (A×A) hence Y ∈ P (P (A×A)). Note also
that Y 6= ∅ because every α ∈ h(A) is equipotent to some subset B ⊆ A (by the definition of the
Hartogs number) so that the well-ordering of B according to α will be in Y .

We claim that f is injective. So consider X1 and X2 in P (h(A)) (so that X1 ⊆ h(A) and X2 ⊆ h(A))
such that f(X1) = f(X2). Then consider any α ∈ X1. Then since f(X1) 6= ∅ there is a well-ordering
R ∈ f(X1) of a subset of A that is isomorphic to α. Then since f(X1) = f(X2) we have R ∈ f(X2)
as well. It follows from this that α ∈ X2. Thus X1 ⊆ X2 since α was arbitrary. A similar argument
shows that X2 ⊆ X1 so that we conclude that X1 = X2. This shows that f is injective.

Hence we have shown that |P (h(A))| ≤ |P (P (A×A))|. We also have by Cantor’s Theorem (The-
orem 5.1.8 in the text) that |h(A)| < |P (h(A))|. It therefore follows from Exercise 4.1.2a that
|h(A)| < |P (P (A×A))| as desired.

Exercise 7.1.6

Let h∗(A) be the least ordinal α such that there exists no function with domain A and range α. Prove:

(a) If α ≥ h∗(A), then there is no function with domain A and range α.

(b) h∗(A) is an initial ordinal.

(c) h(A) ≤ h∗(A).

(d) If A is well-orderable, then h(A) = h∗(A).

(e) h∗(A) exists for all A.

[Hint for part (e): Show that α ∈ h∗(A) if and only if α = 0 or α = the ordinal isomorphic to R, where
R is a well-ordering of some partition of A into equivalence classes.]

Solution:
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Lemma 7.1.6.1. If A is a well-orderable set and B is any other set, there is a function from A
onto B if and only if |B| ≤ |A|.

Proof. Suppose that R is a well-ordering of A.

(→) Suppose that f is a function from A onto B. If A is empty then clearly B must be as well or
else f could not be onto. Thus we have |B| = |∅| = 0 ≤ 0 = |∅| = |A|. So we can assume that
A is nonempty so that if B is empty then |B| = |∅| = 0 < |A|. Hence we can assume that B is
nonempty as well.

Then, for each b ∈ B, define the set Ab = {a ∈ A | f(a) = b}, which clearly not empty since f is
onto. Then, since R is a well-ordering of A and Ab ⊆ A, there is a unique least element of ab of Ab
according to R. We then define g : B → A by simply setting g(b) = ab for any b ∈ B.

We then claim that g is injective. So consider b1 and b2 in B where b1 6= b2. Then since ab1 ∈ Ab1
clearly f(ab1) = b1. Similarly f(ab2) = b2 so that clearly ab1 6= ab2 since f is a function and b1 6= b2.
Hence g(b1) = ab1 6= ab2 = g(b2), which shows that g is injective since b1 and b2 were arbitrary.
Then by definition |B| ≤ |A| as desired.

(←) Now suppose that |B| ≤ |A| so that there is an injective f : B → A. If B is empty then clearly
it has to be that |B| = |∅| = 0 ≤ |A| regardless of A. So we can assume that B is nonempty so that
there is a b ∈ B. Since f is injective, the inverse f−1 is a function from ran (f) onto B. Now we
construct a function g : A→ B by setting

g(x) =

{
f−1(x) x ∈ ran (f)

b x /∈ ran (f)

for any x ∈ A. It should be clear that g maps A onto B since, for any b ∈ B, we have f(b) ∈ ran (f)
(hence also f(b) ∈ A) so that g(f(b)) = f−1(f(b)) = b.

Main Problem.

First we note that presumably h∗(A) for a set A is the least nonzero ordinal α such that there is
no function from A onto α. The fact that h∗(A) is nonzero is important since, for a non-empty set
A, there is no function from A onto ∅ = 0 so that 0 is actually the least ordinal such that such a
function does not exist! We also make note of the fact that, even for A = ∅, the empty function
f = ∅ is a vacuously a function from A onto ∅ = 0 so that h∗(A) = 1 anyway since there is no
function from A = ∅ onto 1 = {0}.
(a)

Proof. Suppose to the contrary that there is a function f from A onto α. Then since 0 < h∗(A) ≤ α
clearly 0 ∈ h∗(A) and h∗(A) ⊆ α. So we define a function g : A→ h∗(A) by

g(a) =

{
f(a) f(a) ∈ h∗(A)

0 f(a) /∈ h∗(A)
.

for any a ∈ A. Clearly each g(a) ∈ h∗(A) but we also claim that g is onto. To this end consider any
β ∈ h∗(A). Since h∗(A) ⊆ α we have that β ∈ α also. Then, since f is onto α there is an a ∈ A
such that f(a) = β. Since f(a) = β ∈ h∗(A) it follows by definition that g(a) = f(a) = β. Since
β was arbitrary this shows that g is onto. However, the existence of g contradicts the definition of
h∗(A) so that it must be that there is no such function from A onto α.

(b)
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Proof. Suppose to the contrary that h∗(A) is not an initial ordinal so that there is an α < h∗(A)
such that |α| = |h∗(A)|. Let f then be a bijection from α onto h∗(A). Also since α < h∗(A) it
follows from the definition of h∗(A) that there is a function g from A onto α (since otherwise h∗(A)
would not be the least such ordinal for which such a function does not exist). But then f ◦ g is
a function from A onto h∗(A), which contradicts the definition of h∗(A). Hence it has to be that
h∗(A) is in fact an initial ordinal.

(c)

Proof. Suppose to the contrary that h(A) > h∗(A). Then by the definition of h(A) there is a subset
X ⊆ A such that h∗(A) is equipotent to X. So let f be a bijection from h∗(A) to X. We then define
a function g : A→ h∗(A) by

g(a) =

{
f−1(a) a ∈ X
0 a /∈ X

for any a ∈ A, noting that 0 < h∗(A) so that 0 ∈ h∗(A). Clearly g is into h∗(A) but we also claim
that it is onto. So consider any α ∈ h∗(A) and let a = f(α) so that a ∈ X and therefore a ∈ A since
X ⊆ A. We then have g(a) = f−1(a) = f−1(f(α)) = α since a ∈ X. Since α was arbitrary this
shows that g is onto. However, the existence of g contradicts the definition of h∗(A) so that it must
be that in fact h(A) ≤ h∗(A) as desired.

(d)

Proof. We show that h∗(A) ≤ h(A), from which the result clearly follows since also h∗(A) ≥ h(A) by
part (c). So suppose to the contrary that h∗(A) > h(A). Then by the definition of h∗(A) it follows
that there is a function from A onto h(A). It then follows from Lemma 7.1.6.1 that |h(A)| ≤ |A| since
A is well-orderable. However, this contradicts Lemma 7.1.4.1 so that it must be that h∗(A) ≤ h(A)
so that the result follows.

(e)

Proof. Consider any set A and let S denote the set of well-orderings of some partition of A into
equivalence classes, noting that it could be that S = ∅. Since each R ∈ S is isomorphic to a unique
ordinal, let H be the set of ordinals that are isomorphic to some R ∈ S, which exists by the Axiom
Schema of Replacement. Then let α = {0} ∪H and we claim that α = h∗(A).

First we show that α is indeed an ordinal number. Since α is a set of ordinals clearly it is well-
ordered by Theorem 6.2.6d. We also must show that α is transitive, so consider any β ∈ α. Then
either β = 0 or β ∈ H. If β = 0 = ∅ then clearly β ⊆ α. On the other hand if β ∈ H then there is a
partition P of A and a well-ordering R of P such that (P,R) is isomorphic to (β,<). Now consider
any γ ∈ β so that γ < β. It then follows that γ is isomorphic to an initial segment of β and therefore
also to an initial segment P ′ of P ordered by R. Let L be the least element of P (which is also the
least element of P ′), which exists since R is a well-ordering. Then let

L′ = L ∪
(
A−

⋃
P ′
)
,

i.e. L′ is the set containing the elements of L and any elements of A that are not covered in the
initial segment P ′. Then let

P ′′ = {L′} ∪ (P ′ − {L}) ,

i.e. P ′′ is P ′ but with L replaced with L′. It is easy to show that P ′′ is a partition of A and that it
is isomorphic to γ with the same ordering as R except with L replaced by L′. Hence by definition
we have that γ ∈ α. Since γ ∈ β was arbitrary this shows that β ⊆ α, and since β ∈ α was arbitrary
this shows that α is transitive and hence an ordinal number.
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Now we show that there is no function from A onto α. So suppose to the contrary that there is such
a function f . We then define the set

E = {(a, b) ∈ A×A | f(a) = f(b)} .

It is trivial to show that this is an equivalence relation on A so that A/E is a partition of A by
Theorem 4.4.7. Moreover let g be the mapping from A/E to α defined as follows: for any B ∈ A/E
let g(B) be the least element of {f(x) | x ∈ B}, noting that {f(x) | x ∈ B} contains only a single
element since B is an equivalence class where f(x) = f(y) for any x and y in B. It is trivial to show
that g is a bijective function so that we can well-order A/E according to the ordinal α since α is
the range of g. However, it then follows by definition that α ∈ α, which contradicts Lemma 6.2.7.
Hence it must be that there is no function from A onto α.

Lastly we show that there is a function from A onto β for every nonzero β < α. So consider any such
β so that β ∈ α. Then either β = 0 or β ∈ H, but since β is nonzero it must be that β ∈ H. Then
by definition there is is a partition P of A and well-ordering R of P such that (P,R) is isomorphic
to (β,<). Let f then be the isomorphism from P to β. We then define the mapping g : A → β as
follows: for any a ∈ A there is a unique B ∈ P such that a ∈ B since P is a partition of A. We then
set g(a) = f(B). It is easy to show that g is onto.

It follows from what has been shown that indeed α = h∗(A).

§7.2 Addition and Multiplication of Alephs

Exercise 7.2.1

Give a direct proof of ℵα + ℵα = ℵα by expressing ωα as a disjoint union of two sets of cardinality ℵα.

Solution:

Lemma 7.2.1.1. If α and β are ordinals and α > β then there is a γ < α such that |β| ≤ |γ|.

Proof. Clearly for γ = β we have γ = β < α and |β| = |γ| so that |β| ≤ |γ| is true.

Lemma 7.2.1.2. If a set (A,≺) is isomorphic to ordinal α and α > β for another ordinal β then
there is an a ∈ A such that |β| ≤ |X| for the set

X = {x ∈ A | x ≺ a} .

Proof. First let f be the isomorphism from α to A. Clearly by Lemma 7.2.1.1 there is an ordinal
γ < α such that |β| ≤ |γ|. Now let a = f(γ) so that clearly a ∈ A, and let

X = {x ∈ A | x ≺ a} .

Now, we claim that X = f [γ]. So consider any x ∈ X so that x ≺ a. It then follows that
f−1(x) < f−1(a) = γ since f−1 is an isomorphism since f is. Hence f−1(x) ∈ γ so that clearly
x = f(f−1(x)) ∈ f [γ]. Since x was arbitrary it follows that X ⊆ f [γ]. Now consider any x ∈ f [γ]
so that there is a δ ∈ γ such that x = f(δ). Then δ < γ so that x = f(δ) ≺ f(γ) = a since f is an
isomorphism so that by definition x ∈ X. Hence f [γ] ⊆ X. This shows that X = f [γ]. Then, since
f is bijective, it follows that |β| ≤ |γ| = |f [γ]| = |X|.

Lemma 7.2.1.3. For initial ordinals α and β, if |α| ≤ |β|, then α ≤ β.
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Proof. Suppose that |α| ≤ |β| but that α > β. Then clearly β is isomorphic (and therefore equipo-
tent) to an initial segment of α so that |β| ≤ |α|. Then by the Cantor-Bernstein Theorem we have
|α| = |β|. However since α is an initial ordinal and β < α it cannot be that |α| = |β|. Thus we have
a contradiction so that it must be that α ≤ β as desired.

Lemma 7.2.1.4. For any ordinal α and any infinite initial ordinal Ω where Ω < ωα, there is a
γ < α such that Ω = ωγ .

Proof. We show this by induction on α. For α = 0 we have ωα = ω0 = ω so that there is no infinite
initial ordinal Ω such that Ω < ωα = ω. Hence the hypothesis is vacuously true. Now suppose that,
for every infinite initial ordinal Ω < ωα, there is a γ < α such that Ω = ωγ . Consider any infinite
initial ordinal Ω < ωα+1. Then Ω < ωα+1 = h(ωα) so that Ω is equipotent to some subset of ωα by
the definition of the Hartogs number. From this it clearly follows that |Ω| ≤ |ωα| and hence Ω ≤ ωα
by Lemma 7.2.1.3 since both Ω and ωα are initial ordinals. If Ω = ωα then we are finished but if
Ω < ωα then by the induction hypothesis there is a γ < α such that Ω = ωγ so that we are also
finished.

Now suppose that α is a nonzero limit ordinal and that for every β < α and infinite initial ordinal
Ω < ωβ there is a γ < β such that Ω = ωγ . Consider then any infinite initial ordinal Ω < ωα. Then
since ωα = sup {ωβ | β < α} it follows that Ω is not an upper bound of {ωβ | β < α} so that there
is a β < α such that Ω < ωβ . But then by the induction hypothesis there is a γ < β such that
Ω = ωγ . This completes the transfinite induction.

Lemma 7.2.1.5. For ordinal α > 0 and an ordinal β < ωα there is an ordinal γ < α such that
|β| ≤ ℵγ .

Proof. First, if β is finite then clearly β < ω so that β ∈ ω. Then β ⊆ ω since ω is transitive (since
it is an ordinal number). Hence |β| ≤ |ω| = ℵ0 (i.e. γ = 0 so that γ < α). On the other hand if β is
infinite then by Theorem 7.1.3 β is equipotent to some initial ordinal Ω. Clearly Ω is infinite since β
is and clearly Ω < ωα since β < ωα and ωα is an initial ordinal. It then follows from Lemma 7.2.1.4
that there is a γ < α such that Ω = ωγ . Then we have |β| = |Ω| = |ωγ | = ℵγ so that |β| ≤ ℵγ is
true.

Lemma 7.2.1.6. Every infinite initial ordinal is a limit ordinal.

Proof. Suppose that α is an infinite initial ordinal and that it a successor so that α = β + 1. It was
shown in Lemma 7.1.1.1 that |β| = |β + 1| = |α|, but since clearly β < α this contradicts the fact
that α is an initial ordinal. Hence α must be a limit ordinal.

Lemma 7.2.1.7. For well ordered sets A and B either |A| ≤ |B| or |B| ≤ |A| (or both in which
case |A| = |B|).

Proof. By Theorem 6.1.3 we have:

Case: A and B are isomorphic. Let f be the isomorphism from A to B. Then clearly f is a bijection
so that |A| = |B|. Also since f is injective |A| ≤ |B|. Clearly also f−1 is bijective from B to A so
that |B| ≤ |A| as well.

Case: A is isomorphic to an initial segment of B. Then if f is the isomorphism clearly f is an
injective function from A to B so that |A| ≤ |B|.
Case: B is isomorphic to an initial segment of A. Then if f is the isomorphism clearly f is an
injective function from B to A so that |B| ≤ |A|.
Since these cases are exhaustive by Theorem 6.1.3 clearly the result has been shown.

Note that this did not require the Axiom of Choice.
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Corollary 7.2.1.8. If A and B are well ordered sets then |A| � |B| if and only if |B| < |A|.

Proof. (→) Suppose that |A| � |B|. Then it follows from Lemma 7.2.1.7 above that |B| ≤ |A|.
Suppose that |B| = |A|. Then there is a bijection f from B to A. But then clearly f−1 is also a
bijection and therefore injective. Hence by definition |A| ≤ |B|, a contradiction. So it cannot be
that |B| = |A|. Hence |B| < |A| by definition as desired.

(←) We show this by proving the contrapositive. So suppose that |A| ≤ |B|. Also suppose that
|B| ≤ |A| so that by Lemma 7.2.1.7 above |A| = |B|. Thus we have shown that

|B| ≤ |A| → |A| = |B|
|B| � |A| ∨ |A| = |B|
¬ (|B| ≤ |A| ∧ |A| 6= |B|)

¬(|B| < |A|) ,

thereby showing the contrapositive.

Main Problem.

The following proof is similar to the proof of Theorem 7.2.1.

Proof. Suppose that A1 and A2 are disjoint sets that are both equipotent to ωα for some ordinal α.
Then there are bijections f1 and f2 from A1 and A2, respectively, to ωα. We define a well-ordering
≺ of A = A1 ∪A2 as follows: for a and b in A we let a ≺ b if and only if

• a and b are in A1 and f1(a) < f1(b), or

• a and b are in A2 and f2(a) < f2(b), or

• a ∈ A1 and b ∈ A2 and f1(a) ≤ f2(b), or

• a ∈ A2 and b ∈ A1 and f2(a) < f1(b).

First we show that ≺ is transitive. So consider a, b, and c in A such that a ≺ b and b ≺ c.
Case: a ∈ A1

Case: b ∈ A1

Case: c ∈ A1. Then f1(a) < f1(b) < f1(c) so that f1(a) < f1(c) and hence a ≺ c.
Case: c ∈ A2. Then f1(a) < f1(b) ≤ f2(c) so that f1(a) ≤ f2(c) is true and hence
a ≺ c.

Case: b ∈ A2

Case: c ∈ A1. Then f1(a) ≤ f2(b) < f1(c) so that f1(a) < f1(c) and hence a ≺ c.
Case: c ∈ A2. Then f1(a) ≤ f2(b) < f2(c) so that f1(a) ≤ f2(c) is true and hence
a ≺ c.

Case: a ∈ A2

Case: b ∈ A1

Case: c ∈ A1. Then f2(a) < f1(b) < f1(c) so that f2(a) < f1(c) and hence a ≺ c.
Case: c ∈ A2. Then f2(a) < f1(b) ≤ f2(c) so that f2(a) < f2(c) and hence a ≺ c.

Case: b ∈ A2

Case: c ∈ A1. Then f2(a) < f2(b) < f1(c) so that f2(a) < f1(c) and hence a ≺ c.
Case: c ∈ A2. Then f2(a) < f2(b) < f2(c) so that f2(a) < f2(c) and hence a ≺ c.
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Since all cases imply that a ≺ c and a, b, and c were arbitrary this shows that ≺ is transitive.

Now we show that for any a and b in A, that either a ≺ b, a = b, or b ≺ a and that only one of these
is true. So consider any a and b in A. Then we have

Case: a ∈ A1

Case: b ∈ A1. Then clearly exactly one of the following is true: a ≺ b if f1(a) < f1(b), a = b
if f1(a) = f1(b) since f1 is a bijection, and b ≺ a if f1(b) < f1(a).

Case: b ∈ A2. Clearly a = b is not possible since A1 and A2 are disjoint. Then if f1(a) ≤ f2(b)
then a ≺ b and if f1(a) > f2(b) then b ≺ a, noting that these are mutually exclusive.

Case: a ∈ A2

Case: b ∈ A1. Then again clearly a = b is not possible since A1 and A2 are disjoint. Then
if f2(a) < f1(b) then a ≺ b and if f2(a) ≥ f1(b) then b ≺ a, noting that these are mutually
exclusive.

Case: b ∈ A2. Then clearly exactly one of the following is true: a ≺ b if f2(a) < f2(b), a = b
if f2(a) = f2(b) since f2 is a bijection, and b ≺ a if f2(b) < f2(a).

Thus we have shown that ≺ is a total (strict) order on A.

Now we show that ≺ is also a well-ordering. So let X be a nonempty subset of A. Let B =
f1[X ∩ A1] ∪ f2[X ∩ A2], noting that this is a nonempty set of ordinals. Then let B has a least
element α.

Case: α ∈ f1[X ∩ A1]. Then we claim that x = f−11 (α) is the ≺-least element of X, noting that
x ∈ A1. Note also that clearly then f1(x) = f1(f−11 (α)) = α. So consider any y ∈ X.

Case: y ∈ A1. Then y ∈ X ∩ A1 so that f1(y) ∈ f1[X ∩ A1] so f1(y) ∈ B. Thus f1(x) =
α ≤ f1(y) since α is the least element of B. Clearly if f1(x) = f1(y) then x = y since f1 is
bijective. On the other hand if f1(x) < f1(y) then by definition x ≺ y. Hence in either case
we have x 4 y.

Case: y ∈ A2. Then y ∈ X ∩ A2 so that f2(y) ∈ f2[X ∩ A2] so that f2(y) ∈ B. Thus
f1(x) = α ≤ f2(y) so that by definition x ≺ y. Hence again x 4 y is true.

Case: α /∈ f1[X ∩ A1]. Then it has to be that α ∈ f2[X ∩ A2]. Then we claim that x = f−12 (α) is
the ≺-least element of X, noting that x ∈ A2. Note also that clearly then f2(x) = f2(f−12 (α)) = α.
So consider any y ∈ X.

Case: y ∈ A1. Then y ∈ X ∩A1 so that f1(y) ∈ f1[X ∩A1] so f1(y) ∈ B. Thus f2(x) = α ≤
f1(y) since α is the least element of B. Now, it cannot be that f2(x) = α = f1(y) for then α
would be in f1[X ∩ A1]. So it must be that f2(x) = α < f1(y) so that by definition x ≺ y so
that x 4 y is true.

Case: y ∈ A2. Then y ∈ X ∩ A2 so that f2(y) ∈ f2[X ∩ A2] so that f2(y) ∈ B. Thus
f2(x) = α ≤ f2(y). Then if f2(x) = α = f2(y) then x = y since f2 is bijective. On the other
hand if f2(x) = α < f2(y) then x ≺ y by definition. In either case we have x 4 y.

Hence in all cases we have shown that X has a ≺-least element so that ≺ is a well-ordering of A.

Now we show by transfinite induction that ℵα + ℵα = ℵα for all ordinals α. First it was already
shown in a previous chapter that ℵ0+ℵ0 = ℵ0. So now consider any α > 0 and suppose ℵγ+ℵγ = ℵγ
for all γ < α.

Then consider two disjoint sets A1 and A2 that are both equipotent to ωα and the well-ordering ≺
on A = A1 ∪A2 as defined above, also again letting f1 and f2 be the isomorphisms from A1 and A2,
respectively, to ωα. Now let a be any element of A and define

X = {x ∈ A | x ≺ a} .

Page 73



Let X1 = X ∩A1 and X2 = X ∩A2 so that clearly X1 and X2 are disjoint and X = X1 ∪X2. From
this it follows from the definition of cardinal addition that |X| = |X1|+ |X2|.
If a ∈ A1 then define β = f1(a) ∈ ωα so that β < ωα. It follows from this and Lemma 7.2.1.5
that there is a γ < α such that |β| ≤ ℵγ since α > 0, noting also that ℵγ < ℵα by the remarks
following Definition 7.1.8. Now consider any x1 ∈ X1 so that also x1 ∈ X. Then by definition
x1 ≺ a so that by the definition of ≺ we have f1(x1) < f1(a) = β since x1 ∈ A1 and a ∈ A1.
Hence f1(x1) ∈ β so that f1[X1] ⊆ β since x1 was arbitrary. Hence, since f1 is bijective, we have
|X1| = |f1[X1]| ≤ |β| ≤ ℵγ . Next, consider any x2 ∈ X2 so that x2 ∈ X and hence x2 ≺ a. Then,
again by the definition of ≺, we have that f2(x2) < f1(a) = β since x2 ∈ A2 and a ∈ A1. Hence
f2(x2) ∈ β so that f2[X2] ⊆ β since x2 was arbitrary. Thus we have |X2| = |f2[X2]| ≤ |β| ≤ ℵγ
since f2 is bijective.

A similar argument shows that |X1| ≤ ℵγ and |X2| ≤ ℵγ for some γ < α in the case when a ∈ A2.
However, in this case we must set β = f2(a) + 1, noting that β ∈ ωα since f2(a) ∈ ωα and ωα is a
limit ordinal by Lemma 7.2.1.6.

Thus in all cases we have

|X| = |X1|+ |X2|
≤ ℵγ + ℵγ (by property (d) of in section 5.1)

= ℵγ (by the induction hypothesis since γ < α)

< ℵα .

Thus we have shown that |X| < ℵα = |ωα| for any a ∈ A, and hence |ωα| 6≤ |X| by Corollary 7.2.1.8
since ωα and X are both well-ordered. If δ is the ordinal isomorphic to (A,≺) (which exists by
Theorem 6.3.1 since we have shown that ≺ is a well-ordering), then it follows from the contrapositive
of Lemma 7.2.1.2 that δ ≤ ωα and hence |A| = |δ| ≤ |ωα| = ℵα. Thus we have

ℵα + ℵα = |A1|+ |A2| = |A| ≤ ℵα .

Since obviously 0 ≤ ℵα it follows again from property (d) in section 5.1 that

ℵα = ℵα + 0 ≤ ℵα + ℵα .

Hence, by the Cantor-Bernstein Theorem we have that ℵα = ℵα+ℵα, which completes the inductive
step.

Exercise 7.2.2

Give a direct proof of n · ℵα = ℵα by constructing a one-to-one mapping of ωα onto n× ωα (where n is
a positive natural number).

Solution:

Lemma 7.2.2.1. If α is a limit ordinal and n is a natural number then n · α = α.

Proof. First, clearly we have by definition that n · ω = sup {n · k | k < ω} = ω. Then, since α is a
limit ordinal, we have from Exercise 6.5.10 that α = ω · β for some ordinal β. Thus we have

n · α = n · (ω · β) = (n · ω) · β = ω · β = α .
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Main Problem.

Proof. Consider any natural number n > 0 and any ordinal number α. We then show that n·ℵα = ℵα
by constructing a bijective f : ωα → n × ωα, which clearly shows the result by the definition of
cardinal multiplication.

So consider any β ∈ ωα. Then, since n > 0, we have by Theorem 6.6.3 that there is a unique ordinal
γ and unique natural number k < n such that

β = n · γ + k ,

where k < n and clearly

γ = 1 · γ ≤ n · γ = n · γ + 0 ≤ n · γ + k = β

since 1 ≤ n and 0 ≤ k. Hence we have k ∈ n and γ ≤ β < ωα so that γ ∈ ωα. We then set
f(β) = (k, γ) ∈ n× ωα.

First we show that f is injective. So consider β1 and β2 in ωα where f(β1) = f(β2). If we have
f(β1) = (k1, γ1) and f(β2) = (k2, γ2) then clearly this means that k1 = k2 and γ1 = γ2. It then
clearly follows that

β1 = n · γ1 + k1 = n · γ2 + k2 = β2 ,

which shows that f is injective.

Now we show that f is also surjective. So consider any (k, γ) ∈ n × ωα so that k ∈ n and γ ∈ ωα.
Then let β = n ·γ+k so that clearly f(β) = (k, γ). However, we must show that β is actually in ωα.
To see this, first we note that since γ < ωα is an ordinal we have γ = δ +m for some limit ordinal
δ and natural number m by Exercise 6.5.4, where clearly δ ≤ γ. Hence we have

β = n · γ + k = n · (δ +m) + k = (n · δ + n ·m) + k = n · δ + (n ·m+ k) = δ + (n ·m+ k) ,

where n · δ = δ by Lemma 7.2.2.1 since δ is a limit ordinal. Then since also δ ≤ γ < ωα and n ·m+k
is a natural number we clearly have that β = δ+ (n ·m+ k) < ωα as well since ωα is a limit ordinal
(by Theorem 7.1.9b). Hence β ∈ ωα.

Thus we have shown that f is bijective so that by definition n · ℵα = |n× ωα| = |ωα| = ℵα as
desired.

Exercise 7.2.3

Show that

(a) ℵnα = ℵα for all positive natural numbers n.

(b) |[ℵα]
n| = ℵα, where [ℵα]

n
is the set of all n-element subsets of ℵα for all n > 0.

(c)
∣∣[ℵα]

<ω∣∣ = ℵα, where [ℵα]
<ω

is the set of all finite subsets of ℵα.

[Hint: Use Theorem 7.2.1 and induction; for (c), proceed as in the proof of Theorem 3.10 in Chapter 4,
and use ℵ0 · ℵα = ℵα.]

Solution:

(a)

Proof. For any ordinal α, we show this by induction on n, noting that we only need to show this
for positive n so that n ≥ 1 (in fact it is untrue for n = 0). First, for n = 1 we clearly have
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ℵnα = ℵ1α = ℵα by what was shown in Exercise 5.1.2. Now assume that ℵnα = ℵα. We then have

ℵn+1
α = ℵnα · ℵ1α (by Theorem 5.1.7a)

= ℵnα · ℵα (again by Exercise 5.1.2)

= ℵα · ℵα (by the induction hypothesis)

= ℵα . (by Theorem 7.2.1)

This completes the induction step.

(b)

Proof. For ordinal α and natural number n, first we show that |[ℵα]
n| ≤ ℵα by constructing an

injective f : [ℵα]
n → ωnα. For a set X ∈ [ℵα]

n
we have that |X| = n. Thus there is a bijective g

from n to X, and since clearly X ⊆ ℵα = ωα it follows that g is a function from n to ωα. Hence
we simply set f(X) = g. Now consider any X1 and X2 in [ℵα]

n
where X1 6= X2. Then let g1

and g2 be the corresponding bijections from n to X1 and X2, respectively. Thus f(X1) = g1 and
f(X2) = g2. Then, since clearly the range of g1 is X1, the range of g2 is X2, and X1 6= X2 it
follows that f(X1) = g1 6= g2 = f(X2), which shows that f is injective. Hence it follows that

|[ℵα]
n| ≤ |ωnα| = |ωα|

|n|
= ℵnα = ℵα by what was shown in part (a).

Now we show that also ℵα ≤ |[ℵα]
n| by constructing an injective f : ωα → [ℵα]

n
. So for any β ∈ ωα

let X = {β + k | k ∈ n}, noting that clearly X ⊆ ωα = ℵα since ωα is a limit ordinal (since then
β + k ∈ ωα for any natural number k). Also clearly |X| = n so that X ∈ [ℵα]

n
. We then set

f(β) = X. Now consider any β1 and β2 in ωα where β1 6= β2 and let X1 = {β1 + k | k ∈ n} and
X2 = {β2 + k | k ∈ n} so that f(β1) = X1 and f(β2) = X2. Since β1 6= β2 we can assume that
β1 < β2 without loss of generality. Now, clearly β1 = β1+0 is the least element of X1 and β2 = β2+0
the least element of X2. Since β1 < β2 it then follows that β1 /∈ X2, but since β1 ∈ X1 this clearly
implies that f(β1) = X1 6= X2 = f(β2). This shows that f is injective so that ℵα = |ωα| ≤ |[ℵα]

n|.
Since we have shown that both |[ℵα]

n| ≤ ℵα and ℵα ≤ |[ℵα]
n|, it follows from the Cantor-Bernstein

Theorem that |[ℵα]
n| = ℵα, which is what we intended to show.

(c)

Proof. For any ordinal α we show first note that clearly [ℵα]
<ω

=
⋃
n<ω [ℵα]

n
. We show that∣∣[ℵα]

<ω∣∣ = ℵα by constructing a bijective f : ω × ωα →
⋃
n<ω [ℵα]

n
. So consider any n ∈ ω and

β ∈ ωα. Now, by what was shown in part (b), we have |[ℵα]
n| = ℵα = |ωα| so that there is a

bijective gn : ωα → [ℵα]
n
, i.e. gn is a transfinite enumeration of [ℵα]

n
. We then set f(n, β) = gn(β),

from which it should be clear that f(n, β) ∈
⋃
k<ω [ℵα]

k
since f(n, β) = gn(β) ∈ [ℵα]

n
.

First we show that f is injective. To this end consider any (n1, β1) and (n2, β2) in ω × ωα where
(n1, β1) 6= (n2, β2). Then either n1 6= n2 or β1 6= β2 (or both). Let gn1 and gn2 be the corresponding
bijections from ωα to [ℵα]

n1 and [ℵα]
n2 , respectively, as described above. Clearly if n1 6= n2 then

f(n1, β1) = gn1
(β1) ∈ [ℵα]

n1 whereas f(n2, β2) = gn2
(β2) ∈ [ℵα]

n2 so that f(n1, β1) 6= f(n2, β2)
since [ℵα]

n1 and [ℵα]
n2 are clearly disjoint (since [ℵα]

n1 contains only sets with n1 elements and
[ℵα]

n2 contains only sets with n2 elements and n1 6= n2). On the other hand, if n1 = n2 then
it must be the case that β1 6= β2. It also follows that gn1 = gn2 since n1 = n2. Hence we have
f(n1, β1) = gn1(β1) 6= gn1(β2) = gn2(β2) = f(n2, β2) since gn1 = gn2 is injective and β1 6= β2. Thus
in any case f(n1, β1) 6= f(n2, β2) so that f is injective.

Next we show that f is surjective. So consider any X ∈
⋃
n<ω [ℵα]

n
so that there is an n < ω such

that X ∈ [ℵα]
n
. Then let β = g−1n (X) (where gn is the bijection from ωα to [ℵα]

n
as described

above). Then clearly (n, β) ∈ ω × ωα and we have f(n, β) = gn(β) = gn(g−1n (X)) = X. Since X
was arbitrary this shows that f is surjective.
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Hence f is a bijection so that
∣∣[ℵα]

<ω∣∣ =
∣∣⋃

n<ω [ℵα]
n∣∣ = |ω × ωα| = |ω| · |ωα| = ℵ0 · ℵα = ℵα by

Corollary 7.2.2 since clearly 0 ≤ α. This shows the desired result.

Exercise 7.2.4

If α and β are ordinals and |α| ≤ ℵγ and |β| ≤ ℵγ , then |α+ β| ≤ ℵγ , |α · β| ≤ ℵγ ,
∣∣αβ∣∣ ≤ ℵγ (where

α+ β, α · β, and αβ are ordinal operations).

Solution:

Lemma 7.2.4.1. If α and β are ordinals then |α+ β| = |α|+ |β|.

Proof. Suppose that A and B are disjoint sets where |A| = |α| and |B| = |β| so that, by the definition
of cardinal addition, |α|+ |β| = |A ∪B|. We then show the result by constructing a bijection f from
A∪B to the ordinal α+ β. First, since |A| = |α|, there is a bijective fA : A→ α. Similarly there is
a bijective fB : B → β since |B| = |β|. Now consider any x ∈ A ∪B. We then set

f(x) =

{
fA(x) x ∈ A
α+ fB(x) x ∈ B

,

noting that this is unambiguous since A and B are disjoint. If x ∈ A then we clearly have f(x) =
fA(x) < α = α+ 0 ≤ α+ β by Lemma 6.5.4 so that f(x) ∈ α+ β. On the other hand if x ∈ B then
f(x) = α + fB(x) < α + β again by Lemma 6.5.4 since fB(x) < β, and hence again f(x) ∈ α + β.
This shows that f really is a function into α+ β.

Next we show that f is injective. So consider any x and y in A ∪B where x 6= y.

Case: x and y are both in A. Then f(x) = fA(x) 6= fA(y) = f(y) since fA is injective and x 6= y.

Case: x ∈ A and y ∈ B. Then f(x) = fA(x) < α = α + 0 ≤ α + fB(y) = f(y) by Lemma 6.5.4 so
that clearly f(x) 6= f(y).

Case: x ∈ B and y ∈ A. This is analogous to the previous case.

Case: x and y are both in A. Then f(x) = α + fB(x) 6= α + fB(y) = f(y) by Lemma 6.5.4b since
fB is injective and x 6= y so that fB(x) 6= fB(y).

Hence in all cases we have f(x) 6= f(y), which shows that f is injective.

Lastly, we show that f is surjective. So consider any y in α + β. If y < α then y ∈ α. Since fA
is surjective there is an x ∈ A such that fA(x) = y. Then, since x ∈ A, clearly f(x) = fA(x) = y.
If y ≥ a then by Lemma 6.5.5 there is an ordinal ξ such that α + ξ = y. It then follows that
α+ ξ = y < α+ β so that ξ < β by Lemma 6.5.4a. Hence ξ ∈ β so that there is an x ∈ B such that
fB(x) = ξ since fB is surjective. Then, since x ∈ B, clearly we have f(x) = α+ fB(x) = α+ ξ = y.
Hence in both cases there is an x ∈ A∪B where f(x) = y. Since y was arbitrary, this shows that f
is surjective.

Thus we have shown that f is bijective so that |α|+ |β| = |A ∪B| = |α+ β|.

Lemma 7.2.4.2. If α and β are ordinals then |α · β| = |α| · |β|.

Proof. First, if α = 0 then

|α · β| = |0 · β| = |0| = 0 = 0 · |β| = |0| · |β| = |α| · |β| .

The result also holds when β = 0. Hence going forward we can assume that α and β are nonzero
and therefore nonempty.
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We then show the result by constructing a bijective f : α×β → α ·β. So consider any (γ, δ) ∈ α×β.
It then follows that γ < α and δ < β so that δ + 1 ≤ β. We then set f(γ, δ) = α · δ + γ. We note
that

f(γ, δ) = α · δ + γ < α · δ + α = α · δ + α · 1 = α · (δ + 1) ≤ α · β

by Lemma 6.5.4, Exercise 6.5.2, and Exercise 6.5.7. Hence f(γ, δ) ∈ α · β so that f is into α · β.

Now we show that f is injective. So consider any (γ1, δ1) and (γ2, δ2) in α×β where (γ1, δ1) 6= (γ2, δ2).
Then clearly we have γ1 < α, γ2 < α, δ1 < β, and δ2 < β. We then have

Case: δ1 = δ2. Then it must be that γ1 6= γ2. We then have

f(γ1, δ1) = α · δ1 + γ1 6= α · δ1 + γ2 = α · δ2 + γ2 = f(γ2, δ2) ,

where we have used Lemma 6.5.4b and Exercise 6.5.7b since α 6= 0.

Case: δ1 6= δ2. Without loss of generality we can assume that δ1 < δ2 so that clearly δ1 + 1 ≤ δ2.
Then we have

f(γ1, γ2) = α · δ1 + γ1 < α · δ1 + α = α · (δ1 + 1) ≤ α · δ2 ≤ α · δ2 + γ2 = f(γ2, δ2) ,

where we have again used Lemma 6.5.4a, Exercise 6.5.2, and Exercise 6.5.7.

Hence in all cases we have f(γ1, δ1) 6= f(γ2, δ2), which shows that f is injective.

Lastly, we show that f is surjective. So consider any ordinal ξ ∈ α ·β so that ξ < α ·β. Since α 6= 0,
it follows from Theorem 6.6.3 that there is a unique δ and unique γ < α such that ξ = α · δ + γ.
Note that we have δ < β since otherwise δ ≥ β would imply that

ξ = α · δ + γ ≥ α · δ ≥ α · β

by Lemma 6.5.4 and Exercise 6.5.7, which is impossible since ξ < α · β. Hence we have that
(γ, δ) ∈ α× β, and clearly f(γ, δ) = ξ. Since ξ was arbitrary this shows that f is surjective.

Thus we have shown that f is bijective so that by the definition of cardinal multiplication we have
|α · β| = |α× β| = |α| · |β| as desired.

The following two lemmas are straightforward generalizations of Theorems 4.3.9 and 4.3.10, respec-
tively.

Lemma 7.2.4.3. Consider a nonzero ordinals α and β. Let 〈Aγ | γ < α〉 be a (potentially transfi-
nite) system of at most |β| sets, and let 〈aγ | γ < α〉 be a system of enumerations for 〈Aγ | γ < α〉,
i.e., for each γ < α, aγ = 〈aγ(δ) | δ < β〉 is a (potentially transfinite) sequence, and Aγ = {aγ(δ) | δ < β}.
Then

⋃
γ<αAγ is at most |α| · |β|.

Proof. We define a function f : α × β →
⋃
γ<αAγ by simply setting f(γ, δ) = aγ(δ) for any γ ∈ α

and δ ∈ β. We show that f is onto by considering any x ∈
⋃
γ<αAγ so that there is an γ < α

such that x ∈ Aγ . Then, since Aγ is the range of aγ , there is a δ < β such that aγ(δ) = x. Hence
f(γ, δ) = aγ(δ) = x so that f is onto since x was arbitrary.

We also have that α× β is well-orderable by Theorem 6.5.8 (for example the lexicographic ordering

has order type β · α). It then follows from Lemma 7.1.6.1 that
∣∣∣⋃γ<αAγ∣∣∣ ≤ |α× b| = |α| · |β| since

f is onto. Hence
⋃
γ<αAγ is at most |α| · |β| as desired.

Lemma 7.2.4.4. If A is a set with cardinality ℵγ for some ordinal γ, then the set Seq(A) of all
finite sequences of elements of A also has cardinality ℵγ .
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Proof. Let f be a bijection from ωγ to A. We also know from Theorem 7.2.1 that |ωγ × ωγ | =
ℵγ · ℵγ = ℵγ , so let g be a bijection from ωγ to ωγ × ωγ . For each n < ω0 = ω (i.e. n ∈ N) we
define a transfinite enumeration 〈an(α) | α < ωγ〉 of An, where An of course denotes the set of all
sequences of elements of A of length n. We define these enumerations recursively. Clearly for n = 0
we have An = A0 = {∅} so that we can set

a0(α) = ∅ for any α < ωγ

a1(α) = 〈f(α)〉 for any α < ωγ

Then, having defined an, for any α < ωγ , we let g(α) = (α1, α2) and define the sequence an+1(α) of
length n as follows:

an+1(α)(k) =

{
an(α1)(k) k < n

f(α2) k = n .

for any k < n+ 1.

Clearly each an(α) is a sequence of length n for any n < ω0 and α < ωγ , but we must show that an
is in fact an enumeration by showing that it is onto An for all n < ω0. We show this by induction
on n. Obviously this is true for the trivial n = 0 case and for the n = 1 case as well since, for any
sequence 〈a〉 of length 1 where a ∈ A, we have that there is a an α < ωγ such that f(α) = a since f
is onto. Hence by definition a1(α) = 〈f(α)〉 = 〈a〉 so that a1 is onto.

Now suppose that an is onto An and consider any sequence h ∈ An+1. Now, since h � n is a sequence
of length n there is an α1 < ωγ such that an(α1) = h � n by the induction hypothesis. We also
have h(n) ∈ A so that there is an α2 < ωγ such that f(α2) = h(n) since again f is onto. Now,
clearly (α1, α2) ∈ ωγ × ωγ so that there is an α < ωγ such that g(α) = (α1, α2) since g is onto.
Now consider any k < n + 1. If k < n then clearly we have an+1(α)(k) = an(α1)(k) = h(k) since
an(α1) = h � n. On the other hand, if k = n, then by definition an+1(α)(k) = f(α2) = h(n) = h(k).
Thus an+1(α) = h since k was arbitrary and the cases are exhaustive. This shows that an+1 is onto
since h was arbitrary, hence it is an enumeration.

Clearly we have that Seq(A) =
⋃
n<ω0

An and, since we also have an transfinite enumeration (indexed
by ωγ) of each An it follows from Lemma 7.2.4.3 that

|Seq(A)| =

∣∣∣∣∣ ⋃
n<ω0

An

∣∣∣∣∣ ≤ |ω0| · |ωγ | = ℵ0 · ℵγ = ℵγ ,

where we have utilized Corollary 7.2.2 since 0 ≤ γ. Also clearly ℵγ ≤ |Seq(A)| since, for example,
the function f : ωγ → Seq(A) defined by f(α) = 〈α〉 (for any α < ωγ) is injective. Thus by the
Cantor-Bernstein Theorem we have |Seq(A)| = ℵγ as desired.

Corollary 7.2.4.5. If A is a nonempty finite set then the set Seq(A) of all finite sequences of
elements of A is countable.

Proof. First we note that clearly the set B ∪ ω is countable (since B is finite and ω is countable)
so that Seq(A ∪ ω) is also countable by Lemma 7.2.4.4. Now let f be a function from Seq(A) to
Seq(A ∪ ω) defined by the identity f(g) = g for any sequence g ∈ Seq(A). Note that A ⊆ A ∪ ω so
that any sequence of elements of A is a also a sequence with elements in A∪ω. Clearly f is injective
so that |Seq(A)| ≤ |Seq(A ∪ ω)| = ℵ0.

Since A is nonempty there is an a ∈ A. For any n < ω consider the finite sequence gn(k) = a for
any k < n, which is clearly a sequence of length n with elements in A. Consider then the function
f from ω to Seq(A) defined f(n) = gn for n < ω. Clearly this is a injective function since, for any
n1 and n2 in ω where n1 6= n2, we have that f(n1) = gn1

and f(n2) = gn2
are sequences of different

lengths so cannot be equal. Thus we have ℵ0 = |ω| ≤ |Seq(a)| as well so that |Seq(A)| = ℵ0 by the
Cantor-Bernstein Theorem.

Page 79



The following is a corollary to Exercise 7.2.3c.

Corollary 7.2.4.6. Suppose that A is a set such that |A| = ℵα for some ordinal α. Let [A]
<ω

denote the set of all finite subsets of A. Then
∣∣[A]

<ω∣∣ = ℵα.

Proof. First let [ℵα]
<ω

again denote the set of finite subsets of ℵα. Since |A| = ℵα there is a bijective
f : A → ℵα. We then define g : [A]

<ω → [ℵα]
<ω

by letting g(B) = f [B] for any B ∈ [A]
<ω

, noting
that clearly g(B) ⊆ ℵα and g(B) is finite so that g(B) ∈ [ℵα]

<ω
. We now show that g is bijective.

First consider any B1 and B2 in [A]
<ω

where g(B1) = g(B2). Hence f [B1] = g(B1) = g(B2) = f [B2].
So consider any x ∈ B1 so that f(x) ∈ f [B1]. Then also f(x) ∈ f [B2] so that there is a y ∈ B2

such that f(y) = f(x). But since f is injective it has to be that y = x so that x = y ∈ B2. Hence
B1 ⊆ B2 since x was arbitrary. A similar argument shows that B2 ⊆ B1 as well so that B1 = B2.
This shows that g is injective.

Now consider any C ∈ [ℵα]
<ω

and let B = f−1[C], noting that f−1 is a bijective function since f
is. We claim then that g(B) = C. So consider any y ∈ g(B) = f [B] so that there is a x ∈ B such
that f(x) = y. Then we have x ∈ f−1[C] by the definition of B so that there is a z ∈ C such that
f−1(z) = x. Hence z = f(f−1(z)) = f(x) = y so that y = z ∈ C. Thus g(B) ⊆ C since y was
arbitrary. Now consider any y ∈ C so that clearly x = f−1(y) ∈ f−1[C] = B and also f(x) = y.
Hence clearly y = f(x) ∈ f [B] = g(B) so that C ⊆ g(B) since y was arbitrary. This shows that
g(B) = C so that g is surjective since C was arbitrary.

We have just shown that g is bijective so that
∣∣[A]

<ω∣∣ =
∣∣[ℵα]

<ω∣∣ = ℵα by Exercise 7.2.3c.

Lemma 7.2.4.7. If α and β are ordinals where at least one is infinite then
∣∣αβ∣∣ ≤ max (|α| , |β|).

Proof. To show this we reference the representation of ordinal exponentiation discussed in Exer-
cise 6.5.16. In that exercise we showed that the set S(β, α) = {f | f : β → α and s(f) is finite},
where s(f) = {ξ < β | f(ξ) 6= 0} for any f : β → α, can be ordered to be isomorphic to αβ . From
this it clearly follows that |S(β, α)| =

∣∣αβ∣∣.
We now construct an injective function f from S(β, α) to [β]

<ω × Seq(α), where [β]
<ω

is the set of
all finite subsets of β and Seq(α) is the set of all finite sequences of elements of α. So consider any
g ∈ S(β, α) so that g : β → α and s(g) is a finite subset of β. Also clearly s(g) is a finite set of
ordinals so that there is a unique isomorphism h from some natural number n to s(g). Clearly then
g ◦ h is a finite sequence from n to α. Thus we have that s(g) ∈ [β]

<ω
and g ◦ h ∈ Seq(α), so we set

f(g) = (s(g), g ◦ h).

To see that this mapping is injective consider g1 and g2 in S(β, α) where g1 6= g2. Then there is
some ξ < β where g1(ξ) 6= g2(ξ). Let h1 and h2 be the isomorphisms from natural numbers n1
and n2 to s(g1) and s(g2), respectively, as described above. If s(g1) 6= s(g2) then clearly f(g1) =
(s(g1), g1 ◦ h1) 6= (s(g2), g2 ◦ h2) = f(g2). So assume that s(g1) = s(g2), from which it follows
that n1 = n2 and h1 = h2. Since h1 = h2 are bijections there is a k ∈ n1 = n2 such that
h1(k) = h2(k) = ξ, noting that it has to be that ξ ∈ s(g1) = s(g2) since otherwise we would have
g1(ξ) = 0 = g2(ξ). We then have (g1 ◦h1)(k) = g1(h1(k)) = g1(ξ) 6= g2(ξ) = g2(h2(k)) = (g2 ◦h2)(k)
so that g1 ◦ h1 6= g2 ◦ h2. Thus once again f(g1) = (s(g1), g1 ◦ h1) 6= (s(g2), g2 ◦ h2) = f(g2), which
shows that f is injective.

So since f is injective it follows that
∣∣αβ∣∣ = |S(β, α)| ≤

∣∣[β]
<ω × Seq(α)

∣∣ =
∣∣[β]

<ω∣∣·|Seq(α)|. Suppose
first that |α| ≤ |β| so it has to be that β is infinite so that max (|α| , |β|) = |β| = ℵγ for some ordinal
γ. Thus by Lemma 7.2.4.6 we have

∣∣[β]
<ω∣∣ = ℵγ . If α = 0 = ∅ then clearly Seq(α) = {∅} so that

|Seq(α)| = 1. If α is finite but nonzero then it is nonempty so that |Seq(α)| = ℵ0 by Corollary 7.2.4.5.
Lastly, if α is infinite then |α| = ℵδ for some δ ≤ γ since ℵδ = |α| ≤ |β| = ℵγ . Hence |Seq(α)| = ℵγ
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by Lemma 7.2.4.4. Thus in all three cases κ = |Seq(α)| is either a natural number or ℵδ for some
δ ≤ γ. It then follows from Corollary 7.2.2 that∣∣αβ∣∣ ≤ ∣∣[β]

<ω∣∣ · |Seq(α)| = ℵγ · κ = κ · ℵγ = ℵγ = max (|α| , |β|) .

On the other hand if |β| ≤ |α| then it must be that α is infinite so that max (|α| , |β|) = |α| = ℵγ
for some ordinal γ. Thus by Lemma 7.2.4.4 we have |Seq(α)| = ℵγ as well. If β is finite then clearly
every subset of β is finite so that [β]

<ω
= P (β) is finite by Theorem 4.2.8. Hence

∣∣[β]
<ω∣∣ = n for

some natural number n. If β is infinite then |β| = ℵδ for some δ ≤ γ since ℵδ = |β| ≤ |α| = ℵγ . We
then have that

∣∣[β]
<ω∣∣ = ℵδ as well by Lemma 7.2.4.6. Hence in either case κ =

∣∣[β]
<ω∣∣ is a natural

number or ℵδ for some δ ≤ γ. Hence we have∣∣αβ∣∣ ≤ ∣∣[β]
<ω∣∣ · |Seq(α)| = κ · ℵγ = ℵγ = max (|α| , |β|)

again by Corollary 7.2.2. Thus in all cases we have shown that
∣∣αβ∣∣ ≤ max (|α| , |β|) as desired.

Main Problem.

Proof. That |α+ β| ≤ ℵγ follows almost immediately from Lemma 7.2.4.1. We have that |α+ β| =
|α|+|β| ≤ ℵγ+ℵγ = ℵγ , where we have also used property (c) of cardinal numbers after Lemma 5.1.2,
and Corollary 7.2.3.

Similarly, |α · β| ≤ ℵγ follows from Lemma 7.2.4.2. We have that |α · β| = |α| · |β| ≤ ℵγ · ℵγ = ℵγ ,
where we have used property (i) of cardinal numbers following Lemma 5.1.4, and Theorem 7.2.1.

The analogous lemma for ordinal exponentiation (i.e. that
∣∣αβ∣∣ = |α||β| for ordinals α and β)

is evidently not true. As a counterexample consider α = 2 and β = ω. We then have that∣∣αβ∣∣ = |2ω| = |ω| = ℵ0 is countable whereas we know that |α||β| = |2||ω| = 2ℵ0 is uncountable.

However, the somewhat analogous Lemma 7.2.4.7 will help us show the desired result. First, if both
α and β are finite then clearly αβ is also finite so that clearly

∣∣αβ∣∣ ≤ ℵγ . On the other hand, if at

least one of α or β is infinite, then have we have that
∣∣αβ∣∣ ≤ max (|α| , |β|) ≤ ℵγ by Lemma 7.2.4.7

as desired, noting that clearly max (|α| , |β|) ≤ ℵγ since both |α| ≤ ℵγ and |β| ≤ ℵγ .

Exercise 7.2.5

If X is the image of ωα by some function f , then |X| ≤ ℵα. [Hint: Construct a one-to-one mapping g of
X into ωα by letting g(x) = the least element of the inverse image of {x} by f .]

Solution:

Proof. Clearly f is a function from ωα onto its image X so that it follows from Lemma 7.1.6.1 that
|X| ≤ |ωα| = ℵα as desired.

Note that the proof of Lemma 7.1.6.1 uses exactly the technique given in the hint to argue its
conclusion.

Exercise 7.2.6

If X is a subset of ωα such that |X| < ℵα, then |ωα −X| = ℵα.
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Solution:

Lemma 7.2.6.1. If κ and λ are cardinal numbers and κ ≤ λ < ℵα for some ordinal α, then
κ+ λ < ℵα.

Proof. We have

κ+ λ = λ+ κ (by the commutativity of cardinal addition)

≤ λ+ λ (by property (d) in section 5.1)

= λ · 1 + λ · 1
= λ · (1 + 1) (by property (g) in section 5.1)

= λ · 2 .

If λ is finite then clearly λ · 2 is finite so that κ+ λ ≤ λ · 2 < ℵα. On the other hand if λ is infinite
then λ = ℵβ where β < α since ℵβ = λ < ℵγ . Thus we have κ+ λ ≤ λ · 2 = 2 · λ = 2 · ℵβ = ℵβ < ℵα
by Corollary 7.2.2. Hence in either case κ+ λ < ℵα as desired.

Main Problem.

Proof. First, we clearly have that ωα −X and X are disjoint and (ωα −X) ∪X = ωα so that, by
the definition of cardinal addition, we have

|ωα −X|+ |X| = |(ωα −X) ∪X| = |ωα| = ℵα .

Now suppose that |ωα −X| < ℵα Since ωα−X ⊆ ωα and X ⊆ ωα are both sets of ordinals, they are
clearly both well ordered by <. Thus |ωα −X| ≤ |X| or |X| ≤ |ωα −X| by Lemma 7.2.1.7. Since
we also have |ωα −X| < ℵα and |X| < ℵα, in either case it follows from Lemma 7.2.6.1 that

ℵα = |ωα −X|+ |X| < ℵα ,

which is clearly a contradiction. Thus it must be that |ωα −X| ≮ ℵα so that ℵα ≤ |ωα −X| by
Corollary 7.2.1.8. Since ωα − X ⊆ ωα we clearly also have that |ωα −X| ≤ |ωα| = ℵα. Hence
|ωα −X| = ℵα by the Cantor-Bernstein Theorem.

Chapter 8 The Axiom of Choice

As in the text, asterisks indicate exercises for which the Axiom of Choice is needed.

§8.1 The Axiom of Choice and its Equivalents

Exercise 8.1.1

Prove: If a set A can be linearly ordered, then every system of finite subsets of A has a choice function.
(It does not follow from the Zermelo-Fraenkel axioms that every set can be linearly ordered.)

Solution:

Lemma 8.1.1.1. Any linear ordering of a finite set is a well-ordering.
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Proof. We show this by strong induction on the cardinality of the set. So consider natural number
n and suppose that all linear ordered sets of cardinality k < n are well-orderings. Also suppose that
(A,4) is any linearly ordered set with |A| = n. Consider any nonempty B ⊆ A so that there is a
b ∈ B. Then clearly C = B − {b} is also a finite set with C ⊂ B ⊆ A so that |C| < n. Clearly
also C is linearly ordered by 4 so that, by the induction hypothesis, C is well-ordered by 4. Now,
if C = ∅, then it follows that B = {b}, which clearly has least element b. On the other hand, if
C 6= ∅, then it has a least element c since it is well-ordered. Since 4 is a linear ordering, it has to
be that either c 4 b or b 4 c.

Case: c 4 b. Then consider any x ∈ B. If x = b then obviously c 4 b = x. If x 6= b then
x ∈ C = B−{b} so that again c 4 x since c is the least element of C. This shows that c is the least
element of B since x was arbitrary.

Case: b 4 c. Then consider any x ∈ B. If x = b then obviously b 4 b = x. If x 6= b then
x ∈ C = B − {b} so that b 4 c 4 x since c is the least element of C. This shows that b is the least
element of B since x was arbitrary.

Hence in all cases we have that B has a 4-least element. This shows that 4 is a well-ordering of A
since B ⊆ A was arbitrary. This completes the inductive proof.

Main Problem.

Proof. Suppose that A is a set that can be linearly ordered and suppose that 4 is a such a linear
ordering. Suppose also that S is a system of finite subsets of A. Then clearly any B ∈ S is finite
and linearly ordered by 4. We then have that 4 is a well-ordering of B by Lemma 8.1.1.1. So we
then set

f(B) =

{
the least element of B according to 4 B 6= ∅
∅ B = ∅

for any B ∈ S. Clearly then f is a choice function for S.

Exercise 8.1.2

If A can be well-ordered, then P (A) can be linearly ordered. [Hint: Let < be a well-ordering of A; for
X,Y ⊆ A define X ≺ Y if any only if the <-least element of X4Y belongs to X.]

Solution:

Proof. Suppose that < is a well-ordering of A. Then, following the hint, defined the relation X ≺ Y
if and only if the <-least element of X4Y is in X for any X and Y in P (A). Note that, for any
x ∈ X4Y = (X − Y ) ∪ (Y −X), we clearly have that x ∈ X or x ∈ Y so that x ∈ A since X ⊆ A
and Y ⊆ A. Hence X4Y ⊆ A so that it is also well-ordered by <.

First we show that ≺ is a (strict) order on P (A). Hence we must show that it is asymmetric
and transitive. So consider any X and Y in P (A) where X ≺ Y . Then by definition the <-
least element x in X4Y is in X. Suppose also that Y ≺ X so that, since Y 4X = X4Y , x
is also in Y . Then clearly x can be neither in X − Y nor Y − X, but then it cannot be that
x ∈ (X−Y )∪ (Y −X) = X4Y . This is a contradiction since x was defined to be in X4Y . Hence
it cannot be that Y ≺ X as well, which shows that ≺ is asymmetric since X and Y were arbitrary.

To see that ≺ is transitive, consider any X,Y, Z ∈ P (A) where X ≺ Y and Y ≺ Z. Then the
least element x of X4Y is in X and the least element y of Y 4Z is in Y . Thus it has to be that
x ∈ X − Y and y ∈ Y − Z so that x ∈ X, x /∈ Y , y ∈ Y , and y /∈ Z. Note that, in particular, this
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means that x 6= y. Since clearly {x, y} ⊆ A, it follows that it has a <-least element a. Thus either
a = x or a = y. For each case we show that

1. a ∈ X

2. a ∈ X4Z

3. a is a lower bound of X4Z

Case: a = x. Then clearly a = x ≤ y so that a < y since a = x 6= y.

1. Clearly a ∈ X since a = x.

2. Suppose that a ∈ Z. Then, since a = x /∈ Y , we have that a ∈ Z − Y so that a ∈ Y 4Z.
Hence y ≤ a since y is the least element of Y 4Z, but this contradicts the fact that y > a. So
it must be that in fact a /∈ Z so that a ∈ X − Z. Thus a ∈ X4Z.

3. Now consider any z ∈ X4Z.

Case: z ∈ X − Z. Then, if z ∈ Y , we have that z ∈ Y − Z so that z ∈ Y 4Z. It then follows
that a = x ≤ y ≤ z since y is the least element of Y 4Z. On the other hand, if z /∈ Y , then
we have z ∈ X−Y so that z ∈ X4Y . Hence a = x ≤ z since x is the least element of X4Y .

Case: x ∈ Z −X. Then, if z ∈ Y , we have x ∈ Y −X so z ∈ X4Y . Then a = x ≤ z since x
is the least element of X4Y . On the other hand, if z /∈ Y , then we have z ∈ Z − Y so that
z ∈ Y 4Z. Then, as before, a = x ≤ y ≤ z since y is the least element of Y 4Z.

Hence in all cases a ≤ z so that a is a lower bound since z was arbitrary.

Case: a = y. Then clearly a = y ≤ x so that a < x since a = y 6= x.

1. Suppose that a /∈ X. Then since a = y ∈ Y we have that a ∈ Y −X so that also a ∈ X4Y .
But then x ≤ a since x is the least element of X4Y , which contradicts the fact that x > a.
Hence it has to be that a ∈ X.

2. We already know that a = y /∈ Z so that a ∈ X − Z since we just showed that a ∈ X. Hence
a ∈ X4Z.

3. Consider any z ∈ X4Z.

Case: z ∈ X −Z. If also z ∈ Y then clearly z ∈ Y −Z so that z ∈ Y 4Z. It then follows that
a = y ≤ z since y is the least element of Y 4Z. On the other hand, if z /∈ Y , then clearly
z ∈ X − Y so that z ∈ X4Y . Hence a = y ≤ x ≤ z since x is the least element of X4Y .

Case: z ∈ Z − X. Then, if z ∈ Y , clearly z ∈ Y − X so that z ∈ X4Y . We then have
that a = y ≤ x ≤ z since x is the least element of X4Y . On the other hand, if z /∈ Y , then
z ∈ Z − Y so that z ∈ Y 4Z. Then clearly a = y ≤ z since y is the least element of Y 4Z.

Hence in all cases a ≤ z so that a is a lower bound since z was arbitrary.

Thus in all cases we have that a is the least element of X4Z (since it is in X4Z and also is a
lower bound) and a ∈ X. By definition, this shows that X ≺ Z so that ≺ is transitive. This also
shows that ≺ is a (strict) order.

Lastly, we show that ≺ is a linear ordering. So consider any X,Y ∈ P (A). Assume that X 6= Y
so that X − Y 6= ∅ or Y − X 6= ∅ (or both). From this it follows that X4Y 6= ∅. Since also
clearly X4Y ⊆ A, it has a least element a. If a ∈ X − Y then a ∈ X so that X ≺ Y . Similarly, if
a ∈ Y −X then a ∈ Y so that Y ≺ X. Hence we have shown that either X = Y , X ≺ Y , or Y ≺ X
so that ≺ is in fact linear since X and Y were arbitrary.

This completes the proof since we have shown that ≺ is a linear ordering of P (A).
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Exercise 8.1.3*

Let (A,≤) be an ordered set in which every chain has an upper bound. Then for every a ∈ A, there is
a ≤-maximal element of x of A such that a ≤ x.

Solution:

Lemma 8.1.3.1. For any set A, there is a b /∈ A.

Proof. Let X = {α ∈ A | α is an ordinal number}. Then by Theorem 6.2.6e there is an ordinal α
such that α /∈ X. It also has to be that α /∈ A since, if it were, then α would be in X since it is an
ordinal number, which would be a contradiction.

Main Problem.

The proof of this is similar to the proof of Zorn’s Lemma from the Axiom of Choice (part of
Theorem 8.1.13 in the text).

Proof. First, by Lemma 8.1.3.1, there is a b /∈ A. Also, by the Axiom of Choice, there is a choice
function g on P (A). Now consider any a ∈ A. We then define a transfinite sequence 〈aα | α < h(A)〉
by transfinite recursion as follows. Set a0 = a. Then, having constructed the sequence 〈aξ | ξ < α〉
for 0 < α < h(A), we define the set Aα = {x ∈ A | aξ < x for all ξ < α}. We then set

aα =

{
g(Aα) if aξ 6= b for all ξ < α and Aα 6= ∅
b otherwise .

We claim that there is an α < h(A) such that aα = b. To see this, suppose to the contrary that
aα 6= b for all α < h(A) so that it has to be that each aα ∈ A. Consider now any α < h(A) and
β < h(A) where α 6= β. Without loss of generality we can assume that α < β. Clearly then, by
definition, we have that aβ ∈ Aβ so that aξ < aβ for all ξ < β. But since α < β, we have that
aα < aβ so that aα 6= aβ . Since α and β were arbitrary, this shows that the sequence is an injective
function from h(A) to A. However, this would mean that h(A) is equipotent to some subset of A,
which contradicts the definition of the Hartogs number. Hence it has to be that aα = b for some
α < h(A).

So let λ < h(A) be the least ordinal such that aλ = b and let C = {aξ | ξ < λ}. We claim that C is a
chain in (A,≤). So consider any aα and aβ in C so that α < λ and β < λ Without loss of generality
we can assume that α ≤ β. If α = β then obviously aα = aβ so that aa ≤ aβ clearly holds. If α < β
then, by what was shown above, we have that aα < aβ so that aα ≤ aβ again holds. Hence, in every
case, aα and aβ are comparable in ≤, which shows that C is a chain since aα and aβ were arbitrary.

Thus, since C is a chain of A, it has an upper bound c ∈ A. We claim that c is also a maximal
element of A. To show this, suppose that there is an x ∈ A such that c < x. Now consider any
ξ < λ. Then, since c is an upper bound of C, we have that aξ ≤ c < x so that aξ < x since orders
are transitive. It then follows from the definition of Aλ that x ∈ Aλ so that Aλ 6= ∅. Also note
that, by the definition of λ, we have that aξ 6= b for any ξ < λ. Thus, by the recursive definition
of the sequence, it follows that aλ = g(Aλ) 6= b, which contradicts the definition of λ (as the least
ordinal such that aλ = b). So it has to be that there is no such element x, which shows that c is in
fact a maximal element of A.

Now, it has to be that 0 6= λ since a0 = a 6= b = aλ. It then follows that 0 < λ since λ is an ordinal.
Hence a = a0 ∈ C by the definition of C. Then, since c is an upper bound of C, we have that c is a
maximal element of A where a ≤ c. Since a was arbitrary this shows the desired result.
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Exercise 8.1.4

Prove that Zorn’s Lemma is equivalent to the statement: For all (A,≤), the set of all chains of (A,≤)
has an ⊆-maximal element.

Solution:

Proof. (→) First, suppose that Zorn’s Lemma is true, and let C be the set of all chains of (A,≤).
First, it is trivial to show that ⊆ is a partial order on C, i.e. that it is reflexive, antisymmetric, and
transitive. Let B ⊆ C be any ⊆-chain, and let U =

⋃
B.

First we claim that that U ∈ C, which requires that we show that U is a chain of (A,≤). So consider
any x, y ∈ U =

⋃
B so that there are sets X,Y ∈ B such that x ∈ X and y ∈ Y . Since B is a

⊆-chain it follows that either X ⊆ Y or Y ⊆ X. In the case of X ⊆ Y then clearly both x and y
are in Y (since x ∈ X and X ⊆ Y ). Then, since Y ∈ C (since Y ∈ B and B ⊆ C), we have that Y
is a ≤-chain. Hence x and y are comparable in ≤. The case in which Y ⊆ X is analogous. Since
x, y ∈ U were arbitrary, this shows that U is a ≤-chain so that U ∈ C.

We also claim that U is an upper bound (with respect to ⊆) of B. To show this, consider any X ∈ B
and any x ∈ X. Then clearly x ∈

⋃
B = U . Hence X ⊆ U since x was arbitrary. Since also X ∈ B

was arbitrary, this shows that U is an upper bound of B.

Thus, since B was an arbitrary ⊆-chain, this shows that every chain of (C,⊆) has an upper bound.
It then follows from Zorn’s Lemma that C has a ⊆-maximal element as desired.

(←) Suppose that the set of all chains of (A,≤) has a ⊆-maximal element for any (A,≤). So consider
any such ordered set (A,≤) where every chain has a upper bound. Let C be the set of all chains of
(A,≤) so that C has a ⊆-maximal element M by our initial supposition. Then, since M ∈ C, it is
a chain so it has an upper bound a ∈ A. We claim that a is a maximal element of (A,≤).

To show this, assume to the contrary that there is a b ∈ A such that a < b, and let M ′ = M ∪ {b}.
Consider any x, y ∈ M ′. If x, y ∈ M then clearly x and y are comparable in ≤ since M is a chain.
On the other hand, if x ∈ M but y = b, then x ≤ a since a is an upper bound of M . We also
have that a < b = y so that x < y since orders are transitive. The case in which y ∈ M but x = b
similarly leads to y < x. Lastly, if x = y = b then clearly x ≤ y is true. Hence in all cases x and
y are comparable in ≤, which shows that M ′ is a chain since x and y were arbitrary. Therefore
M ′ ∈ C.

Now, it has to be that b /∈ M since, if it were, a could not be an upper bound of M since a < b
(and therefore it cannot be that b ≤ a since the strict ordering is asymmetric). So, since b /∈ M it
follows that M ⊂ M ∪ {b} = M ′, which contradicts the fact that M is a ⊆-maximal element of C
since also M ′ ∈ C. So it has to be that there is no such b where a < b, which shows that a is in fact
a maximal element of (A,≤). This proves Zorn’s Lemma since (A,≤) was arbitrary.

Exercise 8.1.5

Prove that Zorn’s Lemma is equivalent to the statement: If A is a system of sets such that, for each
B ⊆ A which is linearly ordered by ⊆,

⋃
B ∈ A, then A has an ⊆-maximal element.

Solution:

Proof. (→) Suppose Zorn’s Lemma and let A be a system of sets where
⋃
B ∈ A for any B that is

linearly ordered by ⊆. We know that ⊆ is a partial order on A. So let B be any ⊆-chain of A. Then
we know that

⋃
B ∈ A, and we also claim that

⋃
B is an upper bound of B. To see this, consider

any X ∈ B and any x ∈ X, so that clearly x ∈
⋃
B. Hence X ⊆ B since x was arbitrary. This
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shows that
⋃
B is an upper bound of B since X was arbitrary. Since B was an arbitrary chain, this

shows that (A,⊆) is an ordered set where every chain has an upper bound. Thus by Zorn’s Lemma
there is a ⊆-maximal element of A as desired.

(←) Now suppose that A has a ⊆-maximal element for any system of sets A such that
⋃
B ∈ A for

any B ⊆ A where B is linearly ordered by ⊆. Consider any ordered set (A,≤) and let C be the set
of all chains of A. Let B be any subset of C that is linearly ordered by ⊆, and consider any x and
y in

⋃
B. Then there are X and Y in B such that x ∈ X and y ∈ Y . Since B is linearly ordered

by ⊆ we have that either X ⊆ Y or Y ⊆ X. In the former case we have x ∈ X ⊆ Y so that both x
and y are in Y . Hence x and y are comparable in ≤ since Y ∈ B ⊆ C so that Y is a ≤-chain. A
similar argument shows that x and y are comparable if Y ⊆ X. Since x and y were arbitrary this
shows that

⋃
B is a ≤-chain so that

⋃
B ∈ C.

Thus C is a system of sets that meet the criteria of the initial supposition since B was arbitrary.
Hence C has a⊆-maximal element. Since (A,≤) was an arbitrary ordered set and we have shown that
the set of all chains of (A,≤) has a ⊆-maximal element, Zorn’s Lemma follows from Exercise 8.1.4.

Exercise 8.1.6

A system of sets A has finite character if X ∈ A if and only if every finite subset of X belongs to A.
Prove that Zorn’s Lemma is equivalent to the following (Tukey’s Lemma): Every system of sets of finite
character has an ⊆-maximal element. [Hint: Use Exercise 8.1.5.]

Solution:

Proof. (→) Suppose Zorn’s Lemma and let A be an arbitrary system of sets of finite character.
Suppose that B is any subset of A that is linearly ordered by ⊆ and let C be any finite subset of⋃
B. Now, for each x ∈ C there is a set Xx ∈ B such that x ∈ Xx, since x ∈ C ⊆

⋃
B. Clearly

the set D = {Xx | x ∈ C} is a subset of B so that D is also linearly ordered by ⊆. Also clearly D
is finite since C is. Hence D has a ⊆-greatest element X. Note that the Axiom of Choice is not
needed in selecting the set Xx for each x ∈ C since we are only making a finite number of choices.
So consider any x ∈ C so that x ∈ Xx ⊆ X. Hence x ∈ X so that C ⊆ X since x was arbitrary. We
also have that X ∈ B ⊆ A so X ∈ A. Therefore C is a finite subset of X, which is an element of
A, so that C is also in A since A has finite character. Since C was an arbitrary finite subset of

⋃
B

and C ∈ A it follows that
⋃
B ∈ A. Hence, since B was an arbitrary linearly ordered (by ⊆) subset

of A, we have by Exercise 8.1.5 and Zorn’s Lemma that A has a ⊆-maximal element as desired.

(←) Now suppose that every system of sets of finite character has a ⊆-maximal element. Let (A,≤)
be any ordered set and let C be the set of all chains of (A,≤). Now suppose that X ∈ C and let Y
be any finite subset of X. Clearly since X ∈ C, it is linearly ordered by ≤ so that Y is as well since
Y ⊆ X. Hence Y ∈ C. Now let X ′ be any set such that every finite subset of X ′ is in C. Consider
any x, y ∈ X ′. Then {x, y} is clearly a finite subset of X ′ so that it is in C and therefore a ≤-chain.
Hence x and y are comparable in ≤, which shows that X ′ itself is a ≤-chain since x and y were
arbitrary. Hence X ′ ∈ C. Thus we have just shown that X ∈ C if and only if every finite subset of
X is in C so that C has finite character by definition. Therefore, by the initial supposition, C has
a ⊆ maximal element. Since again C is the set of all chains of the arbitrary (A,≤), Zorn’s Lemma
follows from Exercise 8.1.4.

Exercise 8.1.7*

Let E be a binary relation on a set A. Show that there exists a function f : A → A such that for all
x ∈ A, (x, f(x)) ∈ E if and only if there is some y ∈ A such that (x, y) ∈ E.
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Solution:

Proof. If A = ∅ then clearly it must be that E = ∅ since E ⊆ A× A = ∅×∅ = ∅. Hence f = ∅
is vacuously such a function. So assume that A 6= ∅ so that there is an a ∈ A. For any x ∈ A
define the set Yx = {y ∈ A | (x, y) ∈ E}, noting that this could certainly be empty if x is not in the
domain of E. Clearly S = {Yx | x ∈ A} is a system of sets, and so has a choice function g by the
Axiom of Choice. We then define a function f : A→ A by

f(x) =

{
g(Yx) Yx 6= ∅
a Yx = ∅

for all x ∈ A. We claim that f meets the required criteria, so let x be some element of A.

(→) Suppose that (x, f(x)) ∈ E. Then clearly for y = f(x) we have that (x, y) = (x, f(x)) ∈ E. We
note that, if Y = ∅, then y = f(x) = a ∈ A, and if Yx 6= ∅ then y = f(x) = g(Yx) ∈ Yx since g is a
choice function so that again y ∈ A since clearly Yx ⊆ A.

(←) Now suppose that there is a y ∈ A such that (x, y) ∈ E. Then clearly by definition we have
y ∈ Yx so that Yx 6= ∅. Thus f(x) = g(Yx) ∈ Yx since g is a choice function. We therefore have
(x, f(x)) ∈ E as desired, again by the definition of Yx.

Exercise 8.1.8*

Prove that every uncountable set has a subset of cardinality ℵ1.

Solution:

This proof is similar to that of Theorem 8.1.4.

Proof. Let A be an uncountable set. By the Well-Ordering Principle (which is equivalent to the
Axiom of Choice by Theorem 8.1.13) A can be well ordered, and so can be arranged in a bijective
transfinite sequence 〈aα | α < Ω〉 for some ordinal Ω. Since A is then equipotent to Ω it has to be
that ω1 ≤ Ω since otherwise Ω (and therefore A) would be countable or finite. So then clearly the
range of the transfinite sequence 〈aα | α < ω1〉 is a subset of A with cardinality ℵ1.

Exercise 8.1.9*

Every infinite set is equipotent to some of its proper subsets. Equivalently, Dedekind finite sets are
precisely the finite sets.

Solution:

Proof. By Theorem 8.1.4, any infinite set has a countable subset so that such a set is Dedekind
infinite by Exercise 5.1.10. Therefore any infinite set is equipotent to a proper subset of itself by the
definition of Dedekind infinite as desired. In fact, any countable set (and by extension any infinite
set) is equipotent to an infinite number of its proper subsets. To see this we note that the mapping
f(k) = k+n is a bijection from N to N −n, which is clearly a proper subset of N , for any natural
number n.

Of course the contrapositive of this is that, if a set is Dedekind finite (i.e. not Dedekind infinite),
then the set is finite (i.e. not finite).
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Exercise 8.1.10*

Let (A,<) be a linearly ordered set. A sequence 〈an | n ∈ ω〉 of elements of A is decreasing if an+1 < an
for all n ∈ ω. Prove that (A,<) is a well-ordering if and only if there exists no infinite decreasing
sequence in A.

Solution:

Proof. (→) We show the contrapositive of this implication. So suppose that there is a decreasing
sequence 〈an | n ∈ ω〉 in A, and let X be the range of the sequence so that clearly X ⊆ A and
X 6= ∅. Now consider any x ∈ X so that there is a n ∈ ω such that x = an. We then have that
x = an > an+1 since the sequence is decreasing, noting that clearly an+1 ∈ X. Since x was arbitrary
this shows that X has no least element (since we have shown that ∀x ∈ X∃y ∈ X(x > y) and this
is logically equivalent to ¬∃x ∈ X∀y ∈ X(x ≤ y), noting that ¬(x > y) is equivalent to x ≤ y since
the ordering is linear). Thus, since there is a nonempty subset of A that has no least element, it
follows that (A,<) is not a well-ordering.

(←) We show the contrapositive of this implication as well. So suppose that (A,<) is not a well-
ordering. Then there exists a nonempty subset X of A such that X has no least element. By
the Axiom of Choice the set P (X) has a choice function g. For any x ∈ X we define the set
Xx = {y ∈ X | y < x}.
First we claim that Xx 6= ∅ for any x ∈ X. Suppose to the contrary that there is some x ∈ X
such that Xx = ∅. Consider any other y ∈ X. Then it cannot be that y < x for then y ∈ Xx so
that Xx 6= ∅. So, since the ordering is linear, it has to be that y ≥ x. But, since y was arbitrary,
this would mean that x is the least element of X, which we know cannot be since X has no least
element! Therefore it has to be that indeed Xx 6= ∅ for any x ∈ X.

Now we construct a sequence 〈an | n ∈ ω〉 by recursion:

a0 = g(X)

an+1 = g(Xan) ,

noting that the recursive step is always valid since Xan is never empty, as was just shown. It is easy
to see that this is a decreasing sequence. Take any n ∈ ω so that we have that an+1 = g(Xan). Hence
an+1 ∈ Xan since g is a choice function. By the definition of Xan it then follows that an+1 < an,
which shows that the sequence is decreasing since n was arbitrary. Hence we have constructed an
infinite decreasing sequence in A.

Exercise 8.1.11*

Prove the following distributive laws (see Exercise 3.13 in Chapter 2).

⋂
t∈T

(⋃
s∈S

At,s

)
=
⋃
f∈ST

(⋂
t∈T

At,f(t)

)
⋃
t∈T

(⋂
s∈S

At,s

)
=
⋂
f∈ST

(⋃
t∈T

At,f(t)

)

Solution:
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First we show that ⋂
t∈T

(⋃
s∈S

At,s

)
=
⋃
f∈ST

(⋂
t∈T

At,f(t)

)
.

Proof. First let

L =
⋂
t∈T

(⋃
s∈S

At,s

)
R =

⋃
f∈ST

(⋂
t∈T

At,f(t)

)

so that we must show that L = R.

(⊆) Consider any x ∈ L. For any t ∈ T , define the set St = {s ∈ S | x ∈ At,s}. Since x ∈ L we
have that x ∈

⋃
s∈S At,s for all t ∈ T . Hence, for all t ∈ T , there is an s ∈ S such that x ∈ At,s.

From this it follows that St 6= ∅ for any t ∈ T . Now, by the Axiom of Choice, the system of sets
{St | t ∈ T} has a choice function g. We then define a function f(t) = g(St) for any t ∈ T , noting
that this is defined for all t ∈ T since St is nonempty. Clearly then we have, for any such t ∈ T ,
that f(t) = g(St) ∈ St ⊆ S so that f(t) ∈ S. Hence f is a function from T into S so that f ∈ ST .

Now consider any specific t ∈ T so that f(t) ∈ St and hence x ∈ At,f(t) by the definition of St. Thus
since t was arbitrary this shows that x ∈

⋂
t∈T At,f(t). Moreover, since f ∈ ST we clearly have that

x ∈
⋃
f∈ST

(⋂
t∈T At,f(t)

)
= R. Thus, since x was arbitrary, this shows that L ⊆ R.

(⊇) Now consider any x ∈ R so that there is an f ∈ ST such that x ∈
⋂
t∈T At,f(t). Thus we have

that x ∈ At,f(t) for all t ∈ T . So consider any t ∈ T and let s = f(t), noting that s = f(t) ∈ S since
f ∈ ST . Thus we have that x ∈ At,f(t) = At,s. Since we have shown that there is an s ∈ S such that

x ∈ At,s, it follows that x ∈
⋃
s∈S At,s. Since t ∈ T was arbitrary we have x ∈

⋂
t∈T

(⋃
s∈S At,s

)
= L.

Hence R ⊆ L since x was arbitrary.

Now we show that ⋃
t∈T

(⋂
s∈S

At,s

)
=
⋂
f∈ST

(⋃
t∈T

At,f(t)

)
.

Proof. First let

L =
⋃
t∈T

(⋂
s∈S

At,s

)
R =

⋂
f∈ST

(⋃
t∈T

At,f(t)

)

so that we must show that L = R.

(⊆) Consider any x ∈ L so that there is a t ∈ T such that x ∈
⋂
s∈S At,s. Hence we have that

x ∈ At,s for all s ∈ S. Now consider any f ∈ ST . Then we have that f(t) ∈ S so that x ∈ At,f(t).
Therefore there is a t ∈ T such that x ∈ At,f(t) so that x ∈

⋃
t∈T At,f(t). Moreover, since f was

arbitrary, we have that x ∈
⋂
f∈ST

(⋃
t∈T At,f(t)

)
= R. This shows that L ⊆ R since x was arbitrary.

(⊇) We show this by contrapositive. So suppose that x /∈ L. Hence we have

x /∈
⋃
t∈T

(⋂
s∈S

At,s

)

¬∃t ∈ T

(
x ∈

⋂
s∈S

At,s

)
¬∃t ∈ T∀s ∈ S (x ∈ At,s)
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∀t ∈ T∃s ∈ S (x /∈ At,s) .

Now, let St = {s ∈ S | x /∈ At,s} for each t ∈ T , noting that St 6= ∅ by the above for any t ∈ T .
Then, by the Axiom of Choice, the system of sets {St | t ∈ T} has a choice function g. We then set
f(t) = g(St) for any t ∈ T . Then clearly f(t) = g(St) ∈ St ⊆ S for any t ∈ T so that f(t) ∈ S
since g is a choice function. It then follows that f is a function from T into S so that f ∈ ST . Now
consider any t ∈ T so that f(t) = g(St) ∈ St. Then, by the definition of St, we have that x /∈ At,f(t).
Since t ∈ T was arbitrary, we have thus shown that

∃f ∈ ST∀t ∈ T
(
x /∈ At,f(t)

)
¬∀f ∈ ST∃t ∈ T

(
x ∈ At,f(t)

)
¬∀f ∈ ST

(
x ∈

⋃
t∈T

At,f(t)

)

¬

x ∈ ⋂
f∈ST

(⋃
t∈T

At,f(t)

)
x /∈

⋂
f∈ST

(⋃
t∈T

At,f(t)

)
x /∈ R .

Since x was arbitrary, this shows by contrapositive that x ∈ R implies x ∈ L so that R ⊆ L.

Exercise 8.1.12*

Prove that for every ordering 4 on A, there is a linear ordering ≤ on A such that a 4 b implies a ≤ b
for all a, b ∈ A (i.e., every partial ordering can be extended to a linear ordering).

Solution:

Proof. Let (A,4) be a partially ordered set. Define the set

P = {R ⊆ A×A | R is a partial order of A and 4⊆ R} .

We know that ⊆ partially orders P . Now consider any ⊆-chain C of P . If C = ∅ then, since clearly
we have that 4∈ P , we have that ∅ ⊆4 so that 4 is an upper bound of C. On the other hand if
C 6= ∅ then there is an R ∈ C, noting that C ⊆ P so that R ∈ P as well. Then, by the definition
of P , R is a partial order on A such that 4⊆ R. Let U =

⋃
C. We first show that U is a partial

order on A.

So consider any a ∈ A. Then (a, a) ∈ R since R is a partial order of A (and therefore reflexive).
Hence clearly then (a, a) ∈

⋃
C = U since R ∈ C so that U is reflexive since a was arbitrary.

Now consider any x and y in A where (x, y) ∈ U and (y, x) ∈ U . Then, since U =
⋃
C, there are

S ∈ C and T ∈ C such that (x, y) ∈ S and (y, x) ∈ T . Since C is a ⊆-chain, we have that either
S ⊆ T or T ⊆ S. In the former case then we have that both (x, y) ∈ T (since (x, y) ∈ S and S ⊆ T )
and (y, x) ∈ T so that x = y since T is a partial order of A (since T ∈ C and C ⊆ P ) and is therefore
antisymmetric. The case in which T ⊆ S is analogous. This shows that U is antisymmetric.

Lastly, consider x, y, and z in A such that (x, y) ∈ U and (y, z) ∈ U . Then, again, we have that
there are S ∈ C and T ∈ C such that (x, y) ∈ S and (y, z) ∈ T . We also again have that S ⊆ T or
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T ⊆ S since C is a ⊆-chain. In the former case we have that (x, y) ∈ T (since (x, y) ∈ S and S ⊆ T )
and (y, z) ∈ T so that (x, z) ∈ T since T is a partial order on A (again since T ∈ C and C ⊆ P ) and
therefore transitive. Hence, since T ∈ C, clearly we have (x, z) ∈

⋃
C = U so that U is transitive.

The case in which T ⊆ S is again analogous.

Therefore we have shown that U is reflexive, antisymmetric, and transitive, and is therefore a
partial order on A by definition. Now consider any (x, y) ∈4. Then (x, y) ∈ R since 4⊆ R. Hence
(x, y) ∈

⋃
C = U since R ∈ C. It then follows that 4⊆ U since (x, y) was arbitrary. Thus U is a

partial order on A and 4⊆ U so that by definition U ∈ P .

Now consider any S ∈ C and any (x, y) ∈ S. Then clearly (x, y) ∈
⋃
C = U so that S ⊆ U since

(x, y) was arbitrary. Since S was arbitrary this shows that U is in fact an upper bound of C with
respect to ⊆.

Since the chain C was arbitrary, this shows that all ⊆-chains of P have an upper bound so that
the conditions of Zorn’s Lemma are satisfied. We can therefore conclude that P has a ⊆-maximal
element ≤.

We claim that ≤ is a linear ordering of A. So assume to the contrary that ≤ is not linear so that
there are a and b in A such that (a, b) /∈≤ and (b, a) /∈≤. Then define the relations

R′ = {(x, y) ∈ A×A | x ≤ a and b ≤ y}

and R =≤ ∪R′. First, notice that (a, a) ∈≤ and (b, b) ∈≤ since ≤ is reflexive so that by definition
(a, b) ∈ R′ and hence (a, b) ∈ R. We claim that R ∈ P so that we must first show that R is an order
on A.

Consider any x ∈ A so that clearly (x, x) ∈≤ since ≤ is an ordering of A and is therefore reflexive.
Hence clearly (x, x) ∈≤ ∪R′ = R so that R is reflexive.

Now suppose any x and y in A where (x, y) ∈ R and (y, x) ∈ R. Then clearly (x, y) ∈≤ or (x, y) ∈ R′
and similarly (y, x) ∈≤ or (y, x) ∈ R′

Case: (x, y) ∈≤. If (y, x) ∈≤ then clearly x = y since ≤ is an order on A and therefore is antisym-
metric. The sub-case in which (y, x) ∈ R′ cannot be since, if it were, then we would have y ≤ a and
b ≤ x. Hence we would have that b ≤ x ≤ y ≤ a so that b ≤ a by transitivity, which we know is not
possible by our definition of a and b.

Case: (x, y) ∈ R′. Then x ≤ a and b ≤ y. Here again the sub-case in which (y, x) ∈≤ is impossible
since we would then have b ≤ y ≤ x ≤ a so that b ≤ a by transitivity. Evidently the sub-case in
which (y, x) ∈ R′ is also impossible since then we would have y ≤ a and b ≤ x so that b ≤ x ≤ a as
well as b ≤ y ≤ a so that b ≤ a and a ≤ b, which we know is not possible. Hence this entire case is
not possible.

Thus, in the only valid case, we have that x = y so that R is antisymmetric.

Now suppose x, y, and z in A where (x, y) ∈ R and (y, z) ∈ R. Then we have that (x, y) ∈≤ or
(x, y) ∈ R′ and similarly (y, z) ∈≤ or (y, z) ∈ R′.
Case: (x, y) ∈≤. If (y, z) ∈≤ also then clearly we have (x, z) ∈≤ since ≤ is an order and therefore
transitive. If, on the other hand, (y, z) ∈ R′ then we have y ≤ a and b ≤ z. Hence we have that
x ≤ y ≤ a so that x ≤ a by transitivity. We thus have x ≤ a and b ≤ z so that (x, z) ∈ R′ by
definition.

Case: (x, y) ∈ R′. Then we have x ≤ a and b ≤ y. If (y, z) ∈≤ then we have b ≤ y ≤ z so that
b ≤ z by transitivity. Hence x ≤ a and b ≤ z so that (x, z) ∈ R′ by definition. On the other hand,
if (y, z) ∈ R′, then we have y ≤ a and b ≤ z. Hence b ≤ y ≤ a so that b ≤ a by transitivity, which
we know is not true. Therefore this sub-case is impossible.

Hence in all valid cases we have that (x, z) ∈≤ or (x, z) ∈ R′ so that clearly (x, z) ∈ R =≤ ∪R′,
thereby showing that R is transitive.
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Therefore we have shown that R is an ordering of A. We also clearly have that 4⊆ R since 4⊆≤
(since ≤∈ P ) and ≤⊆ R (since R =≤ ∪R′). Thus indeed R ∈ P .

Now, since R =≤ ∪R′ we clearly have that ≤⊆ R. We also know that (a, b) ∈ R but (a, b) /∈≤ so
that R 6=≤, and hence ≤⊂ R. However, this contradicts the fact that ≤ is a maximal element of P
so that it must be that ≤ is in fact linear!

Lastly, consider any a and b in A where a 4 b. Then (a, b) ∈4 so that (a, b) ∈≤ because 4⊆≤ since
≤∈ P . Thus a ≤ b so that ≤ is the 4-extended linear ordering of A that we seek.

Exercise 8.1.13*

(Principle of Dependent Choices) If R is a binary relation on M 6= ∅ such that for each x ∈M there is
a y ∈ M for which xRy, then there is a sequence 〈xn | n ∈ ω〉 such that xnRxn+1 holds for all n ∈ ω.

Solution:

Proof. Suppose such a relation R on M 6= ∅. Define the set Xx = {y ∈M | xRy} for each x ∈ M .
Then, by the given property of R, clearly Xx 6= ∅ for any x ∈ M . Then, by the Axiom of Choice,
the system of sets {Xx | x ∈M} has a choice function g. We also have that there is an a ∈M since
M 6= ∅. We then define a sequence recursively as follows:

x0 = a

xn+1 = g(Xxn) ,

noting that this is well defined since each Xn is nonempty.

To show that the sequence 〈xn | n ∈ ω〉 has the desired property, consider any n ∈ ω. Then by the
recursive definition we have that xn+1 = g(Xxn) so that xn+1 ∈ Xxn since g is a choice function
and Xxn is nonempty. Then, from the definition of Xxn , it follows that xnRxn+1. This shows the
desired result since n was arbitrary.

Exercise 8.1.14

Assuming only the Principle of Dependent Choices, prove that every countable system of sets has a
choice function (the Axiom of Countable Choice).

Solution:

Proof. Suppose that S is a countable system of sets and let T = {X ∈ S | X 6= ∅}. Then it suffices
to show that there is a choice function h for T . To see this suppose that there is such a choice
function h and define a function g on S by

g(X) =

{
∅ X = ∅
h(X) X 6= ∅

,

for any X ∈ S, noting that clearly X ∈ T if X 6= ∅ so that X is in the domain of h. Then, for any
nonempty X ∈ S, we have that g(X) = h(X) ∈ X since h is a choice function. Hence g is a choice
function on S.

Now we construct a choice function h for T . First note that clearly either T is finite or countable
since T ⊆ S and S is countable. If T is finite then it has a choice function h by Theorem 8.1.2, so
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we shall assume that T is also countable. It then follows that T can be written as a sequence of sets
〈Xn | n ∈ ω〉.
Now define the the binary relation R on

⋃
T by

R =
{

(x, y) ∈
⋃
T ×

⋃
T | x ∈ Xn and y ∈ Xn+1 for some n ∈ ω

}
.

First, since X0 ∈ T , it is nonempty so that there is an x ∈ X0. Then clearly x ∈
⋃
T so that

⋃
T

is nonempty. Now consider any x ∈
⋃
T so that there is an n ∈ ω such that x ∈ Xn. We then have

that Xn+1 6= ∅ since Xn+1 ∈ T so that there is a y ∈ Xn+1, noting that clearly also y ∈
⋃
T . It

then follows from the definition of R that xRy. Since x was arbitrary this shows that the relation
R on

⋃
T meets the conditions of the Principle of Dependent Choices. Thus we can conclude that

there is a sequence 〈xn | n ∈ ω〉 of elements of
⋃
T where xnRxn+1 holds for any n ∈ ω.

Now, since we have that x0 ∈
⋃
T , there is an m ∈ ω such that x0 ∈ Xm. We claim that

xn ∈ Xm+n for all n ∈ ω, which we show by induction on n. First, for n = 0, we already
know that xn = x0 ∈ Xm = Xm+0 = Xm+n. Now suppose that xn ∈ Xm+n. By the property
of the sequence 〈xk〉k∈ω we know that xnRxn+1 so that, by the definition of R, we have that
xn+1 ∈ X(m+n)+1 = Xm+(n+1) since clearly m + n ∈ ω and xn ∈ Xm+n. This completes the
induction.

Now consider the set T ′ = {Xn | n ∈ m}, which is clearly a finite system of nonempty sets. Hence
by Theorem 8.1.2 it has a choice function h′. Now we define a function h : T →

⋃
T . For any X ∈ T

we know that there is an n ∈ ω such that X = Xn. So we set

h(X) = h(Xn) =

{
h′(Xn) n < m

xn−m n ≥ m
.

We claim that h is a choice function on T . So consider any X ∈ T (which automatically means that
X 6= ∅) so that againX = Xn for some n ∈ ω. If n < m then we have that h(X) = h′(Xn) ∈ Xn = X
since h′ is a choice function. On the other hand, if n ≥ m, then we note that n −m ∈ ω and we
have h(X) = xn−m ∈ Xm+(n−m) = Xn = X by what was shown above. Since X was arbitrary this
shows that h is a choice function on T . Hence, as shown above this means that there is a choice
function g on S as desired.

Exercise 8.1.15

If every set is equipotent to an ordinal number, then the Axiom of Choice holds.

Solution:

Proof. Let A be any set and α be an ordinal equipotent to A. Then there is a bijection f from A
to α. We can then simply order A according to f , that is order it by the relation

4= {(x, y) ∈ A×A | f(x) ≤ f(y)}

Clearly then (A,4) is isomorphic to (α,≤) so that it is a well-ordering. Hence A can be well-
ordered. Since A was an arbitrary set, this shows the Well-Ordering Principle, which is equivalent
to the Axiom of Choice by Theorem 8.1.13.

Exercise 8.1.16

If for any sets A and B either |A| ≤ |B| or |B| ≤ |A|, then the Axiom of Choice holds. [Hint: Compare
A and B = h(A).]
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Solution:

Proof. Consider any set A. Then we have that either |A| ≤ |h(A)| or |h(A)| ≤ |A| (where h(A)
denotes the Hartogs number of A). Now, it cannot be that |h(A)| ≤ |A|. For, if it were, then there
would be an injection f from h(A) into A. Then clearly ran f ⊆ A and f is a bijection from h(A) to
ran f . Thus h(A) is equipotent to ran f ⊆ A, which violates the definition of the Hartogs number.

Therefore it must be that |A| ≤ |h(A)|. Hence there is an injection g from A into h(A). Since h(A)
is an ordinal and ran g ⊆ h(A), it follows that ran g is a set of ordinals, which is well-ordered by
Theorem 6.2.6d. So, ordering A according to g (considered as a bijection from A to ran g) results
in a well-ordering of A. Since A was an arbitrary set, this shows the Well-Ordering Principle, from
which the Axiom of Choice follows by Theorem 8.1.13.

Exercise 8.1.17*

If B is an infinite set and A is a subset of B such that |A| < |B|, then |B −A| = |B|.

Solution:

Proof. Since B is infinite, it follows Theorem 8.1.5 that there is a unique ordinal α such that
|B| = ℵα, noting that this requires the Axiom of Choice. Thus there is a bijection f from B onto
ωα. Clearly then, since A ⊆ B, we have that f [A] ⊆ ωα. Moreover, clearly f is a bijection from A to
f [A] so that |f [A]| = |A| < |B| = ℵα. It therefore follows from Exercise 7.2.6 that |ωα − f [A]| = ℵα.
We now claim that f [B −A] = ωα − f [A].

(⊆) So consider any y ∈ f [B − A] so that there is an x ∈ B − A such that y = f(x). Since clearly
x ∈ B, we have that y = f(x) ∈ ωα since f maps B onto ωα. Now suppose that also y ∈ f [A] so
that there is a z ∈ A where y = f(z). Then we have that y = f(x) = f(z) so that x = z since f is
injective. Hence we have x = z ∈ A but also z = x /∈ A since z = x ∈ B−A, which is a contradiction.
So it must be that y /∈ f [A] so that indeed y ∈ ωα − f [A]. Therefore f [B − A] ⊆ ωα − f [A] since y
was arbitrary.

(⊇) Now consider any y ∈ ωα − f [A] so that y ∈ ωα and y /∈ f [A]. Since f is onto ωα, there is
an x ∈ B such that y = f(x). Moreover, since y /∈ f [A] we can be sure that x /∈ A. Therefore
x ∈ B−A. Since y = f(x) it therefore follows that y ∈ f [B−A] so that ωα− f [A] ⊆ f [B−A] since
y was arbitrary.

Thus we have shown that f [B − A] = ωα − f [A] so that clearly f is a bijection from B − A onto
ωα − f [A]. Hence we have that |B −A| = |ωα − f [A]| = ℵα = |B| as desired.

§8.2 The Axiom of Choice in Mathematics

Exercise 8.2.1

Without using the Axiom of Choice, prove that the two definitions of closure points are equivalent if A
is an open set. [Hint: Xn is open, so Xn ∩Q 6= ∅, and Q can be well-ordered.]

Solution:

Lemma 8.2.1.1. If A and B are open subsets of R then A ∩B is open.
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Proof. First note that, if A∩B = ∅, then this is vacuously open. Otherwise, consider any x ∈ A∩B.
Then, since A is open and x ∈ A, there is a real δ1 > 0 such that |y − x| < δ1 implies that y ∈ A
for all y ∈ R. Similarly, x ∈ B and B is open so that there is a δ2 > 0 where |y − x| < δ2 implies
y ∈ B for all y ∈ R Let δ = min {δ1, δ2} so that δ ≤ δ1 and δ ≤ δ2. Then consider any y ∈ R where
|y − x| < δ. Then we have |y − x| < δ ≤ δ1 so that y ∈ A. Similarly, |y − x| < δ ≤ δ2 so that y ∈ B
as well. Hence y ∈ A ∩B. Since y was arbitrary and δ > 0, this shows that A ∩B is open.

Lemma 8.2.1.2. If A is a nonempty open subset of R then A ∩Q 6= ∅.

Proof. Suppose that A ⊆ R is nonempty and open. Then there is an x ∈ A and, since A is open,
there is a real δ > 0 such that (x− δ, x+ δ) ⊆ A. Now, since δ > 0, we clearly have

−δ < 0 < δ

x− δ < x+ δ .

Since Q is dense in R with respect to order, there is a q ∈ Q such that x− δ < q < x+ δ. Then we
have q ∈ (x − δ, x + δ) so that also q ∈ A since (x − δ, x + δ) ⊆ A. Thus q ∈ Q and q ∈ A so that
q ∈ A ∩Q as desired.

Main Problem.

Proof. A proof of this equivalence is presented in the text as Theorem 8.2.1. Recall that, in the proof
that (b) implies (a), a ∈ R is the closure point of A ⊆ R and Xn = {x ∈ A | |x− a| < 1/n}, and we
know from (b) that each Xn is nonempty. Note that we assume that X0 = A∩(−∞,∞) = A∩R = A.
Per the remarks after this proof, it suffices to show that the system of nonempty sets {Xn}n∈N has
a choice function when A is open.

First we show that each Xn is an open set. Clearly X0 = A is open, so consider any natural n > 0
and let In = (a− 1/n, a+ 1/n). We claim that Xn = A ∩ In. To this end we have

x ∈ Xn ↔ x ∈ A ∧ |x− a| < 1/n

↔ x ∈ A ∧ −1/n < x− a < 1/n

↔ x ∈ A ∧ a− 1/n < x < a+ 1/n

↔ x ∈ A ∧ x ∈ In
↔ x ∈ A ∩ In .

for any real x, which of course shows that Xn = A ∩ In. Then, since A is open and In is clearly an
open interval, it follows from Lemma 8.2.1.1 that Xn is open as well.

Now, since each Xn is open and nonempty, it follows that Xn ∩Q 6= ∅ from Lemma 8.2.1.2. Then,
since Q is countable, it can clearly be well-ordered. So choose a well-ordering of Q. Since Xn ∩Q is
clearly a nonempty subset of Q, it then has a least element xn according to our well-ordering. We
then define a function g on {Xn}n∈N by g(Xn) = xn, which is clearly a choice function.

Exercise 8.2.2

Prove that every continuous additive function f is equal to fa for some a ∈ R.

Solution:

Proof. Consider any arbitrary continuous additive function f : R → R. Then, by what was shown
in the text, there is a real a such that f(q) = fa(q) = a · q for all q ∈ Q; in particular a = f(1).
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Now suppose to the contrary that f 6= fa so that there is an x ∈ R where f(x) 6= fc(x). So let
ε = |f(x)− fa(x)| /2, noting that clearly ε > 0 since f(x) 6= fa(x). Since f is continuous there is
a real δ1 > 0 such that |f(y)− f(x)| < ε for all y ∈ R where |y − x| < δ1. Also clearly fa is also
continuous so that there is a real δ2 > 0 where |fa(y)− fa(x)| < ε for all y ∈ R where |y − x| < δ2.
So let δ = min {δ1, δ2}. Then, since δ > 0 it follows that x − δ < x + δ so that there is a q ∈ Q
where x− δ < q < x+ δ since Q is order dense in R. It then clearly follows that |q − x| < δ so that
|q − x| < δ ≤ δ1 and |q − x| < δ ≤ δ2. Therefore |f(q)− f(x)| < ε and |fa(q)− fa(x)| < ε.

We then have

|f(x)− fa(x)| ≤ |f(x)− f(q)|+ |f(q)− fa(x)|
≤ |f(x)− f(q)|+ |f(q)− fa(q)|+ |fa(q)− fa(x)|
< ε+ 0 + ε = 2ε = |f(x)− fa(x)| ,

which is a contradiction, noting that |f(q)− fa(q)| = 0 since f(q) = fa(q) since q ∈ Q. So it must
be that in fact f = fa as desired.

This proof is similar to that of Theorem 10.3.11 later in the text. That theorem is certainly more
general, and this can be easily proved from it. In particular it was shown in the text that, for an
arbitrary additive and continuous f : R → R, f(q) = fa(q) for all q ∈ Q for some a ∈ R so that
f � Q = fa � Q. Since f and fa are both continuous and Q is order dense in R, it follows from
Theorem 10.3.11 that f = fa.

Exercise 8.2.3

Assume that µ has properties 0)-ii). Prove properties iv) and v). Also prove:

vi) µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

vii) µ (
⋃∞
n=0An) ≤

∑∞
n=0 µ(An).

Solution:

First, for reference, we assume the following properties of µ:

0) µ([a, b]) = b− a for any a and b in R where a < b.

i) µ(∅) = 0 and µ(R) =∞.

ii) If {An}∞n=0 is a collection of mutually disjoint subsets of R, then

µ

( ∞⋃
n=0

An

)
=

∞∑
n=0

µ(An) .

First we show

iv) If A ∩B = ∅ then µ(A ∪B) = µ(A) + µ(B).

Proof. Assume that A ∩ B = ∅ and define A0 = A, A1 = B, and An = ∅ for all natural n > 1.
Then clearly each of the sets in {An}∞n=0 are mutually disjoint. It is also trivial to show that⋃∞
n=0An = A ∪B. We then have by property ii) that

µ(A ∪B) = µ

( ∞⋃
n=0

An

)
=

∞∑
n=0

µ(An) = µ(A0) + µ(A1) +

∞∑
n=2

µ(An)
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= µ(A) + µ(B) +

∞∑
n=2

µ(∅) = µ(A) + µ(B) +

∞∑
n=2

0

= µ(A) + µ(B) ,

noting that we have also used property i) according to which µ(∅) = 0. This shows the desired
result.

Lemma 8.2.3.1. For a measure µ, if A ⊆ B ⊆ R then µ(B −A) = µ(B)− µ(A).

Proof. Clearly A and B−A are disjoint sets such that A∪(B−A) = B so that µ(A)+µ(B−A) = µ(B)
by property iv). The result then clearly follows by subtracting µ(A) from both sides.

Next we show

v) If A ⊆ B then µ(A) ≤ µ(B).

Proof. Suppose that A ⊆ B so that µ(A)+µ(B−A) = µ(B) by Lemma 8.2.3.1. Since µ is a function
into [0,∞) ∪ {∞}, it follows that

0 ≤ µ(B −A)

µ(A) ≤ µ(B −A) + µ(A) = µ(A) + µ(B −A)

µ(A) ≤ µ(B)

as desired.

Now we show

vi) µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

Proof. Let C = A ∩ B, A′ = A − C, and B′ = B − C. It is then trivial to show that A′, B′, and
C are mutually disjoint sets such that A′ ∪ B′ ∪ C = A ∪ B. We then have by a straightforward
extension of property iv) that

µ(A′) + µ(B′) + µ(C) = µ(A ∪B)

µ(A− C) + µ(B − C) + µ(C) = µ(A ∪B)

µ(A)− µ(C) + µ(B)− µ(C) + µ(C) = µ(A ∪B)

µ(A) + µ(B)− µ(C) = µ(A ∪B)

µ(A) + µ(B)− µ(A ∩B) = µ(A ∪B)

as desired. Note that we have also used Lemma 8.2.3.1 since clearly C ⊆ A and C ⊆ B so that
µ(A− C) = µ(A)− µ(C) and µ(B − C) = µ(B)− µ(C).

Lastly we show

vii) µ (
⋃∞
n=0An) ≤

∑∞
n=0 µ(An).

Proof. Supposing that we have a system of sets {An}∞n=0, first we define a sequence of corresponding
sets recursively:

A′0 = A0

A′n+1 = An+1 −
n⋃
k=0

A′k
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Note that it is clear that A′n ⊆ An for any n ∈N so that µ(A′n) ≤ µ(An) by property v).

We now show that each of these sets are mutually disjoint. So consider any natural m and n where
m 6= n. Without loss of generality, we can then assume that m < n. Suppose that A′m and A′n are

not disjoint so that there is an x ∈ A′m ∩ A′n. Thus x ∈ A′n = An −
⋃n−1
k=0 A

′
k so that x /∈

⋃n−1
k=0 A

′
k.

However since also x ∈ A′m and 0 ≤ m ≤ n−1, we also can conclude that x ∈
⋃n−1
k=0 A

′
k. Since this is

a contradiction, it must be that A′m and A′n are in fact disjoint, which shows mutual disjointedness
since m and n were arbitrary.

Next we show that
⋃∞
n=0A

′
n =

⋃∞
n=0An. The ⊆ direction is clear since, for any x ∈

⋃∞
n=0A

′
n, there

a natural n where x ∈ A′n. Since A′n ⊆ An it follows that x ∈ An so that clearly x ∈
⋃∞
n=0An.

Now consider any x ∈
⋃∞
n=0An so that there is a natural n where x ∈ An. Clearly if n = 0 then

x ∈ A0 = A′0. So assume that n > 0 so that
⋃n−1
k=0 A

′
k is defined. If x ∈

⋃n−1
k=0 A

′
k then there is a

0 ≤ k ≤ n−1 where x ∈ A′k. On the other hand, if x /∈
⋃n−1
k=0 A

′
k then clearly x ∈ An−

⋃n−1
k=0 A

′
k = A′n.

Thus in all cases there is a natural k such that x ∈ A′k so that x ∈
⋃∞
n=0A

′
n as desired.

We therefore have

µ

( ∞⋃
n=0

An

)
= µ

( ∞⋃
n=0

A′n

)

=

∞∑
n=0

µ(A′n) (by property ii) since the sets {A′n}
∞
n=0 are mutually disjoint)

≤
∞∑
n=0

µ(An) (since 0 ≤ µ(A′n) ≤ µ(An) for all natural n)

as desired.

Exercise 8.2.4*

Let S = {X ⊆ S | |X| ≤ ℵ0 or |S −X| ≤ ℵ0}. Prove that S is a σ-algebra.

Solution:

Lemma 8.2.4.1. If A, B, and C are sets then A− (B − C) = (A−B) ∪ (A ∩ C).

Proof. For any x we have

x ∈ A− (B − C)↔ x ∈ A ∧ x /∈ B − C
↔ x ∈ A ∧ ¬(x ∈ B ∧ x /∈ C)

↔ x ∈ A ∧ (x /∈ B ∨ x ∈ C)

↔ (x ∈ A ∧ x /∈ B) ∨ (x ∈ A ∧ x ∈ C)

↔ X ∈ A−B ∨ x ∈ A ∩ C
↔ x ∈ (A−B) ∪ (A ∩ C) .

Lemma 8.2.4.2. If A ⊆ B and S is another set, then S −B ⊆ S −A.

Proof. Consider any x ∈ S − B so that x ∈ S and x /∈ B. Then it has to be that also x /∈ A
since otherwise it would not be that A ⊆ B. Hence x ∈ S − A, which shows the result since x was
arbitrary.
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Main Problem.

Proof. We must show that the above definition of S satisfies the three parts of the definition of a
σ-algebra:

(a) ∅ ∈ S and S ∈ S.

(b) If X ∈ S then S −X ∈ S.

(c) If Xn ∈ S for all n, then
⋃∞
n=0Xn ∈ S and

⋂∞
n=0Xn ∈ S.

For (a) clearly |∅| = 0 ≤ ℵ0 so that ∅ ∈ S, and S − S = ∅ so that |S − S| = |∅| = 0 ≤ ℵ0. Hence
S ∈ S as well.

For (b) suppose that X ⊆ S and X ∈ S. Then either |X| ≤ ℵ0 or |S −X| ≤ ℵ0. If |X| ≤ ℵ0 then
by Lemma 8.2.4.1 we have

S − (S −X) = (S − S) ∪ (S ∩X) = ∅ ∪ (S ∩X) = S ∩X = X

since X ⊆ S. Therefore |S − (S −X)| = |X| ≤ ℵ0 so that S − X ∈ S. On the other hand, if
|S −X| ≤ ℵ0, then obviously S −X ∈ S by definition.

Lastly, regarding (c), suppose that {Xn}∞n=0 is a system of sets where each Xn is in S. Thus
|Xn| ≤ ℵ0 or |S −Xn| ≤ ℵ0 for each natural n.

Now we show that
⋃∞
n=0Xn ∈ S. First, if |Xn| ≤ ℵ0 for all natural n, then it follows from

Theorem 8.1.7 that |
⋃∞
n=0Xn| ≤ ℵ0, which of course uses the Axiom of Choice. If, on the other

hand, there is a natural m such that |Xm| 6≤ ℵ0, then it has to be that |S −Xm| ≤ ℵ0 since Xm ∈ S.
Then, since clearly Xm ⊆

⋃∞
n=0Xn, it follows from Lemma 8.2.4.2 that S −

⋃∞
n=0Xn ⊆ S −Xm so

that clearly |S −
⋃∞
n=0Xn| ≤ |S −Xm| ≤ ℵ0. Thus in all cases we have that either |

⋃∞
n=0Xn| ≤ ℵ0

or |S −
⋃∞
n=0Xn| ≤ ℵ0 so that

⋃∞
n=0Xn ∈ S.

Lastly we show that
⋂∞
n=0Xn ∈ S as well. If it is the case |S −Xn| ≤ ℵ0 for all natural n, then

clearly we have that
⋃∞
n=0(S−Xn) ≤ ℵ0, again by Theorem 8.1.7. It also follows from Exercise 2.3.11

that S −
⋂∞
n=0Xn =

⋃∞
n=0(S −Xn) so that we have |S −

⋂∞
n=0Xn| = |

⋃∞
n=0(S −Xn)| ≤ ℵ0. Now,

on the other hand, if there is a natural m such that |S −Xm| 6≤ ℵ0, then it has to be that |Xm| ≤ ℵ0
since Xm ∈ S. Since clearly

⋂∞
n=0Xn ⊆ Xm, we then have |

⋂∞
n=0Xn| ≤ |Xm| ≤ ℵ0. Hence in either

case we have that |
⋂∞
n=0Xn| ≤ ℵ0 or |S −

⋂∞
n=0Xn| ≤ ℵ0 so that

⋂∞
n=0Xn ∈ S by definition.

We have therefore shown parts (a), (b), and (c) so that S is a σ-algebra as desired.

Exercise 8.2.5

Let C be any collection of subsets of S. Let S =
⋂
{T | C ⊆ T and T is a σ-algebra of subsets of S}.

Prove that S is a σ-algebra (it is called the σ-algebra generated by C).

Solution:

Proof. First, let T = {T | C ⊆ T and T is a σ-algebra of subsets of S} so that S =
⋂
T . Then we

must show that S meets the definition of a σ-algebra:

(a) ∅ ∈ S and S ∈ S.

(b) If X ∈ S then S −X ∈ S.

(c) If Xn ∈ S for all n, then
⋃∞
n=0Xn ∈ S and

⋂∞
n=0Xn ∈ S.
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Regarding (a), consider any T ∈ T . Since T is then a σ-algebra it follows that both ∅ ∈ T and
S ∈ T by (a). Then, since T ∈ T was arbitrary, it follows that both ∅ and S are in

⋂
T = S.

For (b) suppose that X ∈ S =
⋂
T so that X ∈ T for all T ∈ T . So consider any such T ∈ T so that

clearly X ∈ T. Then, since T is then a σ-algebra, it follows that S − X ∈ T by (b). Since T ∈ T
was arbitrary, we have that S −X ∈

⋂
T = S.

Lastly, for part (c) of the definition, suppose that Xn ∈ S =
⋂
T for all n ∈ N . Let T be any

element of T so that Xn ∈ T for all natural n. Since T is a σ-algebra, it then follows from (c)
that both

⋃∞
n=0Xn and

⋂∞
n=0Xn are in T. Since T ∈ T was arbitrary we have that

⋃∞
n=0Xn and⋂∞

n=0Xn are in
⋂
T = S.

Hence we have shown all three parts of the definition so that S is indeed a σ-algebra.

Exercise 8.2.6

Fix a ∈ S and define µ on P (S) by: µ(A) = 1 if a ∈ A, µ(A) = 0 if a /∈ A. Show that µ is a σ-additive
measure on S.

Solution:

Proof. Let S = P (S), which we know is the largest σ-algebra of subsets of S. We must show that
µ as defined above satisfies the properties of σ-additive measure on S:

i) µ(∅) = 0, µ(S) > 0.

ii) If {Xn}∞n=0 is a collection of mutually disjoint sets from S, then

µ

( ∞⋃
n=0

Xn

)
=

∞∑
n=0

µ(Xn) .

To show i), we clearly have that a /∈ ∅ so that by definition µ(∅) = 0. Also, clearly a ∈ S so that
µ(S) = 1 > 0.

Regarding ii), suppose that {Xn}∞n=0 is a collection of mutually disjoint sets in S = P (S).

Case: a ∈
⋃∞
n=0Xn. Then by definition µ (

⋃∞
n=0Xn) = 1. There is also an n ∈N such that a ∈ Xn,

and since the sets {Xk}∞k=0 are mutually disjoint, it follows that a /∈ Xm for any natural m 6= n
(since otherwise Xn and Xm would not be disjoint). Thus we have µ(Xn) = 1 while µ(Xm) = 0 for
all natural m 6= n. Hence

∞∑
k=0

µ(Xk) =
∑
k∈N

µ(Xk) =

n−1∑
k=0

µ(Xk) + µ(Xn) +

∞∑
k=n+1

µ(Xk) =

n−1∑
k=0

0 + 1 +

∞∑
k=n+1

0 = 1 .

Thus clearly µ (
⋃∞
n=0Xn) =

∑∞
n=0 µ(Xn) = 1.

Case: a /∈
⋃∞
n=0Xn. Then µ (

⋃∞
n=0Xn) = 0 by definition. It also follows that a /∈ Xn for every

natural Xn so that µ(Xn) = 0. Hence clearly

µ

( ∞⋃
n=0

Xn

)
= 0 =

∞∑
n=0

0 =

∞∑
n=0

µ(Xn) .

Thus ii) is shown in both cases so that µ is indeed a σ-additive measure on S since we also showed
i).

Page 101



Exercise 8.2.7

For A ⊆ S let µ(A) = 0 if A = ∅, µ(A) =∞ otherwise. Show that µ is a σ-additive measure on S.

Solution:

Proof. Let S = P (S), which we know is the largest σ-algebra of subsets of S. We must show that
µ as defined above satisfies the properties of σ-additive measure on S:

i) µ(∅) = 0, µ(S) > 0.

ii) If {Xn}∞n=0 is a collection of mutually disjoint sets from S, then

µ

( ∞⋃
n=0

Xn

)
=

∞∑
n=0

µ(Xn) .

For i) we clearly have µ(∅) = 0 by definition and µ(S) =∞ > 0 since S is nonempty, which follows
from the fact that P (S) is a σ-algebra of subsets of S.

Regarding ii), suppose that {Xn}∞n=0 is a collection of disjoint sets in S = P (S).

Case:
⋃∞
n=0Xn = ∅. Then by definition µ (

⋃∞
n=0Xn) = 0, and it also has to be that Xn = ∅ for

all n ∈N so that µ(Xn) = 0. Therefore

∞∑
n=0

µ(Xn) =

∞∑
n=0

0 = 0 = µ

( ∞⋃
n=0

Xn

)
.

Case:
⋃∞
n=0Xn 6= ∅. Then by definition µ (

⋃∞
n=0Xn) =∞. It also follows that Xn 6= ∅ for at least

one n ∈N so that µ(Xn) =∞. We then have

∞∑
k=0

µ(Xk) =

n−1∑
k=0

µ(Xk) + µ(Xn) +

∞∑
k=n+1

µ(Xk) =

n−1∑
k=0

µ(Xk) +∞+

∞∑
k=n+1

µ(Xk)

=∞ = µ

( ∞⋃
n=0

Xn

)

since each µ(Xm) ∈ {0,∞} for all natural m 6= n.

Thus ii) is shown in both cases so that µ is indeed a σ-additive measure on S as desired.

Exercise 8.2.8

For A ⊆ S let µ(A) = |A| if A is finite, µ(A) = ∞ if A is infinite. µ is a σ-additive measure on S; it is
called the counting measure on S.

Solution:

Proof. Let S = P (S), which we know is the largest σ-algebra of subsets of S. We must show that
µ as defined above satisfies the properties of σ-additive measure on S:

i) µ(∅) = 0, µ(S) > 0.
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ii) If {Xn}∞n=0 is a collection of mutually disjoint sets from S, then

µ

( ∞⋃
n=0

Xn

)
=

∞∑
n=0

µ(Xn) .

For i) we have that µ(∅) = |∅| = 0 since ∅ is finite. If S is finite then µ(S) = |S| > 0 since S is
nonempty. If S is infinite then µ(S) =∞ > 0 as well so that in either case µ(S) > 0 as desired.

To show ii) suppose that {Xn}∞n=0 is a collection of disjoint sets in S = P (S).

Case: There is an m ∈N where Xm is infinite. Then obviously µ(Xm) =∞ by definition. We also
clearly have that

⋃∞
n=0Xn is infinite since Xm ⊆

⋃∞
n=0Xn, and hence µ(

⋃∞
n=0Xn) =∞. Then

∞∑
n=0

µ(Xn) =

m−1∑
n=0

µ(Xn) + µ(Xm) +

∞∑
n=m+1

µ(Xn) =

m−1∑
n=0

µ(Xn) +∞+

∞∑
n=m+1

µ(Xn) =∞

since µ(Xn) ∈N ∪ {∞} for every n 6= m. Therefore µ(
⋃∞
n=0Xn) =

∑∞
n=0 µ(Xn) =∞ as desired.

Case: Xn is finite for every n ∈ N . Clearly then µ(Xn) = |Xn| for every natural n. First, if there

is a natural N such that Xn = ∅ for all n > N , then clearly
⋃∞
n=0Xn =

⋃N
n=0Xn, i.e. the union is

finite. It then follows that
⋃N
n=0Xn is finite by Theorem 4.2.7 so that µ

(⋃N
n=0Xn

)
=
∣∣∣⋃Nn=0Xn

∣∣∣.
Then, since the sets {Xn}Nn=0 are mutually disjoint, we have

µ

( ∞⋃
n=0

Xn

)
= µ

(
N⋃
n=0

Xn

)
=

∣∣∣∣∣
N⋃
n=0

Xn

∣∣∣∣∣ =

N∑
n=0

|Xn| =
N∑
n=0

µ(Xn) =

∞∑
n=0

µ(Xn)

by the definition of cardinal addition, noting that clearly the last step follows from the fact that
µ(Xn) = |∅| = 0 for all n > N .

On the other hand, if there is no such N , then it follows that, for every N ∈ N , there is a natural
n > N such that Xn 6= ∅. At this point we need two facts from real analysis, supposing that
〈an〉∞n=0 is a real sequence:

1. By definition, the sequence converges to a real a if, for every real ε > 0, there is an N ∈ N
such that |an − a| < ε for every natural n ≥ N .

2. If the infinite series
∑∞
n=0 an converges (to a finite value) then the sequence itself must converge

to zero.

We shall show that
∑∞
n=0 µ(Xn) diverges by showing that the sequence 〈µ(Xn)〉∞n=0 does not con-

verge to zero (i.e. the contrapositive of 2). So let ε = 1/2, noting that clearly ε = 1/2 > 0. Then
consider any natural N so that there is a natural n > N such that Xn 6= ∅. It then follows that,
since Xn is finite but nonempty, |µ(Xn)− 0| = |µ(Xn)| = ||Xn|| = |Xn| ≥ 1 ≥ 1/2 = ε. Therefore
we have shown

∃ε > 0∀N ∈N∃n ≥ N (|µ(Xn)− 0| ≥ ε)
¬∀ε > 0∃N ∈N∀n ≥ N (|µ(Xn)− 0| < ε) ,

which shows by definition that 〈µ(Xn)〉∞n=0 does not converge to zero. Hence
∑∞
n=0 µ(Xn) diverges

so that by convention
∑∞
n=0 µ(Xn) =∞.

Lastly, we show that
⋃∞
n=0Xn must be infinite. Suppose to the contrary that

⋃∞
n=0Xn is finite. We

then construct a function f :
⋃∞
n=0Xn → N as follows: for each x ∈

⋃∞
n=0Xn there is a unique
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m ∈ N where x ∈ Xm. Clearly such an m exists since x ∈
⋃∞
n=0Xn, and it is unique because the

sets {Xn}∞n=0 are mutually disjoint (if it was not unique then there would be distinct n and m where
x ∈ Xn and x ∈ Xm so that Xn ∩Xm 6= ∅). We then simply set f(x) = m.

It then follows from Theorem 4.2.5 that ran (f) is finite since dom (f) =
⋃∞
n=0Xn is. Since ran (f)

is then a finite set of natural numbers, it has greatest natural number N . But we know that there is
an m > N such that Xm 6= ∅ so that there is an x ∈ Xm. It then follows that clearly x ∈

⋃∞
n=0Xn

and that f(x) = m. However, then m would be in ran (f) so that m ≤ N since N is the greatest
element of ran (f). But we already know that m > N , which is a contradiction. So it has to be that⋃∞
n=0Xn is in fact infinite as desired.

We therefore have µ (
⋃∞
n=0Xn) = ∞ =

∑∞
n=0 µ(Xn) and hence ii) has been shown in every case

and sub-case so that µ is indeed a σ-additive measure on S by definition.

Chapter 9 Arithmetic of Cardinal Numbers

§9.1 Infinite Sums and Products of Cardinal Numbers

Exercise 9.1.1

If Ji (i ∈ I) are mutually disjoint sets and J =
⋃
i∈I Ji, and if κj (j ∈ J) are cardinals, then

∑
i∈I

∑
j∈Ji

κj

 =
∑
j∈J

κj

(associativity of
∑

)

Solution:

Proof. Suppose that 〈Aj | j ∈ J〉 are mutually disjoint sets where |Aj | = κj for every j ∈ J . Then,
by definition, we have that

∑
j∈J

κj =

∣∣∣∣∣∣
⋃
j∈J

Aj

∣∣∣∣∣∣ . (1)

Now let S = {Ji | i ∈ I}, from which it is trivial to show that
⋃
S = J . It follows from Exercise 2.3.10

that

⋃
j∈J

Aj =
⋃

a∈
⋃
S

Aa =
⋃
C∈S

(⋃
a∈C

Aa

)
=
⋃
i∈I

⋃
j∈Ji

Aj

 . (2)

We claim that the sets
〈⋃

j∈Ji Aj | i ∈ I
〉

are mutually disjoint. So consider any i1 and i2 in I

where i1 6= i2, and suppose that
⋃
j∈Ji1

Aj and
⋃
j∈Ji2

Aj are not disjoint so that there is an x

where x ∈
⋃
j∈Ji1

Aj and x ∈
⋃
j∈Ji2

Aj . Then there is a j1 ∈ Ji1 where x ∈ Aj1 and a j2 ∈ Ji2
where x ∈ Aj2 . Now, since 〈Ji | i ∈ I〉 are mutually disjoint and i1 6= i2, it follows that Ji1 and Ji2
are disjoint. Therefore it has to be that j1 6= j2 (since j1 ∈ Ji1 and j2 ∈ Ji2). But then Aj1 and Aj2
are not disjoint (since x is in both) despite the fact that j1 6= j2, which contradicts the fact that
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〈Aj | j ∈ J〉 are mutually disjoint. So it must be that in that
⋃
j∈Ji1

Aj and
⋃
j∈Ji2

Aj are disjoint,

which proves the result since i1 and i2 were arbitrary.

Since
〈⋃

j∈Ji Aj | i ∈ I
〉

have been shown to be mutually disjoint, it follows by definition that

∑
i∈I

∣∣∣∣∣∣
⋃
j∈Ji

Aj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃
i∈I

⋃
j∈Ji

Aj

∣∣∣∣∣∣ . (3)

Lastly, we also clearly have that 〈Aj | j ∈ Ji〉 are mutually disjoint for any i ∈ I (since 〈Aj | j ∈ J〉
are mutually disjoint) so that

∑
j∈Ji

κj =

∣∣∣∣∣∣
⋃
j∈Ji

Aj

∣∣∣∣∣∣ . (4)

Putting this all together, we have

∑
j∈J

κj =

∣∣∣∣∣∣
⋃
j∈J

Aj

∣∣∣∣∣∣ (by (1))

=

∣∣∣∣∣∣
⋃
i∈I

⋃
j∈Ji

Aj

∣∣∣∣∣∣ (by (2))

=
∑
i∈I

∣∣∣∣∣∣
⋃
j∈Ji

Aj

∣∣∣∣∣∣ (by (3))

=
∑
i∈I

∑
j∈Ji

κj

 (by (4))

as desired.

Exercise 9.1.2

If κi ≤ λi for all i ∈ I then
∑
i∈I κi ≤

∑
i∈I λi.

Solution:

Proof. Suppose that 〈Ai | i ∈ I〉 are mutually disjoint sets such that |Ai| = κi for all i ∈ I. Similarly,
suppose that 〈Bi | i ∈ I〉 are mutually disjoint sets such that |Bi| = λi for all i ∈ I. It then follows
by definition that

∑
i∈I

κi =

∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ∑
i∈I

λi =

∣∣∣∣∣⋃
i∈I

Bi

∣∣∣∣∣ .
Now, we have |Ai| = κi ≤ λi = |Bi| so that there is an injective function fi : Ai → Bi for all i ∈ I.
With the help of the Axiom of Choice, we can choose one of these functions for each i ∈ I and form
the system of functions {fi}i∈I .
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We claim that {fi}i∈I is a compatible system of functions. To see this, consider any i1 and i2 in
I. If i1 = i2 then consider any x ∈ dom (fi1) ∩ dom (fi2) = Ai1 ∩ Ai2 = Ai1 ∩ Ai1 = Ai1 . Then
clearly fi1(x) = fi2(x) since i1 = i2 and fi1 = fi2 is a function. On the other hand, if i1 6= i2,
then we have that dom (fi1)∩dom (fi2) = Ai1 ∩Ai2 = ∅ since 〈Ai | i ∈ I〉 are mutually disjoint and
i1 6= i2. Hence it is vacuously true that fi1(x) = fi2(x) for all x ∈ dom (fi1) ∩ dom (fi2) since there
is no such x. Since i1 and i2 were arbitrary, this shows that {fi}i∈I is a compatible system (see
Definition 2.3.10). It then follows from Theorem 2.3.12 that f =

⋃
i∈I fi is a function with domain⋃

i∈I dom (fi) =
⋃
i∈I Ai.

Though perhaps it may seem obvious, we show formally that f(x) = fi(x) for any x ∈ Ai (for any
i ∈ I). So consider any such i ∈ I and x ∈ Ai. Then (x, f(x)) ∈ f =

⋃
i∈I fi so that there is a j ∈ I

where (x, f(x)) ∈ fj . Suppose for a moment that j 6= i so that x ∈ dom (fj) = Aj . Since x ∈ Ai
and x ∈ Aj but i 6= j, this contradicts the fact that 〈Ai | i ∈ I〉 are mutually disjoint. Hence it must
be that j = i so that (x, f(x)) ∈ fj = fi. From this of course it follows that fi(x) = f(x) as desired.

We also claim that f(x) ∈
⋃
i∈I Bi for any x ∈

⋃
i∈I Ai so that

⋃
i∈I Bi can be the codomain of

f . This is easy to show: consider any x ∈
⋃
i∈I Ai so that there is an i ∈ I where x ∈ Ai. It

then follows that f(x) = fi(x) ∈ Bi since fi is a function from Ai to Bi. Therefore we clearly have
f(x) ∈

⋃
i∈I Bi. This shows the result since x was arbitrary.

We also claim that f is injective. So consider any x1 and x2 in
⋃
i∈I Ai where x1 6= x2. Then there

are i1 and i2 such that x1 ∈ Ai1 and x2 ∈ Ai2 . If i1 = i2 then f(x1) = fi1(x1) 6= fi1(x2) = fi2(x2) =
f(x2) since fi1 = fi2 is injective. If i1 6= i2 then f(x1) = fi1(x1) ∈ Bi1 whereas f(x2) = fi2(x2) ∈
Bi2 . Since {Bi | i ∈ I} are mutually disjoint and i1 6= i2 it follows that f(x1) 6= f(x2). Therefore f
is an injective function from

⋃
i∈I Ai to

⋃
i∈I Bi so that

∑
i∈I

κi =

∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≤
∣∣∣∣∣⋃
i∈I

Bi

∣∣∣∣∣ =
∑
i∈I

λi

as desired.

Exercise 9.1.3

Find some cardinals κn, λn (n ∈N) such that kn < λn for all n, but
∑∞
n=0 κn =

∑∞
n=0 λn.

Solution:

Let κn = 1 and λn = 2 for all n ∈N . We claim that these satisfy the required properties.

Proof. Clearly we have κn = 1 < 2 = λn for all n ∈ N . It then follows from Exercise 9.1.4 (and
also the more general Theorem 9.1.3) that

∞∑
n=0

κn =

∞∑
n=0

1 =
∑
n∈N

1 =
∑
n<ℵ0

1 = ℵ0 · 1 = ℵ0 = ℵ0 · 2 =
∑
n<ℵ0

2 =
∑
n∈N

2 =

∞∑
n=0

2 =

∞∑
n=0

λn

as desired.

Exercise 9.1.4

Prove that κ+ κ+ · · · (λ times) = λ · κ.
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Solution:

Proof. First, if λ = 0 then, by convention, we have

κ+ κ+ · · · (λ times) = κ+ κ+ · · · (0 times) = 0 = 0 · κ = λ · κ

regardless of what κ is. So assume in what follows that λ > 0 so λ ≥ 1.

For each α < λ, define Aα = {(α, β) | β ∈ κ}. Consider then any α1 < λ and α2 < λ where α1 6= α2.
Suppose that both (x, y) ∈ Aα1

and (x, y) ∈ Aα2
. It then follows that x = α1 and x = α2 so that

x = α1 = α2, which contradicts our assumption that α1 6= α2! So it must be that no such (x, y)
exists so that Aα1 and Aα2 are disjoint. Since α1 and α2 were arbitrary, this shows that 〈Aα | α < λ〉
are mutually disjoint sets. We also clearly have that |Aα| = κ for each α < λ. It therefore follows
from the definition of cardinal summation that

κ+ κ+ · · · (λ times) =
∑
α<λ

κ =

∣∣∣∣∣ ⋃
α<λ

Aα

∣∣∣∣∣ .
Now we show that

⋃
α<λAα = λ × κ. First consider any (x, y) ∈

⋃
α<λ so that there is an α < λ

where (x, y) ∈ Aα. We then have that x = α and y ∈ κ. Therefore x = α < λ so that x ∈ λ by
the definition of < for ordinal numbers. Hence x ∈ λ and y ∈ κ so that (x, y) ∈ λ× κ, which shows
that

⋃
α<λAα ⊆ λ×κ since (x, y) was arbitrary. Now consider any (x, y) ∈ λ×κ so that x ∈ λ and

y ∈ κ. Let α = x ∈ λ so that α < λ. Hence (x, y) = (α, y) for α < λ and y ∈ κ, which shows that
(x, y) ∈ Aα so that clearly (x, y) ∈

⋃
α<λAα. This shows that λ × κ ⊆

⋃
α<λAα since again (x, y)

was arbitrary. Thus
⋃
α<λAα = λ× κ as desired.

Putting all this together, we have

κ+ κ+ · · · (λ times) =
∑
α<λ

κ =

∣∣∣∣∣ ⋃
α<λ

Aα

∣∣∣∣∣ = |λ× κ| = λ · κ

by the definition of cardinal multiplication since obviously |λ| = λ and |κ| = κ.

Exercise 9.1.5

Prove the distributive law:

λ ·

(∑
i∈I

κi

)
=
∑
i∈I

(λ · κi) .

Solution:

Proof. Suppose that 〈Ai | i ∈ I〉 are mutually disjoint sets such that |Ai| = κi for all i ∈ I. Then
by definition

∑
i∈I κi =

∣∣⋃
i∈I Ai

∣∣. Also suppose that B is a set such that |B| = λ.

We claim first that B ×
⋃
i∈I Ai =

⋃
i∈I (B ×Ai). This is easy to show since, for any x and y, we

have

(x, y) ∈ B ×
⋃
i∈I

Ai ↔ x ∈ B ∧ ∃i ∈ I(y ∈ Ai)

↔ ∃i ∈ I(x ∈ B ∧ y ∈ Ai)
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↔ ∃i ∈ I((x, y) ∈ B ×Ai)

↔ (x, y) ∈
⋃
i∈I

(B ×Ai) .

We then have

λ ·
∑
i∈I

κi = λ ·

∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ (by the definition of cardinal summation)

=

∣∣∣∣∣B ×⋃
i∈I

Ai

∣∣∣∣∣ (by the definition of cardinal multiplication)

=

∣∣∣∣∣⋃
i∈I

(B ×Ai)

∣∣∣∣∣ (by what was just shown above)

=
∑
i∈I
|B ×Ai| (by the definition of cardinal summation)

=
∑
i∈I

(λ · κi) (by the definition of cardinal multiplication)

as desired. We note that
∣∣⋃

i∈I(B ×Ai)
∣∣ =

∑
i∈I |B ×Ai| works since the sets 〈B ×Ai | i ∈ I〉

are mutually disjoint. This is easy to see by considering i and j in I where i 6= j. Then, if
(x, y) ∈ B × Ai and also (x, y) ∈ B × Aj , it follows that y ∈ Ai and y ∈ Aj , which cannot be since
i 6= j and 〈Ai | i ∈ I〉 are mutually disjoint. Hence it must be that there is no such ordered pair
(x, y) so that B ×Ai and B ×Aj are disjoint, which proves the result since i and j were arbitrary.

Exercise 9.1.6∣∣⋃
i∈I Ai

∣∣ ≤∑i∈I |Ai|.

Solution:

Proof. First let 〈Bi | i ∈ I〉 be mutually disjoint sets where |Bi| = |Ai| for every i ∈ I. It then
follows that

∑
i∈I |Ai| =

∣∣⋃
i∈I Bi

∣∣ by definition. For each i ∈ I we can choose a bijection fi from
Ai to Bi by the Axiom of Choice since |Ai| = |Bi|. We construct a function f :

⋃
i∈I Ai →

⋃
i∈I Bi.

For each x ∈
⋃
i∈I Ai we have that x ∈ Aj for some j ∈ I. We choose one such j, which requires

the Axiom of Choice, and set f(x) = fj(x). Clearly f(x) = fj(x) ∈ Bj so that then f(x) ∈
⋃
i∈I Bi,

which shows that
⋃
i∈I Bi can be the codomain for f .

We show that f is injective. So consider any x1 and x2 in
⋃
i∈I Ai where x1 6= x2. Then we

have chosen unique j1 and j2 where f(x1) = fj1(x) and f(x2) = fj2(x). If j1 = j2 then we have
f(x1) = fj1(x1) 6= fj1(x2) = fj2(x2) = f(x2) since fj1 = fj2 is injective and x1 6= x2. If j1 6= j2 then
f(x1) = fj1(x1) ∈ Bj1 whereas f(x2) = fj2(x2) ∈ Bj2 . Since j1 6= j2 and 〈Bi | i ∈ I〉 are mutually
disjoint, it follows that f(x1) 6= f(x2). Since this is true in both cases and x1 and x2 were arbitrary,
it shows that f is injective.

Since f is injective we, we have ∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≤
∣∣∣∣∣⋃
i∈I

Bi

∣∣∣∣∣ =
∑
i∈I
|Ai|

as desired.
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Exercise 9.1.7

If Ji (i ∈ I) are mutually disjoint sets and J =
⋃
i∈I Ji, and if κj (j ∈ J) are cardinals, then

∏
i∈I

∏
j∈Ji

κj

 =
∏
j∈J

κj

(associativity of
∏

).

Solution:

Proof. Suppose that 〈Aj | j ∈ J〉 are sets where |Aj | = κj for each j ∈ J . It then follows that

∏
j∈J

κj =

∣∣∣∣∣∣
∏
j∈J

Aj

∣∣∣∣∣∣ . (5)

Now, for any i ∈ I, set Bi =
∏
j∈Ji Aj so that

∏
j∈Ji

κj =

∣∣∣∣∣∣
∏
j∈Ji

Aj

∣∣∣∣∣∣ = |Bi| (6)

by definition.

Now we construct a bijection f from
∏
j∈J Aj to

∏
i∈I Bi. So consider any a ∈

∏
j∈J Aj so that

a = 〈aj | j ∈ J〉 where aj ∈ Aj for every j ∈ J . Now, for each i ∈ I, set a′i = 〈aj | j ∈ Ji〉, noting
that clearly j ∈ J =

⋃
i∈I Ji for each j ∈ Ji so that aj has been defined as in the range of a. We

then have that aj ∈ Aj for j ∈ Ji so that a′i ∈
∏
j∈Ji Aj = Bi. So set b = 〈a′i | i ∈ I〉 so that clearly

b ∈
∏
i∈I Bi, and set f(a) = b. Since f(a) = b ∈

∏
i∈I Bi for any a ∈

∏
j∈J Aj , we have that f is

indeed a function from
∏
j∈J Aj into

∏
i∈I Bi.

We claim first that f is injective. So consider any α and β in
∏
j∈J Aj where α 6= β. It then follows

that α = 〈αj | j ∈ J〉 and β = 〈βj | j ∈ J〉 where both αj and βj are in Aj for any j ∈ J . Now, since
α 6= β it follows that there is a j0 ∈ J such that αj0 6= βj0 . Also there is an i0 ∈ I such that j0 ∈ Ji0
since j0 ∈ J =

⋃
i∈I Ji. Now let α′i = 〈αj | j ∈ Ji〉 and β′i = 〈βj | j ∈ Ji〉 for i ∈ I. We then have

that α′i0 6= β′i0 since j0 ∈ Ji0 and αj0 6= βj0 . Clearly then f(α) = 〈α′i | i ∈ I〉 and f(β) = 〈β′i | i ∈ I〉
by definition so that f(α) 6= f(β) since i0 ∈ I and α′i0 6= β′i0 . This shows that f is injective since α
and β were arbitrary.

We also claim that f is onto. Consider any b ∈
∏
i∈I Bi so that b = 〈bi | i ∈ I〉 where each bi ∈ Bi

for i ∈ I. So, for any i ∈ I, we have that bi ∈ Bi =
∏
j∈Ji Aj so that bi = 〈aij | j ∈ Ji〉 where each

aij ∈ Aj for j ∈ Ji. Now we construct a function g. So consider any j0 ∈ J so that there is a unique
i0 ∈ I such that j0 ∈ Ji0 , where the uniqueness clearly follows from the fact that 〈Ji | i ∈ I〉 are
mutually disjoint. Then simply set g(j0) = ai0j0 ∈ Aj0 so that clearly g ∈

∏
j∈J Aj . If we then set

a′i = 〈g(j) | j ∈ Ji〉 = 〈aij | j ∈ Ji〉 = bi for all i ∈ I, then f(g) = 〈a′i | i ∈ I〉 = 〈bi | i ∈ I〉 = b. Since
b was arbitrary this shows that f is indeed onto.

It may not have been obvious, but the uniqueness of i0 ∈ I for any j0 ∈ J (such that j0 ∈ Ji0)
when constructing g was critical for this proof. To see why, suppose that for some j0 ∈ J there
are distinct i1 and i2 in I such that j0 ∈ Ji1 and j0 ∈ Ji2 . Then it could very well be that
ai1j0 6= ai2j0 (though they would both be in Aj0) and we would have to choose one to be g(j0).
Supposing we choose g(j0) = ai1j0 then we would have a′i2 = 〈g(j) | j ∈ Ji2〉 so that a′i2 6= bi2 since
a′i2(j0) = g(j0) = ai1j0 6= ai2j0 = bi2(j0). If we had set g(j0) = ai2j0 instead then, by the same
argument, we would have a′i1 6= bi1 . Clearly in either case this would break the proof since we would
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have f(g) = 〈a′i | i ∈ I〉 6= 〈bi | i ∈ I〉 = b. In fact, in this case there would be no g ∈
∏
j∈J Aj such

that f(g) = b since we cannot choose a value for g(j0) for which a′i = bi for all i ∈ I.

Returning from our digression, we have shown that f is a bijection from
∏
j∈J Aj to

∏
i∈I Bi so that∣∣∣∣∣∣

∏
j∈J

Aj

∣∣∣∣∣∣ =

∣∣∣∣∣∏
i∈I

Bi

∣∣∣∣∣ . (7)

Therefore we have

∏
i∈I

∏
j∈Ji

κj

 =
∏
i∈I
|Bi| (by (6))

=

∣∣∣∣∣∏
i∈I

Bi

∣∣∣∣∣ (by the definition of cardinal product)

=

∣∣∣∣∣∣
∏
j∈J

Aj

∣∣∣∣∣∣ (by (7))

=
∏
j∈J

κj (by (5))

as desired.

Exercise 9.1.8

If κi ≤ λi for all i ∈ I, then ∏
i∈I

κi ≤
∏
i∈I

λi .

Solution:

Proof. Suppose sets 〈Ai | i ∈ I〉 and 〈Bi | i ∈ I〉 where |Ai| = κi and |Bi| = λi for all i ∈ I. Then,
by the definition of the cardinal product, we have that

∏
i∈I

κi =

∣∣∣∣∣∏
i∈I

Ai

∣∣∣∣∣ ∏
i∈I

λi =

∣∣∣∣∣∏
i∈I

Bi

∣∣∣∣∣ .
Now, for any i ∈ I, we also have

|Ai| = κi ≤ λi = |Bi|

so that we can choose an injective fi : Ai → Bi (with the help of the Axiom of Choice).

We then construct a function f from
∏
i∈I Ai to

∏
i∈I Bi. So for any a ∈

∏
i∈I Ai we have that

a = 〈ai | i ∈ I〉 where each ai ∈ Ai. Thus ai ∈ Ai = dom (fi) for each i ∈ I so that fi(ai) ∈ Bi.
We then define f(a) = 〈fi(ai) | i ∈ I〉 so that clearly f(a) ∈

∏
i∈I Bi and hence f is a function into∏

i∈I Bi.

We claim that f as defined above is injective. To this end, consider any α and β in
∏
i∈I Ai

where α 6= β. It then follows that α = 〈αi | i ∈ I〉 and β = 〈βi | i ∈ I〉 where both αi and βi
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are elements of Ai for each i ∈ I. Since α 6= β we must have that there is an i0 ∈ I such
that αi0 6= βi0 . It then follows that fi0(αi0) 6= fi0(βi0) since fi0 is injective. Therefore clearly
f(α) = 〈fi(αi) | i ∈ I〉 6= 〈fi(βi) | i ∈ I〉 = f(β). This shows that f is injective since α and β were
arbitrary.

Finally, since f is an injective function from
∏
i∈I Ai to

∏
i∈I Bi, we have that

∏
i∈I

κi =

∣∣∣∣∣∏
i∈I

Ai

∣∣∣∣∣ ≤
∣∣∣∣∣∏
i∈I

Bi

∣∣∣∣∣ =
∏
i∈I

λi

as desired.

Exercise 9.1.9

Find some cardinals κn, λn (n ∈N) such that κn < λn for all n, but
∏∞
n=0 κn =

∏∞
n=0 λn.

Solution:

Let κn = 2 and λn = ℵ0 for all n ∈N . We claims that these satisfy the requirements.

Proof. Clearly κn = 2 < ℵ0 = λn for every n ∈N . However, by Exercise 9.1.10 and Theorem 5.2.2c,
we then have

∞∏
n=0

κn =

∞∏
n=0

2 =
∏
n<ℵ0

2 = 2ℵ0 = ℵℵ00 =
∏
n<ℵ0

ℵ0 =

∞∏
n=0

ℵ0 =

∞∏
n=0

λn

Exercise 9.1.10

Prove that κ · κ · · · · (λ times) = κλ.

Solution:

Proof. First, we clearly have that

κ · κ · · · · (λ times) =
∏
α<λ

κ .

So let A and B be sets such that |A| = κ and |B| = λ. Then by definition we have
∏
α<λ κ =∣∣∏

α<λA
∣∣ and κλ =

∣∣AB∣∣. We also have that there is a bijective g : λ→ B since |λ| = λ = |B|. We
construct a bijection f from AB to

∏
α<λA. So, for any h ∈ AB let f(h) = h ◦ g. Clearly, since

g : λ → B and h : B → A, it follows that f(h) : λ → A and hence clearly f(h) ∈
∏
α<λA (since

f(h)(α) ∈ A for each α < λ) so that f is a function from AB to
∏
α<λA.

We also claim that f is injective. So consider any h1 and h2 in AB where h1 6= h2. It then follows
that there must be a b ∈ B where h1(b) 6= h2(b). Then let α = g−1(b), noting that g−1 is a bijective
function from B to λ since g is bijective. We then have that

f(h1)(α) = (h1 ◦ g)(α) = h1(g(α)) = h1(g(g−1(b))) = h1(b)

6= h2(b) = h2(g(g−1(b))) = h2(g(α)) = (h2 ◦ g)(α) = f(h2)(α)
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so that f(h1) 6= f(h2). Since h1 and h2 were arbitrary this shows that f is indeed injective.

We also claim that f is onto. So consider any h′ ∈
∏
α<λA so that h′ is a function from λ to A

(since h′(α) ∈ A for each α < λ). Then let h = h′ ◦ g−1 so that clearly h is a function from B to A
since g−1 : B → λ and h′ : λ→ A. We then have that

f(h) = h ◦ g = (h′ ◦ g−1) ◦ g = h′ ◦ (g−1 ◦ g) = h′ ◦ iλ = h′

where iλ is the identity function from λ to λ. Since h′ was arbitrary, this shows that f is indeed
onto.

Thus, since we have shown that f is a bijection, it follows that

κ · κ · · · · (λ times) =
∏
α<λ

κ =

∣∣∣∣∣∏
α<λ

A

∣∣∣∣∣ =
∣∣AB∣∣ = κλ

as desired.

Exercise 9.1.11

Prove the formula
(∏

i∈I κi
)λ

=
∏
i∈I (κi)

λ
. [Hint: Generalize the proof of the special case (κ · λ)

µ
=

κµ · λµ, given in Theorem 1.7 of Chapter 5.]

Note that the hint differs from that in the book; see the Errata List.

Solution:

Proof. First suppose that 〈Ai | i ∈ I〉 are sets where |Ai| = κi for all i ∈ I. Also suppose that B is
a set such that |B| = λ. It then follows that(∏

i∈I
κi

)λ
=

∣∣∣∣∣∏
i∈I

Ai

∣∣∣∣∣
λ

=

∣∣∣∣∣∣
(∏
i∈I

Ai

)B∣∣∣∣∣∣
and

∏
i∈I

κλi =
∏
i∈I

∣∣ABi ∣∣ =

∣∣∣∣∣∏
i∈I

ABi

∣∣∣∣∣ .
We then aim to construct a bijection F from

∏
i∈I A

B
i to

(∏
i∈I Ai

)B
, which clearly would show the

result since we would have by the above that(∏
i∈I

κi

)λ
=

∣∣∣∣∣∣
(∏
i∈I

Ai

)B∣∣∣∣∣∣ =

∣∣∣∣∣∏
i∈I

ABi

∣∣∣∣∣ =
∏
i∈I

κλi .

So suppose that f ∈
∏
i∈I A

B
i so that fi = f(i) ∈ ABi for every i ∈ I. Then define a function g such

that, for any b ∈ B, g(b) = 〈fi(b) | i ∈ I〉. We then have that, for any i ∈ I, fi(b) ∈ Ai since fi is a
function from B to Ai. Therefore g(b) ∈

∏
i∈I Ai, and hence g is a function from B to

∏
i∈I Ai so

that g ∈
(∏

i∈I Ai
)B

. Naturally then we set F (f) = g so that F is indeed a function from
∏
i∈I A

B
i

to
(∏

i∈I Ai
)B

.
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To show that F is injective consider any f and f ′ in
∏
i∈I A

B
i where f 6= f ′. It then follows that

there is an i0 ∈ I such that fi0 = f(i0) 6= f ′(i0) = f ′i0 . Then, since fi0 and f ′i0 are both in ABi0 , it
follows that they are both functions from B to Ai0 . Since fi0 6= f ′i0 we have that there is a b ∈ B
such that fi0(b) 6= f ′i0(b). We then have that g(b) = 〈fi(b) | i ∈ I〉 6= 〈f ′i(b) | i ∈ I〉 = g′(b) since
fi0(b) 6= f ′i0(b) and i0 ∈ I. Therefore F (f) = g 6= g′ = F (f ′), which shows that F is injective since
f and f ′ were arbitrary.

To show that F is also onto, consider any g′ ∈
(∏

i∈I Ai
)B

so that g′ is a function from B to∏
i∈I Ai. Therefore, for any b ∈ B, g′(b) is a function on I such that g′(b)(i) ∈ Ai for each i ∈ I.

Clearly we have g′(b) = 〈g′(b)(i) | i ∈ I〉. Then, for each i ∈ I, we define a function fi on B such
that fi(b) = g′(b)(i). Then, since fi(b) = g′(b)(i) ∈ Ai, clearly each fi is a function from B to Ai.
Therefore fi ∈ ABi . We then set f = 〈fi | i ∈ I〉 so that clearly f ∈

∏
i∈I A

B
i . Now, we then set

g = F (f) so that, by the definition of F , g is a function on B such g(b) = 〈fi(b) | i ∈ I〉 for any
b ∈ B. We then have that g(b) = 〈fi(b) | i ∈ I〉 = 〈g′(b)(i) | i ∈ I〉 = g′(b) by the definition of each
fi. Since b ∈ B was arbitrary, this shows that F (f) = g = g′. Thus F is onto since g′ was arbitrary.

We have shown that F is a bijection so that the result follows as described above.

Exercise 9.1.12

Prove the formula ∏
i∈I

(
κλi
)

= κ
∑
i∈I λi .

[Hint: Generalize the proof of the special case κλ ·κµ = κλ+µ given in Theorem 1.7(a) of Chapter 5.]

Solution:

Proof. First, suppose that A is a set such that |A| = κ, and that 〈Bi | i ∈ I〉 are mutually disjoint
sets such that |Bi| = λi for each i ∈ I. Then, by the definitions of cardinal products and sums, we
have

∏
i∈I

(
κλi
)

=
∏
i∈I

∣∣ABi∣∣ =

∣∣∣∣∣∏
i∈I

ABi

∣∣∣∣∣
and

κ
∑
i∈I λi = κ|

⋃
i∈I Bi| =

∣∣∣A⋃
i∈I Bi

∣∣∣ .
We now construct a bijective function F from

∏
i∈I A

Bi to A
⋃
i∈I Bi , which clearly shows the desired

result since we then have

∏
i∈I

(
κλi
)

=

∣∣∣∣∣∏
i∈I

ABi

∣∣∣∣∣ =
∣∣∣A⋃

i∈I Bi
∣∣∣ = κ

∑
i∈I λi .

So, for any f = 〈fi | i ∈ I〉 ∈
∏
i∈I A

Bi , we have that each fi is a function from Bi to A. It then
follows from the fact that 〈Bi | i ∈ I〉 are mutually disjoint that {fi}i∈I is a compatible system
of functions. We then that g =

⋃
i∈I fi is a function from

⋃
i∈I dom (fi) =

⋃
i∈I Bi to A by

Theorem 2.3.12. Hence g ∈ A
⋃
i∈I Bi , and we of course set F (f) = g so that F is a function from∏

i∈I A
Bi to A

⋃
i∈I Bi .
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To show that F is injective, consider any f and f ′ in
∏
i∈I A

Bi where f 6= f ′. Let g = F (f) and
g′ = F (f ′). It then follows that there is an i0 ∈ I such that fi0 6= f ′i0 . Then, it has to be that
there is a b ∈ Bi0 where fi0(b) 6= f ′i0(b). Clearly also b ∈

⋃
i∈I Bi since i0 ∈ I so that b ∈ dom (g)

and b ∈ dom (g′) (since by the definition of F we have that g and g′ are functions with domain⋃
i∈I Bi). Moreover, we have that g(b) = fi0(b) and g′(b) = f ′i0(b), which again follows from the fact

that 〈Bi | i ∈ I〉 are mutually disjoint or equivalently that {fi}i∈I is a compatible system. Hence we
have g(b) = fi0(b) 6= f ′i0(b) = g′(b) so that F (f) = g 6= g′ = F (f ′). This shows that F is injective
since f and f ′ were arbitrary.

To see that F is onto, consider any g′ ∈ A
⋃
i∈I Bi . For each i ∈ I, define fi = g′ � Bi, which is clearly

a function from Bi to A so that fi ∈ ABi . Then let f = 〈fi | i ∈ I〉 so that F (f) = g =
⋃
i∈I fi, and

clearly f ∈
∏
i∈I A

Bi = dom (F ). Now consider any (x, y) ∈ g =
⋃
i∈I fi so that there is an i0 ∈ I

where (x, y) ∈ fi0 = g′ � Bi0 . Therefore (x, y) ∈ g′ since obviously g′ � Bi0 ⊆ g′. Consider next any
(x, y) ∈ g′ so that x ∈ dom (g′) =

⋃
i∈I Bi and y = g′(x). Then there is an i0 ∈ I where x ∈ Bi0 so

that (x, y) ∈ g′ � Bi0 = fi0 . Hence clearly (x, y) ∈
⋃
i∈I fi = g since i0 ∈ I. Therefore g ⊆ g′ and

g′ ⊆ g so that F (f) = g = g′, which shows that F is onto since g′ was arbitrary.

We have thus shown that F is a bijection so that the result follows.

Exercise 9.1.13

Prove that if 1 < κi ≤ λi for all i ∈ I, then
∑
i∈I κi ≤

∏
i∈I λi.

Solution:

Lemma 9.1.13.1. If A is a set and n < |A| for a finite cardinal (i.e. natural number) n, then
n+ 1 ≤ |A|.

Proof. Since n < |A|, it follows that there is an injective function f : n → A but that f cannot be
onto. Thus there is an a ∈ A such that a /∈ ran (f). Noting that n+ 1 = n∪ {n}, for any k ∈ n+ 1,
define a mapping g by

g(k) =

{
f(k) k ∈ n
a k = n .

Clearly in either of these cases we have that g(k) ∈ A so that g is in fact a function from n+ 1 into
A.

To see that g is injective, consider any k1 and k2 in n+ 1 where k1 6= k2. If k1 = n then g(k1) = a
and it has to be that k2 ∈ n since k2 6= k1 = n. Hence clearly g(k2) = f(k2) ∈ ran (f) whereas
g(k1) = a /∈ ran (f) so that g(k1) 6= g(k2). If k1 ∈ n but k2 = n then this is analogous the previous
case, so assume that also k2 ∈ n. Here clearly g(k1) = f(k1) 6= f(k2) = g(k2) since f is injective and
k1 6= k2. Therefore, in all cases we have that g(k1) 6= g(k2), which shows that g is injective since k1
and k2 were arbitrary.

The existence of the injection g thus shows that that n+ 1 ≤ |A| as desired.

Main Problem.

Proof. Suppose that 〈Ai | i ∈ I〉 are mutually disjoint sets where |Ai| = κi for every i ∈ I, and that
〈Bi | i ∈ I〉 are sets where |Bi| = λi for each i ∈ I. Since we have |Ai| = κi ≤ λi = |Bi| , we can
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assume that Ai ⊆ Bi (for every i ∈ I). We show the result by constructing an injective function
that maps

⋃
i∈I Ai into

∏
i∈I Bi, since we clearly would then have

∑
i∈I

κi =

∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ ≤
∣∣∣∣∣∏
i∈I

Bi

∣∣∣∣∣ =
∏
i∈I

λi

by the definitions of cardinal sum and product, which is the desired result.

First, if I = ∅ then we have that
∑
i∈I κi =

∣∣⋃
i∈∅Ai

∣∣ = |∅| = 0. The only function with domain

I = ∅ is ∅ itself so that
∏
i∈I λi =

∣∣∏
i∈∅Bi

∣∣ = |{∅}| = 1. Hence clearly
∑
i∈I κi = 0 ≤ 1 =

∏
i∈I λi

so that the hypothesis is true. So assume in what follows that I 6= ∅ so that there is an i0 ∈ I.

Now, for every i ∈ I, since 1 < κi ≤ λi = |Bi|, it follows from Lemma 9.1.13.1 that 2 ≤ |Bi|. Hence,
for each i ∈ I we can choose two distinct elements αi and βi from Bi, though this requires the Axiom
of Choice. So, for any x ∈

⋃
i∈I Ai, there is an ix ∈ I such that x ∈ Aix . Them, for any i ∈ I, set

ai =



x i = ix

αi i 6= ix and i = i0 and x = αix
βi i 6= ix and i = i0 and x 6= αix
βi i 6= ix and i 6= i0 and x = αix
αi i 6= ix and i 6= i0 and x 6= αix

and let f(x) = 〈ai | i ∈ I〉. Clearly, for any such x and i ∈ I, we have ai = x ∈ Aix = Ai if i = ix
so that ai ∈ Bi since Ai ⊆ Bi. In the other cases either ai = αi ∈ Bi or ai = βi ∈ Bi. Therefore
f(x) = 〈ai | i ∈ I〉 ∈

∏
i∈I Bi so that f is a function from

⋃
i∈I Ai into

∏
i∈I Bi.

We also claim that f is injective. To see this, consider x and y in
⋃
i∈I Ai where x 6= y, and let

ix and iy be those elements of I such that x ∈ Aix and y ∈ Aiy . Also let f(x) = 〈ai | i ∈ I〉 and
f(y) = 〈bi | i ∈ I〉.
The following involves a lot of messy case work, so we shall number the cases for easy reference:

1. Case: ix = iy. Then aix = x 6= y = biy = bix .

2. Case: ix 6= iy.

(a) Case: ix 6= i0 and iy 6= i0.

i. Case: aix = x = αix .

A. Case: biy = y = αiy . Then, since ix 6= iy and ix 6= i0 and y = αiy , we have
bix = βix 6= αix = aix .

B. Case: biy = y 6= αiy . Then, since i0 6= ix and i0 = i0 and x = αix , we have ai0 =
αi0 . Also, since i0 6= iy and i0 = i0 and y 6= αiy , we have bi0 = βi0 6= αi0 = ai0 .

ii. Case: aix = x 6= αix .

A. Case: biy = y = αiy . This is analogous to case 2.a.i.B with aix = x and biy = y
reversed so that again ai0 6= bi0 .

B. Case: biy = y 6= αiy . Then, since ix 6= iy and ix 6= i0 and y 6= αiy , we have
bix = αix 6= aix .

(b) Case: ix 6= i0 and iy = i0.

i. Case: aix = x = αix .

A. Case: biy = y = αiy . Since ix 6= iy and ix 6= i0 and y = αiy , we have bix = βix 6=
αix = aix .
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B. Case: biy = y 6= αiy . Since iy 6= ix and iy = i0 and x = αix , we have aiy = αiy 6=
biy .

ii. Case: aix = x 6= αix .

A. Case: biy = y = αiy . Since iy 6= ix and iy = i0 and x 6= αix , we have aiy = βiy 6=
αiy = biy .

B. Case: biy = y 6= αiy . Since ix 6= iy and ix 6= i0 and y 6= αiy , we have bix = αix 6=
aix .

(c) Case: ix = i0 and iy 6= i0. This is analogous to the previous case 2.b with the roles of ix
and iy reversed.

(d) Case: ix = i0 and iy = i0. This is impossible since ix 6= iy.

Thus, in all cases, there is an i ∈ I such that ai 6= bi so that clearly f(x) = 〈ai | i ∈ I〉 6= 〈bi | i ∈ I〉 =
f(y). This shows that f is injective since x and y were arbitrary. This completes the proof as
described above.

Exercise 9.1.14

Evaluate the cardinality of
∏

0<α<ω1
α. [Answer: 2ℵ1 .]

Solution:

Lemma 9.1.14.1. If α and β are ordinals and α ≤ β, then ℵℵβα = 2ℵβ .

Proof. First we have that

2ℵβ ≤ ℵℵβα

by property (n) after Lemma 5.6.1 since clearly 2 ≤ ℵα. We also have

ℵℵβα ≤
(
2ℵα
)ℵβ

(again by property (n), and Theorems 5.1.8 and 5.1.9)

= 2ℵα·ℵβ (by Theorem 5.1.7b)

= 2ℵβ . (by Corollary 7.2.2 since α ≤ β)

Hence it follows from the Cantor-Bernstein Theorem that ℵℵβα = 2ℵβ as desired.

Main Problem.

We claim that
∣∣∏

0<α<ω1
α
∣∣ = 2ℵ1 .

Proof. First, let I = {α | 0 < α < ω1} so that clearly
∏

0<α<ω1
α =

∏
α∈I α. It is trivial to show

that the mapping

f(α) =

{
α+ 1 0 ≤ α < ω0

α ω0 ≤ α < ω1

for α ∈ ω1 is a bijection from ω1 to I, and hence |I| = |ω1| = ℵ1. Also, since α < ω1 for any α ∈ I,
it follows from Lemma 7.2.1.5 that |α| ≤ ℵ0. Therefore, we first have∣∣∣∣∣∏

α∈I
α

∣∣∣∣∣ =
∏
α∈I
|α| (by the definition of the cardinal product)
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≤
∏
α∈I
ℵ0 (by Exercise 9.1.8 since |α| ≤ ℵ0 for all α ∈ I)

= ℵ|I|0 (by Exercise 9.1.10)

= ℵℵ10 (since we have shown that |I| = ℵ1)

= 2ℵ1 . (by Lemma 9.1.14.1)

Now, let J = {α | 1 < α < ω1}. For any a = 〈a2, a3, . . . , aω, aω+1, . . .〉 = 〈aα | α ∈ J〉 ∈
∏
α∈J α,

it is easy to show that the function that maps this to b = 〈0, a2, a3, . . . , aω, aω+1, . . .〉 ∈
∏
α∈I α is

bijective so that
∣∣∏

α∈J α
∣∣ =

∣∣∏
α∈I α

∣∣. It should also be clear that |J | = |I| = ℵ1. Lastly, we clearly
have 2 ≤ |a| for all a ∈ J since 1 < α. We then have

2ℵ1 = 2|J| (since |J | = ℵ1)

=
∏
α∈J

2 (by Exercise 9.1.10)

≤
∏
α∈J
|α| (by Exercise 9.1.8 since 2 ≤ |α| for all α ∈ J)

=

∣∣∣∣∣∏
α∈J

α

∣∣∣∣∣ (by the definition of the cardinal product)

=

∣∣∣∣∣∏
α∈I

α

∣∣∣∣∣ (by what was shown above)

It therefore follows from the Cantor-Bernstein Theorem that
∣∣∏

0<α<ω1
α
∣∣ =

∣∣∏
α∈I α

∣∣ = 2ℵ1 as
desired.

Exercise 9.1.15

Justify the existence of the function f in the proof of Lemma 9.1.2 in detail by the axioms of set theory.

Solution:

First, for any i ∈ I, we know that |Ai| = |A′i| so that there exists a bijection from Ai onto A′i. It was

shown in Exercise 2.3.9a that the set A′Aii exists so that Bi =
{
hi ∈ A′Aii | hi is a bijection

}
exists

by the Axiom Schema of Comprehension. Clearly then Bi 6= ∅ for every i ∈ I. Since Bi is uniquely
defined for each i ∈ I, it follows from the Axiom Schemas of Replacement and Comprehension that
the set {Bi | i ∈ I} exists, which is a system of nonempty sets. It then follows from Exercise 2.3.9b
that

∏
i∈I Bi exists, and by the Axiom of Choice that there is an F ∈

∏
i∈I Bi, i.e. F = 〈fi | i ∈ I〉

in the notation of the proof. Now F is a function on I in which F (i) = fi ∈ Bi for every i ∈ I. By
an application of the Axiom Schema of Comprehension, ran (F ) = {fi | i ∈ I} exists, and we have
that f =

⋃
ran (F ), which exists by the Axiom of Union, noting that then f =

⋃
i∈I fi as in the

proof.
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