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Chapter 1 Set Theory and Logic

§1 Fundamental Concepts

Exercise 1.1

Check the distributive laws for ∪ and ∩ and DeMorgan’s laws.

Solution:

Suppose that A, B, and C are sets. First we show that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Proof. We show this as a series of logical equivalences:

x ∈ A ∩ (B ∪ C)⇔ x ∈ A ∧ x ∈ B ∪ C
⇔ x ∈ A ∧ (x ∈ B ∨ x ∈ C)

⇔ (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

⇔ x ∈ A ∩B ∨ x ∈ A ∩ C
⇔ x ∈ (A ∩B) ∪ (A ∩ C) ,

which of course shows the desired result.

Next we show that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof. We show this in the same way:

x ∈ A ∪ (B ∩ C)⇔ x ∈ A ∨ x ∈ B ∩ C
⇔ x ∈ A ∨ (x ∈ B ∧ x ∈ C)

⇔ (x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C)

⇔ x ∈ A ∪B ∧ x ∈ A ∪ C
⇔ x ∈ (A ∪B) ∩ (A ∪ C) ,

which of course shows the desired result.

Now we show the first DeMorgan’s law that A− (B ∪ C) = (A−B) ∩ (A− C).

Proof. We show this in the same way:

x ∈ A− (B ∪ C)⇔ x ∈ A ∧ x /∈ B ∪ C
⇔ x ∈ A ∧ ¬(x ∈ B ∨ x ∈ C)

⇔ x ∈ A ∧ (x /∈ B ∧ x /∈ C)

⇔ (x ∈ A ∧ x /∈ B) ∧ (x ∈ A ∧ x /∈ C)

⇔ x ∈ A−B ∧ x ∈ A− C
⇔ x ∈ (A−B) ∩ (A− C) ,

which is the desired result.

Lastly we show that A− (B ∩ C) = (A−B) ∪ (A− C).
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Proof. Again we use a sequence of logical equivalences:

x ∈ A− (B ∩ C)⇔ x ∈ A ∧ x /∈ B ∩ C
⇔ x ∈ A ∧ ¬(x ∈ B ∧ x ∈ C)

⇔ x ∈ A ∧ (x /∈ B ∨ x /∈ C)

⇔ (x ∈ A ∧ x /∈ B) ∨ (x ∈ A ∧ x /∈ C)

⇔ x ∈ A−B ∨ x ∈ A− C
⇔ x ∈ (A−B) ∪ (A− C) ,

as desired.

Exercise 1.2

Determine which of the following statements are true for all sets A, B, C, and D. If a double implication
fails, determine whether one or the other of the possible implications holds. If an equality fails, determine
whether the statement becomes true if the “equals” symbol is replaced by one or the other of the inclusion
symbols ⊂ or ⊃.

(a) A ⊂ B and A ⊂ C ⇔ A ⊂ (B ∪ C).

(b) A ⊂ B or A ⊂ C ⇔ A ⊂ (B ∪ C).

(c) A ⊂ B and A ⊂ C ⇔ A ⊂ (B ∩ C).

(d) A ⊂ B or A ⊂ C ⇔ A ⊂ (B ∩ C).

(e) A− (A−B) = B.

(f) A− (B −A) = A−B.

(g) A ∩ (B − C) = (A ∩B)− (A ∩ C).

(h) A ∪ (B − C) = (A ∪B)− (A ∪ C).

(i) (A ∩B) ∪ (A−B) = A.

(j) A ⊂ C and B ⊂ D ⇒ (A×B) ⊂ (C ×D).

(k) The converse of (j).

(l) The converse of (j), assuming that A and B
are nonempty.

(m) (A×B) ∪ (C ×D) = (A ∪ C)× (B ∪D).

(n) (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D).

(o) A× (B − C) = (A×B)− (A× C).

(p) (A−B)×(C−D) = (A×C−B×C)−A×D.

(q) (A×B)− (C ×D) = (A− C)× (B −D).

Solution:

(a) We claim that A ⊂ B and A ⊂ C ⇒ A ⊂ (B ∪ C) but that the converse is not generally true.

Proof. Suppose that A ⊂ B and A ⊂ C and consider any x ∈ A. Then clearly also x ∈ B since
A ⊂ B so that x ∈ B ∪ C. Since x was arbitrary, this shows that A ⊂ (B ∪ C) as desired.

To show that the converse is not true, suppose that A = {1, 2, 3}, B = {1, 2}, and C = {3, 4}. Then
clearly A ⊂ {1, 2, 3, 4} = B ∪ C but it neither true that A ⊂ B (since 3 ∈ A but 3 /∈ B) nor A ⊂ C
(since 1 ∈ A but 1 /∈ C).

(b) We claim that A ⊂ B or A ⊂ C ⇒ A ⊂ (B ∪ C) but that the converse is not generally true.

Proof. Suppose that A ⊂ B or A ⊂ C and consider any x ∈ A. If A ⊂ B then clearly x ∈ B so that
x ∈ B ∪C. If A ⊂ C then clearly x ∈ C so that again x ∈ B ∪C. Since x was arbitrary, this shows
that A ⊂ (B ∪ C) as desired.

The counterexample that disproves the converse of part (a), also serves as a counterexample to the
converse here. Again this is because A ⊂ B ∪C but neither A ⊂ B nor A ⊂ C, which is to say that
A 6⊂ B and A 6⊂ C. Hence it is not true that A ⊂ B or A ⊂ C.
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(c) We claim that this biconditional is true.

Proof. (⇒) Suppose that A ⊂ B and A ⊂ C and consider any x ∈ A. Then clearly also x ∈ B and
x ∈ C since both A ⊂ B and A ⊂ C. Hence x ∈ B ∩ C, which proves that A ⊂ B ∩ C since x was
arbitrary.

(⇐) Now suppose that A ⊂ B ∩ C and consider any x ∈ A. Then x ∈ B ∩ C as well so that x ∈ B
and x ∈ C. Since x was an arbitrary element of A, this of course shows that both A ⊂ B and A ⊂ C
as desired.

(d) We claim that only the converse is true here.

Proof. To show the converse, suppose that A ⊂ B ∩ C. It was shown in part (c) that this implies
that both A ⊂ B and A ⊂ C. Thus it is clearly true that A ⊂ B or A ⊂ C.

As a counterexample to the forward implication, let A = {1}, B = {1, 2}, and C = {3, 4} so that
clearly A ⊂ B and hence A ⊂ B or A ⊂ C is true. However we have that B and C are disjoint so
that B ∩ C = ∅, therefore A 6⊂ ∅ = B ∩ C since A 6= ∅.

(e) We claim that A− (A−B) ⊂ B but that the other direction is not generally true.

Proof. First consider any x ∈ A− (A−B) so that x ∈ A but x /∈ A−B. Hence it is not true that
x ∈ A and x /∈ B. So it must be that x /∈ A or x ∈ B. However, since we know that x ∈ A, it has
to be that x ∈ B. Thus A− (A−B) ⊂ B since x was arbitrary.

Now let A = {1, 2} and B = {2, 3}. Then we clearly have A−B = {1}, and thus A− (A−B) = {2}.
So clearly B is not a subset of A− (A−B) since 3 ∈ B but 3 /∈ A− (A−B).

(f) Here we claim that A− (B −A) ⊃ A−B but that the other direction is not generally true.

Proof. First suppose that x ∈ A−B so that x ∈ A but x /∈ B. Then it is certainly true that x /∈ B
or x ∈ A so that, by logical equivalence, it is not true that x ∈ B and x /∈ A. That is, it is not true
that x ∈ B −A, which is to say that x /∈ B −A. Since also x ∈ A, it follows that x ∈ A− (B −A),
which shows the desired result since x was arbitrary.

To show that the other direction does not hold consider the counterexample A = {1, 2} and B =
{2, 3}. Then B − A = {3} so that A − (B − A) = {1, 2} = A. We also have that A − B = {1} so
that 2 ∈ A− (B −A) but 2 /∈ A−B. This suffices to show that A− (B −A) 6⊂ A−B.

(g) We claim that equality holds here, i.e. that A ∩ (B − C) = (A ∩B)− (A ∩ C).

Proof. (⊂) Suppose that x ∈ A ∩ (B − C) so that x ∈ A and x ∈ B − C. Thus x ∈ B but x /∈ C.
Since both x ∈ A and x ∈ B we have that x ∈ A ∩ B. Also since x /∈ C it clearly must be that
x /∈ A ∩ C. Hence x ∈ (A ∩B)− (A ∩ C), which shows the forward direction since x was arbitrary.

(⊃) Now suppose that x ∈ (A ∩ B) − (A ∩ C). Hence x ∈ A ∩ B but x /∈ A ∩ C. From the former
of these we have that x ∈ A and x ∈ B, and from the latter it follows that either x /∈ A or x /∈ C.
Since we know that x ∈ A, it must therefore be that x /∈ C. Hence x ∈ B − C since x ∈ B but
x /∈ C. Since also x ∈ A we have that x ∈ A ∩ (B − C), which shows the desired result since x was
arbitrary.

(h) Here we claim that A ∪ (B − C) ⊃ (A ∪ B) − (A ∪ C) but that the forward direction is not
generally true.
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Proof. First consider any x ∈ (A∪B)− (A∪C) so that x ∈ A∪B and x /∈ A∪C. From the latter,
it follows that x /∈ A and x /∈ C since otherwise we would have x ∈ A ∪ C. From the former, we
have that x ∈ A or x ∈ B so that it must be that x ∈ B since x /∈ A. Therefore we have that x ∈ B
and x /∈ C so that x ∈ B − C. From this it obviously follows that x ∈ A ∪ (B − C), which shows
that A ∪ (B − C) ⊃ (A ∪B)− (A ∪ C) since x was arbitrary.

To show that the forward direction does not always hold, consider the sets A = {1, 2}, B = {2, 3},
and C = {2}. Then we clearly have that B − C = {3}, and hence A ∪ (B − C) = {1, 2, 3}. On
the other hand, we have A ∪ B = {1, 2, 3} and A ∪ C = {1, 2} so that (A ∪ B) − (A ∪ C) = {3}.
Hence, for example, 1 ∈ A ∪ (B − C) but 1 /∈ (A ∪ B) − (A ∪ C), which suffices to show that
A ∪ (B − C) 6⊂ (A ∪B)− (A ∪ C) as desired.

(i) We claim that equality holds here.

Proof. We show this with a chain of logical equivalences:

x ∈ (A ∩B) ∪ (A−B)⇔ x ∈ A ∩B ∨ x ∈ A−B
⇔ (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x /∈ B)

⇔ x ∈ A ∧ (x ∈ B ∨ x /∈ B)

⇔ x ∈ A ∧ True

⇔ x ∈ A ,

where we note that “True” denotes the fact that x ∈ B ∨ x /∈ B is always true by the excluded
middle property of logic.

(j) We claim that this implication is true.

Proof. Suppose that A ⊂ C and B ⊂ D. Consider any (x, y) ∈ A× B so that x ∈ A and y ∈ B by
the definition of the cartesian product. Then also clearly x ∈ C and y ∈ D since A ⊂ C and B ⊂ D.
Hence (x, y) ∈ C ×D, which shows the result since the ordered pair (x, y) was arbitrary.

(k) We claim that the converse of (j) is not always true.

Proof. Consider the following sets:

A = ∅ C = {1}
B = {1, 2} D = {2} .

Then we have that A×B = ∅ since there are no ordered pairs (x, y) such that x ∈ A (since A = ∅).
Hence it is vacuously true that (A×B) ⊂ (C ×D). However, clearly it is not the case that B ⊂ D,
and so, even though A ⊂ C, it is not true that A ⊂ C and B ⊂ D.

(l) We claim that the converse of (j) is true with the stipulation that A and B are both nonempty.

Proof. Suppose that (A× B) ⊂ (C ×D). First consider any x ∈ A. Then, since B 6= ∅, there is a
b ∈ B. Then (x, b) ∈ A × B so that clearly also (x, b) ∈ C ×D. Hence x ∈ C so that A ⊂ C since
x was arbitrary. An analogous argument shows that B ⊂ D since A is nonempty. Hence it is true
that A ⊂ C and B ⊂ D as desired.

(m) Here we claim that (A×B)∪ (C ×D) ⊂ (A∪C)× (B ∪D) but that the other direction is not
always true.
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Proof. First consider any (x, y) ∈ (A×B)∪ (C×D) so that either (x, y) ∈ A×B or (x, y) ∈ C×D.
In the first case x ∈ A and y ∈ B so that clearly x ∈ A ∪ C and y ∈ B ∪ D. Hence (x, y) ∈
(A ∪ C) × (B ∪ D). In the second case we have x ∈ C and y ∈ D so that again x ∈ A ∪ C and
y ∈ B ∪D are still both true. Hence of course (x, y) ∈ (A∪C)× (B ∪D) here also. This shows the
result in either case since (x, y) was an arbitrary ordered pair.

To show that the other direction does not always hold, consider A = B = {1} and C = D = {2}.
Then we clearly have A×B = {(1, 1)} and C×D = {(2, 2)} so that (A×B)∪(C×D) = {(1, 1), (2, 2)}.
We also have A∪C = B ∪D = {1, 2} so that (A∪C)× (B ∪D) = {(1, 1), (1, 2), (2, 1), (2, 2)}. This
clearly shows that (A×B) ∪ (C ×D) 6⊃ (A ∪ C)× (B ∪D) as desired.

(n) We claim that the equality holds here.

Proof. We can show this by a series of logical equivalences:

(x, y) ∈ (A×B) ∩ (C ×D)⇔ (x, y) ∈ A×B ∧ (x, y) ∈ C ×D
⇔ (x ∈ A ∧ y ∈ B) ∧ (x ∈ C ∧ y ∈ D)

⇔ (x ∈ A ∧ x ∈ C) ∧ (y ∈ B ∧ y ∈ D)

⇔ x ∈ A ∩ C ∧ y ∈ B ∩D
⇔ (x, y) ∈ (A ∩ C)× (B ∩D)

as desired.

(o) We claim that equivalence holds here as well.

Proof. (⊂) First consider any (x, y) ∈ A× (B − C) so that x ∈ A and y ∈ B − C. From the latter
of these we have that y ∈ B but y /∈ C. We clearly then have that (x, y) ∈ A× B since x ∈ A and
y ∈ B. It also has to be that (x, y) /∈ A×C since y /∈ C even though it is true that x inA. Therefore
(x, y) ∈ (A×B)− (A× C) as desired.

(⊃) Now suppose that (x, y) ∈ (A×B)− (A×C) so that (x, y) ∈ A×B but (x, y) /∈ (A×C). From
the former we have that x ∈ A and y ∈ B. It then must be that y /∈ C since (x, y) /∈ (A × C) but
we know that x ∈ A. Then we have y ∈ B − C since y ∈ B but y /∈ C. Since also x ∈ A, it follows
that (x, y) ∈ A× (B − C) as desired.

(p) We claim the equivalence hold for this statement.

Proof. (⊂) Suppose that (x, y) ∈ (A − B) × (C −D) so that x ∈ A − B and y ∈ C −D. Then we
have that x ∈ A, x /∈ B, y ∈ C, and y /∈ D. So first, clearly (x, y) ∈ A × C. Then, since x /∈ B,
we have that (x, y) /∈ B × C, and hence (x, y) ∈ A × C − B × C. Since y /∈ D, we also have that
(x, y) /∈ A×D, and thus (x, y) ∈ (A× C − B × C)− A×D. This clearly shows the desired result
since (x, y) was arbitrary.

(⊃) Now suppose that (x, y) ∈ (A × C − B × C) − A × D so that (x, y) ∈ A × C − B × C but
(x, y) /∈ A×D. From the former we have that (x, y) ∈ A× C and (x, y) /∈ B × C. Thus x ∈ A and
y ∈ C so that it has to be that x /∈ B since (x, y) /∈ B×C but we know that y ∈ C. It also must be
that y /∈ D since (x, y) /∈ A×D but x ∈ A. Therefore we have that x ∈ A, x /∈ B, y ∈ C, and y /∈ D,
from which it readily follows that x ∈ A−B and y ∈ C−D. Thus clearly (x, y) ∈ (A−B)×(C−D),
which shows the desired result since (x, y) was arbitrary.

(q) Here we claim that (A× B)− (C ×D) ⊃ (A− C)× (B −D) but that the forward direction is
not true in general.
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Proof. First consider any (x, y) ∈ (A− C)× (B −D) so that x ∈ A− C and y ∈ B −D. Thus we
have x ∈ A, x /∈ C, y ∈ B, and y /∈ D. From this clearly (x, y) ∈ A×B but (x, y) /∈ C ×D. Hence
(x, y) ∈ (A×B)− (C ×D), which clearly shows the desired result since (x, y) was arbitrary.

To show that the forward direction does not hold, consider A = {1, 2}, B = {a, b}, C = {2, 3}, and
D = {b, c}. We then clearly have the following sets:

A×B = {(1, a), (1, b), (2, a), (2, b)} A− C = {1}
C ×D = {(2, b), (2, c), (3, b), (3, c)} B −D = {a}

(A×B)− (C ×D) = {(1, a), (1, b), (2, a)} (A− C)× (B −D) = {(1, a)} .

This clearly shows that (A×B)− (C ×D) is not a subset of (A− C)× (B −D).

Exercise 1.3

(a) Write the contrapositive and converse of the following statement: “If x < 0, then x2 − x > 0,” and
determine which (if any) of the three statements are true.

(b) Do the same for the statement “If x > 0, then x2 − x > 0.”

Solution:

(a) First we claim that the original statement is true.

Proof. Since x < 0 we clearly have that x − 1 < x < 0 as well. Then, since the product of two
negative numbers is positive, we have that x2 − x = x(x− 1) > 0 as desired.

The contrapositive of this is, “If x2 − x ≤ 0, then x ≥ 0.” This is of course also true by virtue of
the fact that the contrapositive is logically equivalent to the original implication.

Lastly, the converse of this statement is, “If x2 − x > 0, then x < 0.” We claim that this is not
generally true.

Proof. A simple counterexample of x = 2 shows this. We have x2− x = 22− 2 = 4− 2 = 2 > 0, but
also clearly x = 2 > 0 as well so that x < 0 is clearly false.

(b) First we claim that this statement is false.

Proof. As a counterexample, let x = 1/2. Then clearly x > 0, but we also have x2 − x = (1/2)2 −
1/2 = 1/4− 1/2 = −1/4 < 0 so that x2 − x > 0 is obviously not true.

The contrapositive is then “If x2 − x ≤ 0, then x ≤ 0,” which is false since it is logically equivalent
to the original statement.

The converse is “If x2 − x > 0, then x > 0,” which we claim is false.

Proof. As a counterexample, consider x = −1 so that x2 − x = (−1)2 − (−1) = 1 + 1 = 2 > 0.
However, we also clearly have x = −1 < 0 so that x > 0 is not true.

Exercise 1.4

Let A and B be sets of real numbers. Write the negation of each of the following statements:

(a) For every a ∈ A, it is true that a2 ∈ B.
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(b) For at least one a ∈ A, it is true that a2 ∈ B.

(c) For every a ∈ A, it is true that a2 /∈ B.

(d) For at least one a /∈ A, it is true that a2 ∈ B.

Solution:

These are all basic logical negations using existential quantifiers:

(a) There is an a ∈ A where a2 /∈ B.

(b) For every a ∈ A, a2 /∈ B.

(c) There is an a ∈ A where a2 ∈ B.

(d) For every a /∈ A, a2 /∈ B.

Exercise 1.5

Let A be a nonempty collection of sets. Determine the truth of each of the following statements and of
their converses:

(a) x ∈
⋃
A∈AA⇒ x ∈ A for at least one A ∈ A.

(b) x ∈
⋃
A∈AA⇒ x ∈ A for every A ∈ A.

(c) x ∈
⋂
A∈AA⇒ x ∈ A for at least one A ∈ A.

(d) x ∈
⋂
A∈AA⇒ x ∈ A for every A ∈ A.

Solution:

(a) The statement on the right is the definition of the statement on the left so of course the implication
and its converse are true.

(b) The implication is generally false.

Proof. As a counterexample, consider A = {{1} , {2}}. Then clearly
⋃
A∈AA = {1, 2} so that

1 ∈
⋃
A∈AA, but 1 is not in A for every A ∈ A since 1 /∈ {2}.

However, the converse is true.

Proof. Suppose that x ∈ A for every A ∈ A. Since A is nonempty there is an A0 ∈ A. Then x ∈ A0

since A0 ∈ A. Hence by definition x ∈
⋃
A∈AA since x ∈ A0 and A0 ∈ A.

(c) The implication here is true.

Proof. Suppose that x ∈
⋂
A∈AA so that by definition x ∈ A for every A ∈ A. Since A is nonempty

there is an A0 ∈ A so that in particular x ∈ A0. This shows the desired result since A0 ∈ A.

The converse is not generally true.

Proof. As a counterexample consider A = {{1, 2} , {2, 3}}. Then 1 ∈ {1, 2} and {1, 2} ∈ A, but
1 /∈

⋂
A∈AA since clearly

⋂
A∈AA = {2}.

(d) The statement on the right is the definition of the statement on the left so of course the impli-
cation and its converse are true.
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Exercise 1.6

Write the contrapositive of each of the statements of Exercise 5.

Solution:

Again these involve simple logical negations of both sides of the implications:

(a) x /∈ A for every A ∈ A ⇒ x /∈
⋃
A∈AA.

(b) x /∈ A for at least one A ∈ A ⇒ x /∈
⋃
A∈AA.

(c) x /∈ A for every A ∈ A ⇒ x /∈
⋂
A∈AA.

(d) x /∈ A for at least one A ∈ A ⇒ x /∈
⋂
A∈AA.

Exercise 1.7

Given sets A, B, and C, express each of the following sets in terms of A, B, and C, using the symbols
∪, ∩ and −.

D = {x | x ∈ A and (x ∈ B or x ∈ C} ,
E = {x | (x ∈ A and x ∈ B) or x ∈ C} ,
F = {x ∈ A and (x ∈ B ⇒ x ∈ C)} .

Solution:

First, we obviously have

D = A ∩ (B ∪ C)

E = (A ∩B) ∪ C ,

noting that D 6= E generally though they appear similar. Regarding F we have the following
sequence of logical equivalences:

x ∈ F ⇔ x ∈ A ∧ (x ∈ B ⇒ x ∈ C)

⇔ x ∈ A ∧ (x /∈ B ∨ x ∈ C)

⇔ x ∈ A ∧ ¬(x ∈ B ∧ x /∈ C)

⇔ x ∈ A ∧ ¬(x ∈ B − C)

⇔ x ∈ A ∧ x /∈ B − C
⇔ x ∈ A− (B − C)

so that of course F = A− (B − C).

Exercise 1.8

If a set A has two elements, show that P (A) has four elements. How many elements does P (A) have if
A has one element? Three elements? No elements? Why is P (A) called the power set of A.
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Solution:

We claim that if a finite set has n elements, then its power set has 2n elements, which is why it is
called the power set.

Proof. We show this by induction on the size of the set. For the base case start with the the empty
set in which n = 0. Clearly the only subset of ∅ is the trivial subset ∅ itself so that P (∅) = {∅}.
This has 1 = 20 = 2n element obviously, which shows the base case. Now suppose that the power
set of any set with n elements has 2n elements. Let A be a set with n+ 1 elements, noting that this
is nonempty since n + 1 ≥ 1 since n ≥ 0. Hence there is an x ∈ A. For any subset B ⊂ A, either
x /∈ B or x ∈ B. In the first case B is a subset of A− {x} and in the latter B = {x} ∪ C for some
C ⊂ A−{x}. Therefore P (A) has twice the number of elements of P (A− {x}), one half being just
the elements of A − {x} and the other being those elements with x added in. But A − {x} has n
elements since A has n + 1, and hence P (A− {x}) has 2n elements by the induction hypothesis.
Thus P (A) has 2 · 2n = 2n+1 elements, which completes the induction.

Using this, we can answer all of the specific questions. If a set has two elements, than its power
set has 22 = 4 elements. If it has one element, then its power set has 21 = 2 elements, namely
P ({x}) = {∅, {x}}. If a set has three elements then its power set has 23 = 8 elements. Lastly, if a
set has no elements (i.e. it is the empty set), then its power set has 20 = 1 elements. As noted in
the proof we have P (∅) = {∅}.

Exercise 1.9

Formulate and prove DeMorgan’s laws for arbitrary unions and intersections.

Solution:

In following suppose that A is a set and B is a nonempty collection of sets. For arbitrary unions,
we claim that

A−
⋃
B∈B

B =
⋂
B∈B

(A−B) .

Proof. The simplest way to show this is with a series of logically equivalent statements. For any x
we have that

x ∈ A−
⋃
B∈B

B ⇔ x ∈ A ∧ x /∈
⋃
B∈B

B

⇔ x ∈ A ∧ ¬∃B ∈ B(x ∈ B)

⇔ x ∈ A ∧ ∀B ∈ B(x /∈ B)

⇔ ∀B ∈ B(x ∈ A ∧ x /∈ B)

⇔ ∀B ∈ B(x ∈ A−B)

⇔ x ∈
⋂
B∈B

(A−B) ,

which of course shows the desired result.

For intersections, we claim that

A−
⋂
B∈B

B =
⋃
B∈B

(A−B) .
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Proof. Similarly, we show this with a series of logically equivalent statements. For any x we have

x ∈ A−
⋂
B∈B

B ⇔ x ∈ A ∧ x /∈
⋂
B∈B

B

⇔ x ∈ A ∧ ¬∀B ∈ B(x ∈ B)

⇔ x ∈ A ∧ ∃B ∈ B(x /∈ B)

⇔ ∃B ∈ B(x ∈ A ∧ x /∈ B)

⇔ ∃B ∈ B(x ∈ A−B)

⇔ x ∈
⋃
B∈B

(A−B) ,

which shows the desired result.

Exercise 1.10

Let R denote the set of real numbers. For each of the following subsets of R× R, determine whether it
is equal to the cartesian product of two subsets of R.

(a) {(x, y) | x is an integer}.
(b) {(x, y) | 0 < y ≤ 1}.
(c) {(x, y) | y > x}.
(d) {(x, y) | x is not an integer and y is an integer}.
(e)

{
(x, y) | x2 + y2 < 1

}
.

Solution:

(a) This is equal to the set Z× R, which is trivial to prove.

(b) It is easy to show that this is equal to R × (0, 1], where of course (a, b] denotes the half-open
interval {x ∈ R | a < x ≤ b}.
(c) We claim that this cannot be equal to the cartesian product of subsets of R.

Proof. Let A = {(x, y) | y > x} and suppose to the contrary that A = B × C where B,C ⊂ R.
Since 1 > 0, we have that (0, 1) ∈ A. Then also 0 ∈ B and 1 ∈ C since A = B × C. We also have
that 1 ∈ B and 2 ∈ C since 2 > 1 so that (1, 2) ∈ A = B × C. Thus 1 ∈ B and 1 ∈ C so that
(1, 1) ∈ B×C = A, but this cannot be since it is not true that 1 > 1. Hence we have a contradiction
so that A cannot be expressed as B × C.

(d) It is trivial to show that this set is equal to (R− Z)× Z.

(e) We claim that this set cannot be expressed as the cartesian product of subsets of R.

Proof. Let A =
{

(x, y) | x2 + y2 < 1
}

and suppose to the contrary that A = B×C where B,C ⊂ R.
We then have that (9/10)2 +02 = 81/100+0 = 81/100 < 1 so that (9/10, 0) ∈ A = B×C, and hence
9/10 ∈ B and 0 ∈ C. Also 02 + (9/10)2 = (9/10)2 + 02 = 81/100 < 1 so that (0, 9/10) ∈ A = B×C,
and hence 0 ∈ B and 9/10 ∈ C. Hence (9/10, 9/10) ∈ B × C = A since 9/10 is in both B and C.
However, we have (9/10)2 + (9/10)2 = 81/100 + 81/100 = 162/100 ≥ 1 so that (9/10, 9/10) cannot
be in A, so we have a contradiction. So it must be that A cannot be equal to B × C.
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§2 Functions

Exercise 2.1

Let f : A→ B. Let A0 ⊂ A and B0 ⊂ B.

(a) Show that A0 ⊂ f−1(f(A0)) and that equality holds if f is injective.

(b) Show that f(f−1(B0)) ⊂ B0 and that equality holds if f is surjective.

Solution:

(a)

Proof. Consider any x ∈ A0 and let y = f(x) so that clearly y ∈ f(A0). Then, since f(x) = y ∈
f(A0), it follows from the definition of the preimage that x ∈ f−1(f(A0)). Hence A0 ⊂ f−1(f(A0))
as desired since x was arbitrary. Now suppose that f is also injective and consider this time any
x ∈ f−1(f(A0)) so that y = f(x) ∈ f(A0) by the definition of a preimage. Then there is an x′ ∈ A0

where f(x′) = y = f(x) by the definition of an image. Since f injective though, it must be that
x = x′ ∈ A0. This shows that f−1(f(A0)) ⊂ A0 since x was arbitrary. The desired equality follows
since it was already shown that A0 ⊂ f−1(f(A0)) (whether or not f is injective).

(b)

Proof. First suppose that y is any element of f(f−1(B0)) so that there is an x ∈ f−1(B0) where
f(x) = y. Since x ∈ f−1(B0), we then have that y = f(x) ∈ B0 by the definition of a preimage.
Hence f(f−1(B0)) ⊂ B0 since y was arbitrary. Now suppose also that f is surjective and suppose
that y ∈ B0 so that also clearly y ∈ B since B0 ⊂ B. Since f is surjective, there is an x ∈ A where
f(x) = y. We then have that x ∈ f−1(B0) since f(x) = y ∈ B0. Clearly then y = f(x) ∈ f(f−1(B0))
so that B0 ⊂ f(f−1(B0)) since y was arbitrary. This shows equality as desired.

Exercise 2.2

Let f : A → B and let Ai ⊂ A and Bi ⊂ B for i = 0 and i = 1. Show that f−1 preserves inclusions,
unions, intersections, and differences of sets:

(a) B0 ⊂ B1 ⇒ f−1(B0) ⊂ f−1(B1).

(b) f−1(B0 ∪B1) = f−1(B0) ∪ f−1(B1).

(c) f−1(B0 ∩B1) = f−1(B0) ∩ f−1(B1).

(d) f−1(B0 −B1) = f−1(B0)− f−1(B1).

Show that f preserves inclusions and unions only:

(e) A0 ⊂ A1 ⇒ f(A0) ⊂ f(A1).

(f) f(A0 ∪A1) = f(A0) ∪ f(A1).

(g) f(A0 ∩A1) ⊂ f(A0) ∩ f(A1); show that equality holds if f injective.

(h) f(A0 −A1) ⊃ f(A0)− f(A1); show that equality holds if f injective.

Solution:

(a)

Page 11



Proof. Suppose that B0 ⊂ B1 and consider any x ∈ f−1(B0). Then by the definition of a preimage,
we have f(x) ∈ B0 so that also f(x) ∈ B1 since B0 ⊂ B1. This shows that x ∈ f−1(B1) again by
the definition of a preimage. Thus f−1(B0) ⊂ f−1(B1) since x was arbitrary as desired.

(b)

Proof. We can show this easily using a string of biconditionals. For any x ∈ A we have

x ∈ f−1(B0 ∪B1)⇔ f(x) ∈ B0 ∪B1

⇔ f(x) ∈ B0 ∨ f(x) ∈ B1

⇔ x ∈ f−1(B0) ∨ x ∈ f−1(B1)

⇔ x ∈ f−1(B0) ∪ f−1(B1) ,

which shows the desired result.

(c)

Proof. We can show this in a very similar manner to what was done in part (b). We have

x ∈ f−1(B0 ∩B1)⇔ f(x) ∈ B0 ∩B1

⇔ f(x) ∈ B0 ∧ f(x) ∈ B1

⇔ x ∈ f−1(B0) ∧ x ∈ f−1(B1)

⇔ x ∈ f−1(B0) ∩ f−1(B1) ,

for any x ∈ A.

(d)

Proof. This is also shown similarly. For x ∈ A we have

x ∈ f−1(B0 −B1)⇔ f(x) ∈ B0 −B1

⇔ f(x) ∈ B0 ∧ f(x) /∈ B1

⇔ x ∈ f−1(B0) ∧ x /∈ f−1(B1)

⇔ x ∈ f−1(B0)− f−1(B1) .

(e)

Proof. Suppose that A0 ⊂ A1 and consider any y ∈ f(A0). Then there is an x ∈ A0 where y = f(x)
by the definition of an image set. Then also x ∈ A1 since A0 ⊂ A1, from which it follows that
y = f(x) ∈ f(A1). Therefore f(A0) ⊂ f(A1) as desired since y was arbitrary.

(f)

Proof. We can show this easily using a string of biconditionals. For any x ∈ A we have

y ∈ f(A0 ∪A1)⇔ ∃x(x ∈ A0 ∪A1 ∧ y = f(x))

⇔ ∃x[(x ∈ A0 ∨ x ∈ A1) ∧ y = f(x)]

⇔ ∃x[(x ∈ A0 ∧ y = f(x)) ∨ (x ∈ A1 ∧ y = f(x))]

⇔ ∃x(x ∈ A0 ∧ y = f(x)) ∨ ∃x(x ∈ A1 ∧ y = f(x))
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⇔ y ∈ f(A0) ∨ y ∈ f(A1)

⇔ y ∈ f(A0) ∪ f(A1) ,

which shows the desired result.

(g)

Proof. Consider any y ∈ f(A0 ∩ A1) so that there is an x ∈ A0 ∩ A1 where y = f(x). Hence of
course x ∈ A0 and x ∈ A1. Since also y = f(x), this suffices to show that y ∈ f(A0) and y ∈ f(A1),
and therefore y ∈ f(A0) ∩ f(A1) as desired.

Now suppose that f is injective and consider any y ∈ f(A0)∩f(A1). Then y ∈ f(A0) and y ∈ f(A1),
from which it follows that there is an x0 ∈ A0 where y = f(x0), and an x1 ∈ A1 where y = f(x1). We
then have f(x0) = y = f(x1) so that x0 = x1 since f is injective. Hence x0 ∈ A0 and x0 = x1 ∈ A1,
so of course x0 ∈ A0 ∩ A1. Since also y = f(x0), this shows by definition that y ∈ f(A0 ∩ A1).
Therefore f(A0) ∩ f(A1) ⊂ f(A0 ∩ A1) since y was arbitrary, which shows the desired equivalence
since the other direction was already shown.

(h)

Proof. Consider any y ∈ f(A0)− f(A1) so that y ∈ f(A0) and y /∈ f(A1). Then there is an x ∈ A0

where y = f(x). We also have that there is no x′ ∈ A1 such that y = f(x′). Since we know that
y = f(x) it then has to be that x /∈ A1. Hence x ∈ A0 −A1, so that y ∈ f(A0 −A1) since of course
y = f(x). This shows that f(A0 −A1) ⊃ f(A0)− f(A1) as desired since y was arbitrary.

Now suppose that f is injective and consider any y ∈ f(A0 − A1). Then there is an x ∈ A0 − A1

where y = f(x) by the definition of an image set. Then x ∈ A0 but x /∈ A1. It then follows that
y ∈ f(A0) since y = f(x) and x ∈ A0. Consider any x′ ∈ A1. Then it cannot be that y = f(x′),
because if this were the case then f(x) = y = f(x′) so that x = x′ since f is injective. But we know
that x′ = x /∈ A1, which would present a contradiction. So it must be that there is no x′ ∈ A1

where y = f(x′), which suffices to show that y /∈ f(A1). Therefore y ∈ f(A0) − f(A1) so that
f(A0−A1) ⊂ f(A0)−f(A1) since y was arbitrary. This of course shows equivalence as desired.

Exercise 2.3

Show that (b), (c), (f), and (g) of Exercise 2 hold for arbitrary unions and intersections.

Solution:

In what follows suppose that f : A→ B and that A and B are nonempty collections of subsets of A
and B, respectively. This is to say that A′ ⊂ A for all A′ ∈ A and B′ ⊂ B for all B′ ∈ B.

First we show that part in Exercise 2.2 part (b) holds for arbitrary unions, i.e. that

f−1

( ⋃
B′∈B

B′

)
=
⋃
B′∈B

f−1(B′) .

Proof. As before, we again show this with a string of biconditional assertions:

x ∈ f−1

( ⋃
B′∈B

B′

)
⇔ f(x) ∈

⋃
B′∈B

B′

⇔ ∃B′ ∈ B(f(x) ∈ B′)
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⇔ ∃B′ ∈ B(x ∈ f−1(B′))

⇔ x ∈
⋃
B′∈B

f−1(B′)

as desired.

Next we show Exercise 2.2 part (c) for arbitrary intersections, that is

f−1

( ⋂
B′∈B

B′

)
=
⋂
B′∈B

f−1(B′) .

Proof. We show this with a string of bijections again:

x ∈ f−1

( ⋂
B′∈B

B′

)
⇔ f(x) ∈

⋂
B′∈B

B′

⇔ ∀B′ ∈ B(f(x) ∈ B′)
⇔ ∀B′ ∈ B(x ∈ f−1(B′))

⇔ x ∈
⋂
B′∈B

f−1(B′) ,

which shows the desired result.

Now we show Exercise 2.2 part (f) for arbitrary unions, that is that

f

( ⋃
A′∈A

A′

)
=
⋃
A′∈A

f(A′) .

Proof. Again we utilize a string of biconditionals:

y ∈ f

( ⋃
A′∈A

A′

)
⇔ ∃x

[
x ∈

⋃
A′∈A

A′ ∧ y = f(x)

]
⇔ ∃x [∃A′ ∈ A(x ∈ A′) ∧ y = f(x)]

⇔ ∃x [∃A′ ∈ A(x ∈ A′ ∧ y = f(x))]

⇔ ∃x∃A′ ∈ A(x ∈ A′ ∧ y = f(x))

⇔ ∃A′ ∈ A∃x(x ∈ A′ ∧ y = f(x))

⇔ ∃A′ ∈ A [∃x(x ∈ A′ ∧ y = f(x))]

⇔ ∃A′ ∈ A [y ∈ f(A′)]

⇔ y ∈
⋃
A′∈A

f(A′) ,

from which the result follows immediately.

Lastly, we show Exercise 2.2 part (g) for arbitrary intersections, which is that

f

( ⋂
A′∈A

A′

)
⊂
⋂
A′∈A

f(A′) ,

where equality holds if f is injective.
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Proof. First suppose that y ∈ f
(⋂

A′∈AA
′) so that there is an x ∈

⋂
A′∈AA

′ where y = f(x). Then
x ∈ A′ for every A′ ∈ A. So, for any such A′ ∈ A, we have that x ∈ A′ and y = f(x) so that
y ∈ f(A′). Since A′ was arbitrary, this shows that y ∈

⋂
A′∈A f(A′), which shows the desired result

since y was arbitrary.

Now suppose that f is injective and let y ∈
⋂
A′∈A f(A′). Then y ∈ f(A′) for every A′ ∈ A. So,

for any such A0 ∈ A we have that y ∈ f(A0) so that there is a x0 ∈ A0 where y = f(x0). Suppose
for the moment that x0 /∈

⋂
A′∈AA

′ so that there is an A1 ∈ A where x0 /∈ A1. However, since
A1 ∈ A we have that y ∈ f(A1), and hence there is an x1 ∈ A1 where y = f(x1). But then we
have f(x0) = y = f(x1) so that x0 = x1 since f is injective, and so we have that both x0 /∈ A1 and
x0 = x1 ∈ A1. As this is a contradiction, it has to be that x0 ∈

⋂
A′∈AA

′. Since also y = f(x0), this

shows that y ∈ f
(⋂

A′∈AA
′). This shows that f

(⋂
A′∈AA

′) ⊃ ⋂A′∈A f(A′) since y was arbitrary,
which in turns proves the desired equivalence.

Exercise 2.4

Let f : A→ B and g : B → C.

(a) If C0 ⊂ C, show that (g ◦ f)−1(C0) = f−1(g−1(C0)).

(b) If f and g are injective, show that g ◦ f is injective.

(c) If g ◦ f is injective, what can you say about the injectivity of f and g?

(d) If f and g are surjective, show that g ◦ f is surjective.

(e) If g ◦ f is surjective, what can you say about the surjectivity of f and g?

(f) Summarize your answers to (b)-(e) in the form of a theorem.

Solution:

(a)

Proof. Suppose that C0 ⊂ C. We can show this with a string of biconditionals. For any x, we have

x ∈ (g ◦ f)−1(C0)⇔ (g ◦ f)(x) ∈ C0

⇔ g(f(x)) ∈ C0

⇔ f(x) ∈ g−1(C0)

⇔ x ∈ f−1(g−1(C0)) ,

which of course shows the desired result.

(b)

Proof. Suppose that x, y ∈ A and x 6= y. Then, since f is injective, it has to be that f(x) 6= f(y)
by the contrapositive of the definition of an injection. Then again (g ◦ f)(x) = g(f(x)) 6= g(f(y)) =
(g ◦f)(y) since f(x) 6= f(y) and g is injective. This shows that g ◦f is injective by the contrapositive
of the definition.

(c) Here we claim that if g ◦ f is injective, then f must be injective but g may not be.
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Proof. Suppose that g ◦ f is injective but that f is not. Then there are x, y ∈ A where x 6= y but
f(x) = f(y). Then we have

(g ◦ f)(x) = g(f(x)) = g(f(y)) = (g ◦ f)(y) ,

which contradicts the fact that g ◦ f is injective since x 6= y. So it must be that f is injective.

To show that g need not be injective, consider the sets

A = {1, 2} B = {1, 2, 3} C = {a, b}

and the function sets

f = {(1, 1), (2, 2)} g = {(1, a), (2, b), (3, b)} .

It is easy to see that f : A → B is injective as is the composition g ◦ f = {(1, a), (2, b)}, but that
g : B → C is not since g(2) = b = g(3).

(d)

Proof. Suppose that f and g are surjective and consider any z ∈ C. Then there is a y ∈ B where
z = g(y) since g is surjective. Since f is also surjective, there is then an x ∈ A where y = f(x).
Then we have

(g ◦ f)(x) = g(f(x)) = g(y) = z ,

which shows that g ◦ f is surjective as desired since z was arbitrary.

(e) We claim that if g ◦ f is surjective, then g must be surjective, but f may not be.

Proof. Suppose that g ◦ f is surjective and consider any z ∈ C so that there is an x ∈ A where
(g ◦ f)(x) = z. Then we have that g(f(x)) = z so that y = f(x) is an element of B where g(y) = z.
This shows that g is surjective since z was arbitrary.

To show that f need not be surjective we can use the same example sets A,B,C and functions f, g
used in part (c). It is easy to see there that g ◦ f and g are surjective but f is not since there is no
element of A that maps to 3 ∈ B.

(f) We can summarize these facts in the following theorem, whose proof is of course found in the
previous parts:

Theorem 2.4.1. Suppose that f : A→ B and g : B → C. We assert the following:

(1) If f and g are injective then g ◦ f is injective.

(2) If g ◦ f is injective then f is also injective.

(3) If f and g are surjective then g ◦ f is surjective.

(4) If g ◦ f is surjective then g is also surjective.

Exercise 2.5

In general, let us denote the identity function for a set C by iC . That is, define iC : C → C to be the
function given by the rule iC(x) = x for all x ∈ C. Given f : A → B, we say that g : B → A is a left
inverse for f if g ◦ f = iA; and we say that h : B → A is a right inverse for f if f ◦ h = iB .
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(a) Show that if f has a left inverse, f is injective; and if f has a right inverse, f is surjective.

(b) Give an example of a function that has a left inverse but no right inverse.

(c) Give an example of a function that has a right inverse but no left inverse.

(d) Can a function have more than one left inverse? More than one right inverse?

(e) Show that if f has both a left inverse g and a right inverse h, then f is bijective and g = h = f−1.

Solution:

In what follows we suppose that f : A→ B.

(a)

Proof. First suppose that f has a left inverse g : B → A so that g ◦ f = iA. Consider any x, y ∈ A
where f(x) = f(y). Then we have

x = iA(x) = (g ◦ f)(x) = g(f(x)) = g(f(y)) = (g ◦ f)(y) = iA(y) = y ,

which shows that f is injective by definition.

Now suppose that f has a right inverse h : B → A so that f ◦ h = iB . Consider any y ∈ B so that

y = iB(y) = (f ◦ h)(y) = f(h(y)) .

Then x = h(y) is an element of A such that f(x) = y, which shows that f must be surjective since
y was arbitrary.

(b) Consider the sets

A = {1, 2} B = {a, b, c}

and the function f = {(1, a), (2, b)}. Define the function g : B → A by g = {(a, 1), (b, 2), (c, 2)}. It
is easy to see that this is a left inverse of f since we have

(g ◦ f)(1) = g(f(1)) = g(a) = 1 (g ◦ f)(2) = g(f(2)) = g(b) = 2

so that g ◦ f = iA.

Also note that clearly f is not surjective since there is no element of A that maps to c ∈ B. This
suffices to show that f cannot have a right inverse since, if it did, then it would have to be surjective
by part (a).

(c) Now define the sets

A = {1, 2, 3} B = {a, b}

and the function f = {(1, a), (2, b), (3, a)}. Define the function h : B → A by h = {(a, 1), (b, 2)}.
Then we have

(f ◦ h)(a) = f(h(a)) = f(1) = a (f ◦ h)(b) = f(h(b)) = f(2) = b

so that clearly f ◦ h = iB , and hence h is a right inverse of f .

Note, however, that f is not injective since f(1) = a = f(3). This suffices to show that f cannot
have a left inverse since, if it did, it would be injective by part (a).

(d) We claim that a function can have more than one right or left inverse.
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Proof. To show that a function can have more than one left inverse consider the example constructed
in part (b). Recall that this consists of the sets

A = {1, 2} B = {a, b, c}

and the function f = {(1, a), (2, b)}. It was shown there that the function g1 = {(a, 1), (b, 2), (c, 2)}
is a left inverse. Let g2 = {(a, 1), (b, 2), (c, 1)} so that clearly g1 6= g2 since g1(c) = 2 6= 1 = g2(c).
It is trivial to show that g2 is also a left inverse of f , which shows that more than one left inverse
exists for this f .

To show that a function can have more than one right inverse, consider the example in part (c),
which are the sets

A = {1, 2, 3} B = {a, b}

and the function f = {(1, a), (2, b), (3, a)}. It was shown there that the function h1 = {(a, 1), (b, 2)}
is a right inverse. Let h2 = {(a, 3), (b, 2)} so that clearly h1 6= h2 since h1(a) = 1 6= 3 = h2(a).
However, it is trivial to show that h2 is also a right inverse of f , from which the desired result
follows.

(e) Note that what follows proves Lemma 2.1 in the text, which is not proven there.

Proof. Suppose that f has left inverse g and right inverse h. Then f must be both injective (since
it has a left inverse) and surjective (since it has a right inverse) so that it is bijective by definition.
Then of course the function f−1 : B → A exists. Consider any y ∈ B and set x = f−1(y) so that
y = f(x). Then we have that

g(y) = g(f(x)) = (g ◦ f)(x) = iA(x) = x

since g is a left inverse of f . We also have

f(h(y)) = (f ◦ h)(y) = iB(y) = y

so that

h(y) = f−1(f(h(y)) = f−1(y) = x .

This shows that x = f−1(y) = g(y) = h(y), which in turn shows that f−1 = g = h as desired since
y was arbitrary.

Exercise 2.6

Let f : R → R be the function f(x) = x3 − x. By restricting the domain and range of f appropriately,
obtain from f a bijective function g. Draw the graphs of g and g−1. (There are several possible choices
for g.)

Solution:

Define the subsets of the reals A = [1,∞) and B = [0,∞). We claim that the function g : A → B
defined by g(x) = f(x) = x3 − x for all x ∈ A is bijective.

Proof. First we will show that B can even be a range for g, i.e. we must show that g(x) ∈ B for
every x ∈ A, as this is not necessarily obvious. So for any x ∈ A we have that x ≥ 1, and thus
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x2 ≥ 1 as well. Then we have x2−1 ≥ 0 so that the product x(x2−1) ≥ 0 since of course x ≥ 1 > 0.
Therefore g(x) = f(x) = x3 − x = x(x2 − 1) ≥ 0 so that g(x) ∈ B.

Next we show that g is monotonically increasing, from which injectivity follows. Suppose that
x, y ∈ A where x < y. Since we have x, y ≥ 1 > 0, it follows that x2 < y2, and therefore
x2 − 1 < y2 − 1. Thus we have

x < y

x(x2 − 1) ≤ y(x2 − 1) < y(y2 − 1)

x3 − x < y3 − y
g(x) < g(y)

since both x, y ≥ 1 > 0 and x2 − 1, y2 − 1 ≥ 0. This shows that g is monotonically increasing. It
follows that g is injective because, if we consider x, y ∈ A where x 6= y, then it has to be that either
x < y or x > y. In the former case we have g(x) < g(y) and in the latter g(x) > g(y) so that
g(x) 6= g(y) either way.

We show that g is surjective in a roundabout way that depends on calculus since g is cubic and so
does not yield a simple algebraic inverse function. Consider any y ∈ B so that of course y ≥ 0. If
y = 0 then clearly g(1) = 0 = y, so assume that y > 0. Let a0 = max {2, y} so that of course there
is a real a such that a > a0 since the reals are unbounded. Then we of course have a > a0 ≥ 2 ≥ 0
so that a ∈ A. We also have

a2 > a2
0 ≥ 22 = 4 > 2

a2 − 1 > 1

a(a2 − 1) > a

a3 − a > a

g(a) > a > a0 ≥ y .

Then we have that g(1) = 0 < y < g(a), and that of course 1 < 2 ≤ a0 < a. It then follows from
the intermediate value theorem that there is an x ∈ (1, a) such that f(x) = y since clearly g is
continuous by elementary calculus. We note that of course 1 ≤ x so that x ∈ A. This shows that g
is surjective since y was arbitrary, which in turn completes the proof that g is a bijection.

As requested, below are graphs of g and g−1 over some subset of their infinite domains and ranges:

2 4 6 8 10

0

500

1,000

g

0 200 400 600 800 1,000

5

10

g−1

One can observe that g (and its inverse for that matter) is monotonically increasing as shown.
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§3 Relations

Exercise 3.1

Define two points (x0, y0) and (x1, y1) of the plane to be equivalent if y0−x2
0 = y1−x2

1. Check that this
is an equivalence relation and describe the equivalence classes.

Solution:

First we show that this relation, which we shall denote with ∼, is an equivalence relation.

Proof. In what follows, suppose that (x0, y0), (x1, y1), and (x2, y2) are all points in the plane.

(Reflexivity) Of course we have y0 − x2
0 = y0 − x2

0, and hence (x0, y0) ∼ (x0, y0).

(Symmetry) Suppose that (x0, y0) ∼ (x1, y1). Then we have y0 − x2
0 = y1 − x2

1 so that of course
y1 − x2

1 = y1 − x2
1 since numerical equality is symmetric, and so (x1, y1) ∼ (x0, y0) as well.

(Transitivity) Suppose that (x0, y0) ∼ (x1, y1) and (x1, y1) ∼ (x2, y2). Then y0 − x2
0 = y1 − x2

1 and
y1−x2

1 = y2−x2
2 so that of course y0−x2

0 = y2−x2
2 since numerical equality is transitive. Therefore

(x0, y0) ∼ (x2, y2), which shows transitivity.

This suffices to show that ∼ is an equivalence relation as we set out to show.

Each equivalence class formed by this relation is the parabola y = x2 shifted up or down on the
y-axis. This is easy to see since two points (x0, y0) and (x1, y1) are in the same class if y0 − x2

0 and
y1 − x2

1 have the same value, say c. Then y0 − x2
0 = c so that y0 = x2

0 + c, which is clearly such a
parabola, and similarly y1 = x2

1 + c.

Exercise 3.2

Let C be a relation on a set A. If A0 ⊂ A, define the restriction of C to A0 to be the relation
C ∩ (A0 × A0). We also note that clearly C0 ⊂ C as well. Show that the restriction of an equivalence
relation is an equivalence relation.

Solution:

Proof. Define C, A, and A0 as above and suppose that C is an equivalence relation. Let C0 =
C ∩ (A0×A0) be the restriction of C to A0, noting that this is in fact a relation on A0 since clearly
C0 ⊂ A0 ×A0. Now we show that C0 satisfies the three properties of an equivalence relation.

(Reflexivity) Consider any a ∈ A0 so that of course (a, a) ∈ A0 × A0. Since A0 ⊂ A we also have
that a ∈ A. Hence aCa since C is an equivalence relation on A and is therefore reflexive. Thus
(a, a) ∈ C ∩ (A0 ×A0) = C0, which shows that aC0a so that C0 is reflexive since a was arbitrary.

(Symmetry) Suppose that a, b ∈ A0 and that aC0b. Then of course (b, a) ∈ A0 × A0 and bCa since
C0 ⊂ C. From this it follows that (b, a) ∈ C ∩ (A0 × A0) = C0 so that bC0a. This of course shows
that C0 is symmetric.

(Transitivity) Now consider a, b, c ∈ A0 and suppose that both aC0b and bC0c. Then we have aCb
and bCc since C0 ⊂ C. Since C is an equivalence relation and therefore transitive, it follows that
aCc, and since also clearly (a, c) ∈ A0×A0, we have (a, c) ∈ C ∩ (A0×A0) = C0 so that aC0c. This
shows that C0 is transitive.

Exercise 3.3

Here is a “proof” that every relation C that is both symmetric and transitive is also reflexive: “Since
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C is symmetric, aCb implies bCa. Since C is transitive, aCb and bCa together imply aCa, as desired.”
Find the flaw in this argument.

Solution:

Suppose that C is a relation on the set A. This argument is perfectly valid for any a, b ∈ A such
that aCb, which is to say that we can conclude that aCa in this case (and by the same argument
bCb). However, reflexivity requires aCa to hold for every a ∈ A. So if there is no b ∈ A such that
aCb then the above argument cannot be applied and we cannot conclude that aCa. In this case the
element a is effectively not involved in the relation at all.

This is perhaps best illustrated with an example: suppose that A = {1, 2, 3, 4} and

C = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1)} .

It is easy to verify that C is both symmetric and transitive on A but it is clearly not reflexive since
(4, 4) /∈ C. One can also observe how 4 is not involved in the relation at all and, if it were, it would
have to be that (4, 4) ∈ C if C were to remain symmetric and transitive.

Exercise 3.4

Let f : A→ B be a surjective function. Let us define a relation on A by setting a0 ∼ a1 if

f(a0) = f(a1) .

(a) Show that this is an equivalence relation.

(b) Let A∗ be the set of equivalence classes. Show that there is a bijective correspondence of A∗ with
B.

Solution:

(a)

Proof. We show the three properties necessary for ∼ to be an equivalence relation:

(Reflexivity) Consider any a ∈ A so that of course f(a) = f(a) since f is a function. Hence a ∼ a
so that ∼ is reflexive since a was arbitrary.

(Symmetry) Consider a, b ∈ A and suppose that a ∼ b. Then by definition f(a) = f(b) so that
obviously also f(b) = f(a) since equality is symmetric. So of course b ∼ a, which shows that ∼ is
symmetric.

(Transitivity) Consider a, b, c ∈ A and suppose that a ∼ b and b ∼ c. Then by definition f(a) = f(b)
and f(b) = f(c) so that of course f(a) = f(b) = f(c), and hence a ∼ c. This shows that ∼ is
transitive.

(b)

Proof. Define the function g : A∗ → B as follows. For any equivalence class C ∈ A∗, we know that
C is nonempty since A∗ is a partition of A. Hence there is an a ∈ C, so set g(C) = f(a), noting
that clearly g(C) = f(a) ∈ B so that B can be the range of g.

To show that g is injective, consider two equivalence classes C and D where g(C) = g(D). Then
there are elements c ∈ C and d ∈ D where f(c) = g(C) = g(D) = f(d). This shows that c ∼ d
so that they must be in the same equivalence class. Thus d ∈ C since c ∈ C, but also d ∈ D so
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that C and D are not disjoint. Hence it must be that C = D by Lemma 3.1, which shows that g is
injective.

To show that g is surjective, consider any b ∈ B. Since f is surjective, there is an a ∈ A such that
f(a) = b. Since A∗ is a partition, a must belong to an equivalence class C ∈ A∗. Then there is an
element c ∈ C such that g(C) = f(c) by the definition of g. Since a and c are both in the same
equivalence class C, we have that a ∼ c so that g(C) = f(c) = f(a) = b. This shows that g is
surjective since b ∈ B was arbitrary.

Therefore we have shown that g is both injective and surjective, and so is a bijection by definition,
as desired.

Exercise 3.5

Let S and S′ be the following subsets of the plane:

S = {(x, y) | y = x+ 1 and 0 < x < 2} ,
S′ = {(x, y) | y − x is an integer} .

(a) Show that S′ is an equivalence relation on the real line and S′ ⊃ S. Describe the equivalence classes
of S′.

(b) Show that given any collection of equivalence relations on a set A, their intersection is an equivalence
relation on A.

(c) Describe the equivalence relation T on the real line that is the intersection of all equivalence relations
on the real line that contain S. Describe the equivalence classes of T .

Solution:

(a)

Proof. First note that S′ ⊂ R×R and so is a relation on R. We show that S′ has the three properties
required of an equivalence relation.

(Reflexivity) Consider any x ∈ R so that clearly x − x = 0 is an integer. Hence (x, x) ∈ S′ by
definition. This shows that S′ is reflexive since x was arbitrary.

(Symmetry) Suppose that x, y ∈ R and xS′y. Then n = y−x is an integer so that x−y = −(y−x) =
−n is also clearly an integer. Therefore yS′x as well, which shows that S′ is symmetric.

(Transitivity) Consider x, y, z ∈ R and suppose that both xS′y and yS′z. Then n = y − x and
m = z − y are both integers. We then have

z − x = z − x+ y − y = (z − y) + (y − x) = m+ n ,

which is clearly an integer since m and n are. Hence xS′z so that S′ is transitive.

It is easy to show that S′ ⊃ S. Consider any (x, y) ∈ S so that 0 < x < 2 and y = x + 1. Then
y − x = (x + 1) − x = 1, which is of course an integer. Hence (x, y) ∈ S′, and thus S′ ⊃ S since
(x, y) was arbitrary.

The equivalence class C containing x ∈ R is the countable set C = {x+ n | n ∈ Z}. While perhaps
not immediately obvious, it is almost trivial to show:

y ∈ C ⇔ ∃n ∈ Z(y = x+ n)⇔ ∃n ∈ Z(y − x = n)

⇔ xS′y ⇔ yS′x
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⇔ y is in the equivalence class determined by x

since S′ is symmetric.

(b)

Proof. Let A∗ be a collection of equivalence relations on A so that we must show that C =
⋂
D∈A∗ D

is also an equivalence relation on A. First, suppose that any (x, y) ∈ C and consider any D ∈ A∗
so that (x, y) ∈ D. Then also (x, y) ∈ A × A since D is a relation on A so that D ⊂ A × A. This
shows that C ⊂ A × A since (x, y) was arbitrary, and so C is a relation on A. Now we show the
three required properties of an equivalence relation:

(Reflexivity) Consider any x ∈ A so that (x, x) ∈ D for every D ∈ A∗ since each D is an equivalence
relation and so is reflexive. It then follows that (x, x)

⋂
D∈A∗ D = C, which shows that C is reflexive.

(Symmetric) Suppose that (x, y) ∈ C and consider any D ∈ A∗ so that also (x, y) ∈ D. Then also
(y, x) ∈ D since D is an equivalence relation and so is symmetric. Since D was arbitrary, this shows
that (y, x) ∈

⋂
D∈A∗ D = C so that C is symmetric.

(Transitivity) Suppose that (x, y) ∈ C and (y, z) ∈ C. For any D ∈ A∗ we then have that both
(x, y) ∈ D and (y, z) ∈ D. It then follows that (x, z) ∈ D since D is an equivalence relation and so
is transitive. Since D was arbitrary, we have that (x, z) ∈

⋂
D∈A∗ D = C so that C is transitive as

desired.

(c) First we note that S itself is not an equivalence relation on R since it is not reflexive. In fact
(x, x) /∈ S for any x ∈ R since it is never true that x = x + 1. Now define the following subsets of
the plane:

S1 = {(x, y) | y = x} S4 = {(x, y) | y = x+ 2 and 0 < x < 1}
S2 = S = {(x, y) | y = x+ 1 and 0 < x < 2} S5 = {(x, y) | y = x− 2 and 2 < x < 3} .
S3 = {(x, y) | y = x− 1 and 1 < x < 3}

We then claim that the intersection we seek is T =
⋃
i∈{1,...,5} Si. An illustration of this set in the

plane is shown below:

S1
S2

S3

S4

S5

Proof. Let S∗ denote the collection of all equivalence relations on R that contain S so that we must
show that T =

⋂
R∈S∗ R.

(⊂) Consider any (x, y) ∈ T and any R ∈ S∗ so that R is an equivalence relation on R that contains
S. We then have the following cases:

Case: (x, y) ∈ S1. Then of course y = x so that (x, y) = (x, x) ∈ R since it is an equivalence relation
and thus reflexive.

Case: (x, y) ∈ S2 = S. Then of course (x, y) ∈ R since R contains S.

Case: (x, y) ∈ S3. Then we have that y = x−1 with 1 < x < 3, from which it follows that x = y+ 1
and 0 < y = x − 1 < 2. Therefore (y, x) ∈ S so that (y, x) ∈ R since R contains S. We then have
that (x, y) ∈ R as well since R is an equivalence relation and therefore symmetric.
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Case: (x, y) ∈ S4. Then y = x+ 2 with 0 < x < 1. Let z = x+ 1 so that (x, z) ∈ S = S4 since we
also have 0 < x < 1 < 2. We then know that (x, z) ∈ R since R contains S. We also then have that
y = x+ 2 = (x+ 1) + 1 = z + 1 with 0 < 1 < z = x+ 1 < 2 since 0 < x < 1. Thus (z, y) ∈ S = S4

so that also (z, y) ∈ R. Since R is an equivalence relation and therefore transitive, we have that
(x, y) ∈ R as well.

Case: (x, y) ∈ S5. Then we have y = x − 2 and 2 < x < 3. It then follows that x = y + 2 and
0 < y = x − 2 < 1 so that (y, x) ∈ S4. Then of course (y, x) ∈ R by the previous case so that also
(x, y) ∈ R since R is an equivalence relation and therefore symmetric.

Thus in every case (x, y) ∈ R so that also (x, y) ∈
⋂
R∈S∗ R since R was arbitrary. It then follows

that T ⊂
⋂
R∈S∗ R since (x, y) was arbitrary.

(⊃) All we really need to show is that T is an equivalence relation on R that contains S. From this
it follows that T ∈ S∗ so that of course T ⊃

⋂
R∈S∗ R. First we note that clearly T ⊂ R2 so that it

is a relation on R. Also clearly it contains S since S = S2 ⊂ T . Now we show that it has the three
properties that an equivalence relation require.

(Reflexivity) For any x ∈ R clearly (x, x) ∈ S1 ⊂ T so that T is reflexive.

(Symmetry) Suppose that xTy so that (x, y) ∈ T . We then have the following cases:

Case: (x, y) ∈ S1. Then of course y = x so (y, x) = (x, x) = (x, y) ∈ S1 ⊂ T .

Case: (x, y) ∈ S2 = S. Then y = x + 1 and 0 < x < 2 so that x = y − 1 and 1 < y = x + 1 < 3.
Hence (y, x) ∈ S3 ⊂ T .

Case: (x, y) ∈ S3. Then we have that y = x−1 with 1 < x < 3, from which it follows that x = y+ 1
and 0 < y = x− 1 < 2. Therefore (y, x) ∈ S = S2 ⊂ T .

Case: (x, y) ∈ S4. Then y = x+ 2 with 0 < x < 1 so that x = y − 2 and 2 < y = x+ 2 < 3. Hence
(y, x) ∈ S5 ⊂ T .

Case: (x, y) ∈ S5. Then we have y = x− 2 and 2 < x < 3 so that x = y + 2 and 0 < y = x− 2 < 1.
Hence (y, x) ∈ S4 ⊂ T .

So in all cases (y, x) ∈ T , which shows that T is symmetric.

(Transitivity) Now suppose that xTy and yTz. If x = y then of course we have (x, z) = (y, z) ∈ T .
Similarly if y = z then (x, z) = (x, y) ∈ T . So assume that x 6= y and y 6= z so that it can neither
be that (x, y) ∈ S1 nor (y, z) ∈ S1. Thus there are four sets (i.e. Si where i ∈ {2, 3, 4, 5}) that (x, y)
and (y, z) can be in, which results in sixteen different possibilities, though not all are possible:

Case: (x, y) ∈ S2. Then y = x+ 1 and 0 < x < 2 so that 1 < y = x+ 1 < 3.

Case: (y, z) ∈ S2. Then also z = y + 1 and 0 < y < 2 so that z = y + 1 = (x+ 1) + 1 = x+ 2
and y = x+ 1 < 2 means that x < 1. Hence z = x+ 2 and 0 < x < 1 so that (x, z) ∈ S4 ⊂ T .

Case: (y, z) ∈ S3. Then z = y − 1 and 1 < y < 3 so that z = y − 1 = (x + 1) − 1 = x, and
hence (x, z) = (x, x) ∈ S1 ⊂ T .

Case: (y, z) ∈ S4. This case is not possible because 1 < y < 3 so that it cannot be that
0 < y < 1 and hence (y, z) cannot be in S4.

Case: (y, z) ∈ S5. Then z = y − 2 and 2 < y < 3 so that z = y − 2 = (x + 1) − 2 = x − 1
and 2 < y = x + 1 < 3 means that 1 < x < 2 < 3. Hence z = x − 1 and 1 < x < 3 so that
(x, z) ∈ S3 ⊂ T .

Case: (x, y) ∈ S3. Then y = x− 1 and 1 < x < 3 so that 0 < y = x− 1 < 2.

Case: (y, z) ∈ S2. Then z = y + 1 and 0 < y < 2 so that z = y + 1 = (x − 1) + 1 = x and
hence (x, z) = (x, x) ∈ S1 ⊂ T .

Case: (y, z) ∈ S3. Then z = y − 1 and 1 < y < 3 so that z = y − 1 = (x− 1)− 1 = x− 2 and
1 < y = x− 1 and hence 2 < x. Therefore z = x− 2 and 2 < x < 3 so that (x, z) ∈ S5 ⊂ T .
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Case: (y, z) ∈ S4. Then z = y + 2 and 0 < y < 1 so that z = y + 2 = (x− 1) + 2 = x+ 1 and
y = x− 1 < 1 and hence x < 2. Thus z = x+ 1 and 0 < 1 < x < 2 so that (x, z) ∈ S2 ⊂ T .

Case: (y, z) ∈ S5. This is case is not possible because y < 2 so that it cannot be that
2 < y < 3, and hence (y, z) cannot be in S5.

Case: (x, y) ∈ S4. Then y = x+ 2 and 0 < x < 1 so that 2 < y = x+ 2 < 3.

Case: (y, z) ∈ S2. This case is also impossible because 2 < y so that it cannot be that
0 < y < 2, and hence (y, z) cannot be in S2.

Case: (y, z) ∈ S3. Then z = y − 1 and 1 < y < 3 so that z = y − 1 = (x+ 2)− 1 = x+ 1 and
y = x+ 2 < 3 so that x < 1 < 2. Thus z = x+ 1 and 0 < x < 2 so that (x, z) ∈ S2 ⊂ T .

Case: (y, z) ∈ S4. This case is not possible because again 2 < y so that it cannot be that
0 < y < 1, and hence (y, z) cannot be in S4.

Case: (y, z) ∈ S5. Then z = y − 2 and 0 < y < 1 so that z = y − 2 = (x + 2) − 2 = x and
hence (x, z) = (x, x) ∈ S1 ⊂ T .

Case: (x, y) ∈ S5. Then y = x− 2 and 2 < x < 3 so that 0 < y = x− 2 < 1.

Case: (y, z) ∈ S2. Then z = y + 1 and 0 < y < 2 so that z = y + 1 = (x− 2) + 1 = x− 1 and
0 < y = x− 2 so that 1 < 2 < x. Therefore z = x− 1 and 1 < x < 3 so that (x, z) ∈ S3 ⊂ T .

Case: (y, z) ∈ S3. This case is not possible because y < 1 so that it cannot be that 1 < y < 3,
and hence (y, z) cannot be in S3.

Case: (y, z) ∈ S4. Then z = y + 2 and 0 < y < 1 so that z = y + 2 = (x− 2) + 2 and hence
(z, x) = (x, x) ∈ S1 ⊂ T .

Case: (y, z) ∈ S5. This case is also not possible because again y < 1 so that it cannot be that
2 < y < 3, and hence (y, z) cannot be in S5.

Thus in every case that is actually possible we have that (x, z) ∈ T , which shows that T is transitive.

Therefore T is an equivalence relation that contains S so that T ⊃
⋂
R∈S∗ R as discussed above,

which of course completes the proof that T =
⋂
R∈S∗ R.

As far as the equivalence classes formed by T are concerned, refer to the illustration above. Consider
the equivalence class C contains x ∈ R. If x ≤ 0 or x ≥ 3 then C = {x} because there is no other y
for which yTx except y = x. So suppose that 0 < x < 3. If x is an integer so that x = 1 or x = 2,
then C = {1, 2}. If x is not an integer, then C always has three elements. We have that

C =


{x, x+ 1, x+ 2} 0 < x < 1

{x− 1, x, x+ 1} 1 < x < 2

{x− 2, x− 1, x} 2 < x < 3

.

These facts can be deduced by examining where the vertical line intersecting the x-axis at x intersects
the graph of T .

Exercise 3.6

Define a relation on the plane by setting

(x0, y0) < (x1, y1)

if either y0 − x2
0 < y1 − x2

1 or y0 − x2
0 = y1 − x2

1 and x0 < x1. Show that this is an order relation on the
plane, and describe it geometrically.
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Solution:

First we show that < is an order relation on the plane.

Proof. As clearly < is a relation on the plane, we need only show that it has the three required
properties of an order relation:

(Comparability) Consider distinct (x0, y0) and (x1, y1) in the plane so that either x0 6= x1 or y0 6= y1.
Obviously if y0 − x2

0 < y1 − x2
1 (or y1 − x2

1 < y0 − x2
0) then of course (x0, y0) < (x1, y1) (or

(x1, y1) < (x0, y0)) so we are done. So assume that y0 − x2
0 = y1 − x2

1. It it were the case that
x0 = x1 it would have to be that y0 6= y1, but we would have

y0 − x2
0 = y1 − x2

1 = y1 − x2
0

y0 = y1 ,

which is a contradiction. So it must be that x0 6= x1. So either x0 < x1 and so (x0, y0) < (x0, y0) or
x1 < x0 and so (x1, y1) < (x0, y0). This shows that < is comparable in the plane.

(Nonreflexivity) Consider (x, y) in the plane so that obviously y − x2 = y − x2. As we also have
that x = x, it is not the case that x < x so that it is not true that (x, y) < (x, y).

(Transitivity) Suppose that (x0, y0) < (x1, y1) and (x1, y1) < (x2, y2). We then have the following:

Case: y0 − x2
0 < y1 − x2

1.

Case: y1−x2
1 < y2−x2

2. Then of course y0−x2
0 < y1−x2

1 < y2−x2
2 so that (x0, y0) < (x2, y2).

Case: y1−x2
1 = y2−x2

2 and x1 < x2. Then we have y0−x2
0 < y1−x2

1 = y2−x2
2 so that again

(x0, y0) < (x2, y2).

Case: y0 − x2
0 = y1 − x2

1 and x0 < x1.

Case: y1 − x2
1 < y2 − x2

2. Then y0 − x2
0 = y1 − x2

1 < y2 − x2
2 so that (x0, y0) < (x2, y2).

Case: y1 − x2
1 = y2 − x2

2 and x1 < x2. Then y0 − x2
0 = y1 − x2

1 = y2 − x2
2 and x0 < x1 < x2 so

that (x0, y0) < (x2, y2).

Thus in all cases (x0, y0) < (x2, y2), which shows that < is transitive in the plane.

Geometrically, we refer back to Exercise 3.1 and consider a parabola y = x2 shifted up or down on
the y-axis be some amount c. Then y = x2 + c so that y − x2 = c, and hence every (x, y) point
on the parabola has the same value for y − x2, namely c. Therefore if two distinct points (x0, y0)
and (x1, y1) lie on the different parabolas then y0 − x2

0 and y1 − x2
1 will have different values, say c

and d, respectively. Then clearly if (x1, y1) is on a higher parabola on the y-axis then c < d so that
y0 − x2

0 = c < d = y1 − x2
1 so that (x0, y0) < (x1, y1) in our order. If the points lie on the same

parabola then y0 − x2
0 = y1 − x2

1 and whichever points is further to the right will be larger in our
order since then, for example, x0 < x1 so that (x0, y0) < (x1, y1).

Exercise 3.7

Show that the restriction of an order relation is an order relation.

Solution:

Proof. Suppose that A is a set with order relation <. Also let A0 be a subset of A so that ≺=<
∩(A0 × A0) is the restriction of < to A0. Clearly ≺⊂ A0 × A0 so that it s a relation on A0. So we
must show that ≺ satisfies the three properties of an order relation:
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(Comparability) Consider any x, y ∈ A0 so that also x, y ∈ A since A0 ⊂ A. Then x and y are
comparable in < since it is an order. So, without loss of generality, we can assume that x < y and
so (x, y) ∈<. Since clearly also (x, y) ∈ A0×A0, it follows that (x, y) ∈< ∩(A0×A0) =≺ and hence
x ≺ y. This shows that x and y are comparable in ≺.

(Nonreflexivity) Suppose that x ∈ A0 so that also x ∈ A since A0 ⊂ A. Then it cannot be true that
x < x sinceA is an order and so is nonreflexive. Thus (x, x) /∈< so that also (x, x) /∈< ∩(A0×A0) =≺.
Hence it is not true that x ≺ x so that ≺ is also nonreflexive since x was arbitrary.

(Transitivity) Suppose that x ≺ y and y ≺ z. Then of course (x, y) ∈ A0 × A0 and (x, y) ∈<,
and similarly (y, z) ∈ A0 × A0 and (y, z) ∈<. Hence x < y and y < z so that x < z since < is
an order and therefore transitive. Thus (x, z) ∈< so that (x, z) ∈< ∩(A0 × A0) =≺ since clearly
(x, z) ∈ A0 ×A0. So then x ≺ z, which shows that ≺ is transitive.

Exercise 3.8

Check that the relation defined in Example 7 is an order relation.

Solution:

Recall that Example 7 is the relation on C on the real line such that xCy if x2 < y2 or x2 = y2 and
x < y.

Proof. We show that this satisfies the three properties of an order:

(Comparability) Suppose that x and y are distinct real numbers. If x2 < y2 (or y2 < x2) then of
course xCy (or yCx) so we are done. So assume that x2 = y2. Since we know that x 6= y, it has to
be that y = −x so that still x2 = y2. This also implies that x, y 6= 0 since otherwise we would have
0 = y = −x = 0 = x. If x > 0 then we have y = −x < 0 < x. If x < 0 then we have x < 0 < −x = y.
Hence either way x2 = y2 but x < y (or y < x) so that xC (or yCx). This shows that x and y are
comparable in C.

(Nonreflexivity) Suppose that x ∈ R so that of course x2 = x2. However clearly it is not the case
that x < x so that it cannot be that xCx in this relation.

(Transitivity) Suppose that xCy and yCz. We then have the following cases:

Case: x2 < y2.

Case: y2 < z2. Then clearly x2 < y2 < z2 so that xCz.

Case: y2 = z2 and y < z. Then x2 < y2 = z2 so that again xCz.

Case: x2 = y2 and x < y.

Case: y2 < z2. Then we have x2 = y2 < z2 so that xCz.

Case: y2 = z2 and y < z. Then x2 = y=z2 and x < y < z so that again xCz.

Hence in all cases xCz so that C is also transitive.

We note that this order relation differs from the normal order on R. For example if x = −2 and
y = 1 then clearly x < y in the normal order. However, we have that y2 = 12 = 1 < 4 = (−2)2 = x2

so that yCx.

Exercise 3.9

Check that the dictionary order is an order relation.
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Solution:

Suppose that A and B are two sets with order relations <A and <B . Recall that the dictionary
order < on A×B is defined by

a1 × b1 < a2 × b2

if a1 <A a2 or if a1 = a2 and b1 <B b2.

Proof. Clearly < is a relation on A × B so we just need to show the three properties of an order
relation:

(Comparability) Consider distinct points a1 × b1 and a2 × b2 in A × B so that a1 6= a2 or b1 6= b1.
If a1 6= a2 then they are comparable in <A (since it is an order relation) so that, without loss
of generality, we can assume that a1 <A a2. Then of course a1 × b1 < a2 × b2 by definition. So
assume that a1 = a2 so that it must be that b1 6= b2. Then b1 and b2 are comparable in <B since
it is an order relation. So without loss of generality we can assume that b1 <B b2. Then of course
a1 × b1 < a2 × b2 since also a1 = a2. Thus either way a1 × b1 and a2 × b2 are comparable in <.

(Nonreflexivity) Suppose that a × b is any element of A × B. Since <B is an order relation, it is
nonreflexive so that it is not true that b <B b. Since of course a = a, it follows that it cannot be
that a × b < a × b since it would have to be that b <B b. Hence < is nonreflexive since a × b was
arbitrary.

(Transitivity) Suppose that a1 × b1 < a2 × b2 and a2 × b2 < a3 × b3. We then have the following
cases:

Case: a1 <A a2.

Case: a2 <A a3. Then a1 <A a2 and a2 <A a3 so that a1 <A a3 since <A is transitive. Thus
by definition a1 × b1 < a3 × b3.

Case: a2 = a3 and b2 <B b3. Then a1 <A a2 = a3 so that a1 × b1 < a3 × b3 by definition.

Case: a1 = a2 and b1 <B b2.

Case: a2 <A a3. Then a1 = a2 <A a3 so that by definition a1 × b1 < a3 × b3.

Case: a2 = a3 and b2 <B b3. Then a1 = a2 = a3 and b1 <B b2 and b2 <B b3 so that b1 <B b3
since <B is transitive. Therefore again a1 × b1 < a3 × b3 by definition.

Thus in all cases a1 × b1 < a3 × b3, which shows that < is transitive.

Exercise 3.10

(a) Show that the map f : (−1, 1)→ R of Example 9 is order preserving.

(b) Show that the equation g(y) = 2y/[1 + (1 + 4y2)1/2] defines a function g : R→ (−1, 1) that is both
a left and right inverse for f .

Solution:

(a) Recall that f from Example 3.9 is defined by

f(x) =
x

1− x2

for x ∈ (−1, 1). We show that f preserves order.
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Proof. Suppose that x, y ∈ (−1, 1) and that x < y. Now, since −1 < x < 1, we have 0 ≤ |x| < 1 so
that

x2 = |x|2 = |x| |x| < |x| · 1 = |x| < 1.

Hence 0 < 1 − x2 so that also 0 < 1/(1 − x2) as well. By the same argument 0 < 1 − y2 so that
0 < 1/(1− y2). We then have the following cases:

Case: x ≥ 0. Then also y > 0 since y > x ≥ 0. Thus

x2 = x · x ≤ x · y < y · y = y2 (since x < y, x ≥ 0, and y > 0)

−x2 > −y2

1− x2 > 1− y2

1

1− y2
>

1

1− x2
.

From this it follows that

f(x) =
x

1− x2
<

y

1− x2
<

y

1− y2
= f(y)

since x < y and 1/(1− x2) and 1/(1− y2) are both positive.

Case: x < 0. Then f(x) = x/(1− x2) < 0 since x < 0 and 1/(1− x2) > 0.

Case: y ≤ 0. Then we have that −x > −y ≥ 0 so that f(−y) < f(−x) by the previous case.
But we have f(−x) = −x/(1− (−x)2) = −x/(1−x2) = −f(x), and similarly f(−y) = −f(y).
Hence −f(y) = f(−y) < f(−x) = −f(x) so that f(y) > f(x).

Case: y > 0. Then f(y) = y/(1 − y2) > 0 since y > 0 and 1/(1 − y2) > 0. Hence
f(x) < 0 < f(y).

Therefore in all cases we have f(x) < f(y), which shows that f preserves order.

(b)

Proof. First we need to show that g is even a function from R to (−1, 1). We note that

y2 ≥ 0

4y2 ≥ 0

1 + 4y2 ≥ 1 > 0√
1 + 4y2 > 0

1 +
√

1 + 4y2 > 1 > 0

so that g(y) is well-defined for all y ∈ R since the denominator of g(y) is always nonzero. Now, if
y = 0 then clearly |g(y)| = |g(0)| = |0| = 0 < 1. So in what follows assume that y 6= 0 so that |y| > 0
and y2 > 0. Then we have

1 > 0

1 + 4y2 > 4y2 > 0√
1 + 4y2 >

√
4y2 = 2 |y|

1 +
√

1 + 4y2 > 1 + 2 |y| > 2 |y| > 0

1

2 |y|
>

1

1 +
√

1 + 4y2
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1 =
2 |y|
2 |y|

>
2 |y|

1 +
√

1 + 4y2
=

∣∣∣∣∣ 2y

1 +
√

1 + 4y2

∣∣∣∣∣ = |g(y)|

so that −1 < g(y) < 1 and hence g(y) ∈ (−1, 1). Thus g is in fact a well-defined function from R
into (−1, 1).

To show that g is a left inverse of f consider any x ∈ (−1, 1). First we have

√
1 + 4f(x)2 =

√
1 +

4x2

(1− x2)2
=

√
(1− x2)2 + 4x2

(1− x2)2

=

√
1− 2x2 + x4 + 4x2

(1− x2)2
=

√
1 + 2x2 + x4

(1− x2)2

=

√
(1 + x2)2

(1− x2)2
=

1 + x2

1− x2

so that

(g ◦ f)(x) = g(f(x)) =
2f(x)

1 +
√

1 + 4f(x)2
=

2x/(1− x2)

1 + 1+x2

1−x2

=
2x

(1− x2)
(

1 + 1+x2

1−x2

) =
2x

1− x2 + 1 + x2

=
2x

2
= x ,

which shows that g ◦ f = i(−1,1) since x was arbitrary so that g is a left inverse of f .

Now consider any y ∈ R. Then we first have

g(y)2 =

(
2y

1 +
√

1 + 4y2

)2

=
4y2

(1 +
√

1 + 4y2)2

=
4y2

1 + 2
√

1 + 4y2 + 1 + 4y2
=

4y2

2 + 4y2 + 2
√

1 + 4y2

=
2y2

1 + 2y2 +
√

1 + 4y2

so that

(f ◦ g)(y) = f(g(y)) =
g(y)

1− g(y)2
=

2y/(1 +
√

1 + 4y2)

1− 2y2

1+2y2+
√

1+4y2

=
2y

(1 +
√

1 + 4y2)

(
1+2y2+

√
1+4y2−2y2

1+2y2+
√

1+4y2

)
=

2y

(1 +
√

1 + 4y2)

(
1+
√

1+4y2

1+2y2+
√

1+4y2

)
=

2y

1+2
√

1+4y2+1+4y2

1+2y2+
√

1+4y2

=
2y

2+4y2+2
√

1+4y2

1+2y2+
√

1+4y2
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=
2y

2

(
1+2y2+

√
1+4y2

1+2y2+
√

1+4y2

) =
2y

2
= y ,

which shows that f ◦ g = iR since y was arbitrary so that g is also a right inverse of f .

Note that what was shown implies that f is bijective and that g is its inverse, by Exercise 2.5
part (e).

Exercise 3.11

Show that an element in an ordered set has at most one immediate successor and at most one immediate
predecessor. Show that a subset of an ordered set has at most one smallest element and at most one
largest element.

Solution:

Lemma 3.11.1. Suppose that A is a set with order < and that a and b are two elements of A.
Then a < b if and only if it is not true that b ≤ a.

Proof. (⇒) Suppose that a < b. If it were the case that a = b then we would have a < b = a, which
would violate the nonreflexivity property of the order. If it were the case that b < a then we would
have a < b and b < a so that a < a by the transitive property of the order. This again violates
nonreflexivity. Hence neither a = b nor b < a so that it is not true that b ≤ a.

(⇐) Now suppose that it is not true that b ≤ a. Then neither b = a nor b < a. Since b 6= a, it must
be that either a < b or b < a by the comparability property. However, we know that cannot be that
b < a, so it must be that a < b.

Main Problem.

Proof. In what follows Suppose that A is a set with order <.

First let a be an element of A and suppose that b1 and b2 are both immediate successors of a, which
of course means that a < b1, b2. Then by definition the open intervals (a, b1) and (a, b2) are both
empty. Now, suppose that b1 and b2 are distinct so that they must be comparable since < is an
order. Without loss of generality we can assume that b1 < b2, but then we have a < b1 < b2 so that
b1 ∈ (a, b2). This is a contradiction since we know that (a, b2) is empty, so it has to be that b1 = b2.
This of course shows that the immediate successor is unique. An analogous argument shows that
the immediate predecessor, if it exists, is also unique.

Now suppose that A0 is a subset of A with smallest elements a1 and a2. If a1 and a2 were to be
distinct then they must be comparable so that we can assume a1 < a2. However, then it is not true
that a2 ≤ a1 by Lemma 3.11.1, but this means that a2 cannot be a smallest element of A0 since
a1 ∈ A0. As this is a contradiction, it must be that a1 = a2, which shows that the smallest element
is unique if there is one. An analogous argument shows any largest element is also unique.

Exercise 3.12

Let Z+ denote the set of positive integers. Consider the following order relations on Z+ × Z+.

(i) The dictionary order.

(ii) (x0, y0) < (x1, y1) if either x0 − y0 < x1 − y1 or x0 − y0 = x1 − y1 and y0 < y1.
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(iii) (x0, y0) < (x1, y1) if either x0 + y0 < x1 + y1 or x0 + y0 = x1 + y1 and y0 < y1.

In these order relations, which elements have immediate predecessors? Does the set have a smallest
element? Show that the three order types are different.

Solution:

Lemma 3.12.1. If A and B are ordered sets and A has a smallest element but B does not, then A
and B do not have the same order type.

Proof. This may seem fairly obvious but we show it formally anyway. Suppose that <A and <B are
the orders on A and B, respectively. Let a be the smallest element of A and suppose to the contrary
that they do have the same order type. Then there is a bijection f : A → B that preserves order,
noting that f−1 is also then a bijection. Now, since B has no smallest element, there must be a
b ∈ B where b <B f(a). Setting a′ = f−1(b) so that f(a′) = b we have that f(a′) = b <B f(a), and
hence it has to be that a′ <A a since otherwise we’d have a ≤A a′ so that f(a) ≤B f(a′). However,
a′ < a means that it is not true that a ≤ a′ by Lemma 3.11.1, which contradicts the fact that a is
the smallest element of A. Therefore it must be that no such f exists so that A and B have different
order types.

Main Problem.

The figure below illustrates the dictionary order of part (i):

We claim that every point has an immediate predecessor except points in the subset

A = {(x, y) | y = 1} .

We also claim that (1, 1) is the smallest element in Z+ × Z+ with this order.

Proof. First consider any point (x1, y1) ∈ Z+ × Z+ where (x1, y1) /∈ A so that y0 6= 1. It then
follows that y1 > 1 since 1 is the smallest positive integer. Then set x0 = x1 and y0 = y1 − 1
so that clearly (x0, y0) ∈ Z+ × Z+ since y0 > 0 because y1 > 1. Clearly also x0 = x1 and
y0 < y1 so that (x0, y0) < (x1, y1) in the dictionary order. We claim that (x0, y0) is the immediate
predecessor of (x1, y1). So suppose to the contrary that there is an (x2, y2) ∈ Z+ × Z+ such that
(x0, y0) < (x2, y2) < (x1, y1). It cannot be that x0 < x2 since then we would have x1 = x0 < x2 so
that (x1, y1) < (x2, y2), which by Lemma 3.11.1 contradicts the fact that (x2, y2) < (x1, y1). So it
has to be that x0 = x2 and y0 < y2. Since then x2 = x0 = x1, it must also be that y2 < y1 since
(x2, y2) < (x1, y1). But then we have y0 < y2 < y1 = y0 + 1, which is not possible since y1 = y0 + 1
is the immediate successor of y0 in Z+ so that there can be no integers between them. So it must be
that no (x2, y2) exists so that (x0, y0) is the immediate predecessor of (x1, y1). Thus every element
not in A has an immediate predecessor.
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Now consider any (x1, y1) ∈ A so that y1 = 1, and consider any point (x0, y0) < (x1, y1). It cannot
be that x0 = x1 since then we would have y0 < y1 = 1, which is not possible since 1 is the smallest
positive integer. So it must be that x0 < x1. Then let x2 = x0 and y2 = y0 + 1 so that clearly
(x2, y2) ∈ Z+×Z+ since y+1 is always still a positive integer if y is. Then we have that x0 = x2 and
y0 < y0+1 = y2, and hence (x0, y0) < (x2, y2). We also have x2 = x0 < x1 so that (x2, y2) < (x1, y1).
Therefore (x0, y0) < (x2, y2) < (x1, y1), which shows that (x0, y0) is not the immediate predecessor
of (x1, y1). This shows that (x1, y1) has no immediate predecessor since (x0, y0) < (x1, y1) was
arbitrary. Since (x1, y1) ∈ A was arbitrary, this completes the proof that every element in Z+ × Z+

has an immediate predecessor except those in A.

It is easy to prove that (1, 1) is the smallest element in the dictionary order. Consider any (x0, y0) ∈
Z+×Z+ and suppose that (x0, y0) < (1, 1). It cannot be that x0 < 1 since 1 is the smallest positive
integer. So then x0 = 1 and y0 < 1, but this is also not possible, again since 1 is the smallest
positive integer. Thus it cannot be that (x0, y0) < (1, 1), so it must be that (1, 1) ≤ (x0, y0) by
Lemma 3.11.1. This shows that (1, 1) is the smallest element since (x0, y0) was arbitrary.

Below is shown an illustration for the order in part (ii):

We claim that every element has an immediate predecessor except those in the subset

A = {(x, y) | x = 1 or y = 1} .

We also claim that the set Z+ × Z+ has no smallest element in this order.

Proof. First consider any (x1, y1) /∈ A so that x1 6= 1 and y1 6= 1. Then it has to be that x1, y1 > 1.
So set (x0, y0) = (x1 − 1, y1 − 1) so that clearly still (x0, y0) ∈ Z+ × Z+. Then x0 − y0 = (x1 − 1)−
(y1− 1) = x1− 1− y1 + 1 = x1− y1. We also have y0 = y1− 1 < y1 so that (x0, y0) < (x1, y1). Now
suppose that there is an (x2, y2) ∈ Z+ × Z+ where (x0, y0) < (x2, y2) < (x1, y1). It cannot be that
x0−y0 < x2−y2 since then we would have x1−y1 = x0−y0 < x2−y2 so that (x1, y1) < (x2, y2), which
we know cannot be the case since (x2, y2) < (x1, y1). So it must be that x2− y2 = x0− y0 = x1− y1

and y0 < y2, but then we must have y0 < y2 < y1 = y0 + 1, noting that y2 < y1 because
x2 − y2 = x1 − y1 and (x2, y2) < (x1, y1). However, this is not possible since of course y0 + 1 is the
immediate successor of y0 in Z+. So then it has to be that no such (x2, y2) exists so that (x0, y0)
is the immediate predecessor of (x1, y1). This shows that every point not in A has an immediate
predecessor since (x1, y1) was arbitrary.

Now suppose that (x1, y1) ∈ A so that x1 = 1 or y1 = 1, and consider any (x0, y0) < (x1, y1).

Case: x1 = 1. Suppose that x0 − y0 = x1 − y1 and y0 < y1. Then we would have −y0 > −y1 and
x0 − y0 = x1 − y1 = 0− y1 = −y1 < −y0 so that x0 < 0 (by adding y0 to both sides), which is not
possible.

Case: y1 = 1. It clearly cannot be that case that x0 − y0 = x1 − y1 and y0 < y1 since then
y0 < y1 = 1, which is not possible.
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So in either case it must be that x0 − y0 < x1 − y1 since (x0, y0) < (x1, y1). So set the point
(x2, y2) = (x0 + 1, y0 + 1), which is clearly still an element of Z+ × Z+. We then have x2 − y2 =
(x0 + 1)− (y0 + 1) = x0 + 1− y0 − 1 = x0 − y0 < x1 − y1 so that (x2, y2) < (x1, y1). We also have
x0 − y0 = x2 − y2 and y0 < y0 + 1 = y2 so that also (x0, y0) < (x2, y2). Hence (x0, y0) < (x2, y2) <
(x1, y1) so that (x0, y0) is not the immediate predecessor of (x1, y1). Since (x0, y0) < (x1, y1) was
arbitrary, this shows that (x1, y1) has no immediate predecessor at all. Since (x1, y1) ∈ A was
arbitrary, this shows that no element of A has an immediate predecessor.

To show that Z+ in this order has no smallest element, consider absolutely any (x1, y1) ∈ Z+ ×Z+.
Let (x0, y0) = (x1, y1 + 1) so that of course (x0, y0) ∈ Z+ × Z+. We then have that x0 − y0 =
x1 − (y1 + 1) = (x1 − y1)− 1 < x1 − y1 so that (x0, y0) < (x1, y1). Then of course is it not true that
(x1, y1) ≤ (x0, y0) by Lemma 3.11.1 so that (x1, y1) cannot be the smallest element. Then, since
(x1, y1) was arbitrary, this shows that Z+ × Z+ has no smallest element in this order.

An illustration of the order of part (iii) is shown below:

We claim that every element has an immediate predecessor except for (1, 1), which is the smallest
element.

Proof. First we show that (x0, y0) = (1, 1) is the smallest element, from which it follows that it
cannot have an immediate predecessor since it has no predecessors at all. Consider any (x1, y1)
in Z+ × Z+. If (x1, y1) = (1, 1) then of course (x0, y0) = (1, 1) ≤ (x1, y1) is true, so assume that
(x1, y1) 6= (1, 1) so that either x1 6= 1 or y1 6= 1. If x1 6= 1 then it has to be that x1 > 1 so
that x0 + y0 = 1 + 1 ≤ 1 + y1 < x1 + y1, and hence (x0, y0) < (x1, y1). If y1 6= 1 then y1 > 1
so that again x0 + y0 = 1 + 1 ≤ x1 + 1 < x1 + y1, and hence (x0, y0) < (x1, y1). Thus in every
case (x0, y0) ≤ (x1, y1), which shows that (x0, y0) = (1, 1) is the smallest element since (x1, y1) was
arbitrary.

Now we show that every other element of Z+ has an immediate predecessor in this order. So consider
any (x1, y1) ∈ Z+ × Z+ where (x1, y1) 6= (1, 1). Hence either x1 6= 1 or y1 6= 1.

Case: y1 = 1. Then it has to be that x1 6= 1 so that x1 > 1. We claim that (x0, y0) = (1, x1 − 1) is
the immediate predecessor of (x1, y1). First we note that clearly (x0, y0) ∈ Z+ × Z+ since x1 > 1.
We also have that x0 + y0 = 1 + x1 − 1 = x1 < x1 + y1 since 0 < 1 = y1, and so (x0, y0) < (x1, y1).
Now suppose that there is a point (x2, y2) ∈ Z+×Z+ where (x0, y0) < (x2, y2) < (x1, y1). It cannot
be that x1 +y1 = x2 +y2 and y1 < y2 because then we would have y2 < y1 = 1, which is not possible
since y2 ∈ Z+. So it must be that x2 + y2 < x1 + y1 = x1 + 1 since (x2, y2) < (x1, y1). Now, since
also (x0, y0) < (x2, y2), it must be that x0 + y0 ≤ x2 + y2, but then we have x1 = 1 + (x1 − 1) =
x0 + y0 ≤ x2 + y2 < x1 + 1, which is impossible. So it has to be that no such (x2, y2) exists so that
(x0, y0) is the immediate predecessor of (x1, y1).

Case: y1 6= 1. Then it has to be that y1 > 1 so that the point (x0, y0) = (x1 + 1, y1 − 1) is still an
element of Z+ × Z+. We show that (x0, y0) is the immediate predecessor of (x1, y1). First we have
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that x0 + y0 = (x1 + 1) + (y1 − 1) = x1 + y1 and y0 = y1 − 1 < y1 so that (x0, y0) < (x1, y1). Now
suppose that there a point (x2, y2) ∈ Z+×Z+ where (x0, y0) < (x2, y2) < (x1, y1). Then it has to be
that x0+y0 ≤ x2+y2 ≤ x1+y1 so that we have x1+y1 = (x1+1)+(y1−1) = x0+y0 ≤ x2+y2 ≤ x1+y1

so that x0 + y0 = x2 + y2 = x1 + y1. But then we must have y1 − 1 = y0 < y2 < y1, which is not
possible since y1 − 1 is the immediate predecessor of y1 in Z+. So no such (x2, y2) can exists, and
hence (x0, y0) is the immediate predecessor of (x1, y1).

This in all cases (x1, y1) has an immediate predecessor, which shows the desired result since (x1, y1) 6=
(1, 1) was arbitrary.

Now we show that all three orders have different order types.

Proof. It follows immediately from Lemma 3.12.1 that order (i) and order (ii) do not have the same
order type since (i) has a smallest element while (ii) does not. Similarly order (iii) and order (ii)
cannot have the same order type for the same reason. So all that remains to be shown is that orders
(i) and (iii) have different order types.

So denote order (i) with < and order (iii) with ≺ and suppose to the contrary that they do have the
same order type. Then there is a bijection f : Z+ ×Z+ → Z+ ×Z+ that preserves order, supposing
that the domain has the dictionary order < and the range has the order ≺. Then of course f−1 is
also a bijection that preserves order. It was shown above that Z+×Z+ with < has countably many
elements with no immediate predecessor, whereas Z+ × Z+ with ≺ has only a single such element,
namely the smallest element (1, 1).

Thus we can choose an element (x1, y1) of Z+ × Z+ that has no immediate predecessor in < but
also such that f(x1, y1) 6= (1, 1) so that f(x1, y1) does have an immediate predecessor in ≺. So
let (u0, v0) be the immediate predecessor of f(x1, y1) in ≺ and set (x0, y0) = f−1(u0, v0) so that
(u0, v0) = f(x0, y0). Then of course (x0, y0) < (x1, y1) since f(x0, y0) = (u0, v0) ≺ f(x1, y1) and f
preserves order. But since (x1, y1) has no immediate predecessor in <, there is a point (x2, y2) such
that (x0, y0) < (x2, y2) < (x1, y1). We then have that (u0, v0) = f(x0, y0) ≺ f(x2, y2) ≺ f(x1, y1)
since f preserves order, which is a contradiction since (u0, v0) is the immediate predecessor of
f(x1, y1). So it must be that no such order-preserving f exists and hence the two orders do not have
the same order type.

Exercise 3.13

Prove the following:

Theorem. If an ordered set A has the least upper bound property, then it has the greatest lower bound
property.

Solution:

Proof. Suppose that A0 is any nonempty subset of A that is bounded below so that b is a lower
bound of A0. Let B0 be the set of lower bounds of A0 so that B0 is nonempty since b ∈ B0. Since
A0 is nonempty there is an a ∈ A0. Now, for any x ∈ B0 we have that x is a lower bound of A0 so
that x ≤ a, which shows that a is an upper bound of B0. Hence B0 is a nonempty subset of A that
is bounded above, and so has a least upper bound c since A has the least upper bound property.
We claim that c is also the greatest lower bound of A0.

Consider any x ∈ A0 and any y ∈ B0. Then y is a lower bound of A0 so that y ≤ x since x ∈ A0.
Since y ∈ B0 was arbitrary, this shows that x is an upper bound of B0. Thus we have c ≤ x since
c is the least upper bound of B0. Since x ∈ A0 was arbitrary, this shows that c is a lower bound of
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A0. If y is any other lower bound then y ∈ B0 so that y ≤ c since c is an upper bound of B0. Since
y was an arbitrary lower bound, this shows that in fact c is the greatest lower bound of A0. Hence
A also has the greatest lower bound property since the nonempty subset A0 was arbitrary.

Exercise 3.14

If C is a relation on a set A, define a new relation D on A by letting (b, a) ∈ D if (a, b) ∈ C.

(a) Show that C is symmetric if and only if C = D.

(b) Show that if C is an order relation, D is also an order relation.

(c) Prove the converse of the theorem in Exercise 13.

Solution:

(a)

Proof. (⇒) Suppose that C is symmetric. Then we simply have

(a, b) ∈ C ⇔ (b, a) ∈ C (since C is symmetric)

⇔ (a, b) ∈ D , (by definition)

which shows that C = D.

(⇐) Now suppose that C = D and consider any (a, b) ∈ C. Then (b, a) ∈ D by definition. Hence
also (b, a) ∈ C since C = D, which shows that C is symmetric.

(b)

Proof. Suppose that C is an order relation. Since clearly D is a relation on A, we need only show
that it has the three required properties:

(Comparability) Consider any distinct a, b ∈ A so that aCb or bCa since C has comparability. Hence
either bDa or aDb, respectively, by definition so that a and b are comparable in D as well.

(Nonreflexivity) Consider any a ∈ A. Then (a, a) /∈ C since it is nonreflexive, thus also (a, a) /∈ D
since, if it were, it would also be that (a, a) ∈ C by definition. Hence D is also nonreflexive since a
was arbitrary.

(Transitivity) Suppose that aDb and bDc. Then by definition we have bCa and cCb. That is, cCb
and bCa so that cCa since C is transitive. Therefore aDc by definition, which shows that D is also
transitive.

(c) The converse follows from an argument directly analogous to the proof of Exercise 3.13, which
we give here for completeness.

Proof. Suppose that A has the greatest lower bound property and that A0 is any nonempty subset
of A that is bounded above so that b is an upper lower bound of A0. Let B0 be the set of upper
bounds of A0 so that B0 is nonempty since b ∈ B0. Since A0 is nonempty there is an a ∈ A0. Now,
for any x ∈ B0 we have that x is an upper bound of A0 so that a ≤ x, which shows that a is a lower
bound of B0. Hence B0 is a nonempty subset of A that is bounded below, and so has a greatest
lower bound c since A has the greatest lower bound property. We claim that c is also the least upper
bound of A0.

Consider any x ∈ A0 and any y ∈ B0. Then y is an upper bound of A0 so that x ≤ y since x ∈ A0.
Since y ∈ B0 was arbitrary, this shows that x is a lower bound of B0. Thus we have x ≤ c since c is
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the greatest lower bound of B0. Since x ∈ A0 was arbitrary, this shows that c is an upper bound of
A0. If y is any other upper bound then y ∈ B0 so that c ≤ y since c is a lower bound of B0. Since
y was an arbitrary upper bound, this shows that in fact c is the lest upper bound of A0. Hence A
also has the lest upper bound property since the nonempty subset A0 was arbitrary.

Exercise 3.15

Assume that the real line has the least upper bound property.

(a) Show that the sets

[0, 1] = {x | 0 ≤ x ≤ 1} ,
[0, 1) = {x | 0 ≤ x < 1}

have the least upper bound property.

(b) Does [0, 1] × [0, 1] in the dictionary order have the least upper bound property? What about
[0, 1]× [0, 1)? What about [0, 1)× [0, 1]?

Solution:

(a) We show this for both sets simultaneously as their proofs are nearly identical. We note the minor
differences in parentheses.

Proof. Let A = [0, 1] (or A = [0, 1)) and consider any nonempty subset A0 of A that is bounded
above in A. So suppose that b is an upper bound of A0 in A so that 0 ≤ b ≤ 1 (or 0 ≤ b < 1). Now,
of course A0 has a least upper bound c in R since it is also a nonempty subset of R that is bounded
above. Obviously c ≤ b since it is the least upper bound. For any x ∈ A0 we of course have that
x ∈ A so that 0 ≤ x ≤ 1 (or 0 ≤ x < 1), and clearly x ≤ c since it is an upper bound of A0. Thus
we have 0 ≤ x ≤ c ≤ b ≤ 1 (or 0 ≤ x ≤ c ≤ b < 1) so that c ∈ A. Hence A0 has a least upper bound
in A as desired.

(b) First we claim that both [0, 1]× [0, 1] and [0, 1)× [0, 1] have the least upper bound property. We
show this for both sets simultaneously as their proofs are identical.

Proof. Let X = [0, 1]× [0, 1] (or X = [0, 1)× [0, 1]). Suppose that A is a nonempty subset of X that
is bounded above, and that x1× y1 is an upper bound of A in X. Then of course we have x1 ∈ [0, 1]
(or x1 ∈ [0, 1)). Define Ax = {x | x × y ∈ A} so that clearly Ax ⊂ [0, 1] (or Ax ⊂ [0, 1)). It then
follows that x ≤ x1 for any x ∈ Ax since x1 × y1 is an upper bound of A in the dictionary order.
Also clearly Ax is nonempty since A is. Thus Ax is a nonempty subset of [0, 1] (or [0, 1)) that is
bounded above (by x1) so that it has a least upper bound a by what was shown in part (a).

Now, if a /∈ Ax then set b = 0. Otherwise define Ay = {y | a× y ∈ A}. Then, since a ∈ Ax, there is
a y ∈ [0, 1] where a× y ∈ A, which shows that y ∈ Ay and hence Ay 6= ∅. We also clearly have that
Ay ⊂ [0, 1] so that Ay is bounded above by 1. Then Ay has a least upper bound b, again by what
was shown in part (a). In either case we assert that a× b is the least upper bound of A in X in the
dictionary order.

First, it is obvious that a × b ∈ X based on how a and b were defined. Consider any x × y ∈ A
so that x ∈ Ax, and hence x ≤ a since a is the least upper bound of Ax. If x < a then of course
x × y ≤ a × b, so assume that x = a. Then a = x ∈ Ax so that b was defined as the least upper
bound of Ay. Then we have that y ∈ Ay since x × y = a× y ∈ A, and thus y ≤ b since b is the least
upper bound of Ay. This shows that x × y ≤ a × b so that we have shown that a × b is an upper
bound of A since x × y was arbitrary.
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To show that it is the least upper bound consider any x0 × y0 ∈ X where x0 × y0 < a× b. If x0 < a
then there must be an x ∈ Ax where x0 < x since x0 cannot be an upper bound of Ax since x0 < a
and a is the least upper bound of Ax. Then, since x ∈ Ax, there is a y ∈ [0, 1] where x × y ∈ A.
Hence x0×y0 < x×y since x0 < x so that x0×y0 is not an upper bound of A. On the other hand if
x0 = a we must have y0 < b so that it cannot be that b = 0, and hence it must be that a ∈ Ax. Then
there must be a y ∈ Ay where y0 < y since y0 cannot be an upper bound of Ay since y0 < b and b
is the least upper bound of Ay. Hence a× y ∈ A, x0 = a, and y0 < y so that x0 × y0 < a× y ∈ A,
which shows that x0 × y0 is not an upper bound of A. Thus in either case x0 × y0 is not an upper
bound of A, which shows that a× b is the least upper bound since x0 × y0 < a× b was arbitrary.

This of course completes the proof that A has a least upper bound, which shows that X has the
least upper bound property since A was an arbitrary nonempty subset.

We also claim that [0, 1]× [0, 1) does not have the least upper bound property.

Proof. Let X = [0, 1]× [0, 1). Consider the set A = {0} × [0, 1), which is clearly a nonempty subset
of X. This subset also obviously has an upper bound in X in the dictionary order, for example the
point 1× 0. So let x1 × y1 be any upper bound of A in X and suppose for the moment that x1 = 0.
Then y1 ∈ [0, 1) so that 0 ≤ y1 < 1, but then there is a y0 ∈ R such that 0 ≤ y1 < y0 < 1. Then
y0 ∈ [0, 1) so that x1 × y0 = 0 × y0 ∈ A, but also x1 × y1 < x1 × y0 so that x1 × y1 cannot be an
upper bound of A. So it must be that in fact x1 6= 0 and hence x1 > 0. Now let x0 = x1/2 > 0 and
y0 = 0 so that clearly x × y < x0 × y0 < x1 × y1 for any x × y ∈ A since x = 0 < x1/2 = x0 < x1.
This shows that x0 × y0 is still an upper bound of A but that x0 × y0 < x1 × y1. Since x1 × y1 was
an arbitrary upper bound of A, this proves that A can have no least upper bound!

§4 The Integers and the Real Numbers

Exercise 4.1

Prove the following “laws of algebra” for R, using only axioms (1)-(5):

(a) If x+ y = x, then y = 0.

(b) 0 · x = 0. [Hint: Compute (x+ 0) · x.]

(c) −0 = 0.

(d) −(−x) = x.

(e) x(−y) = −(xy) = (−x)y.

(f) (−1)x = −x.

(g) x(y − z) = xy − xz.
(h) −(x+ y) = −x− y; −(x− y) = −x+ y.

(i) If x 6= 0 and x · y = x, then y = 1.

(j) x/x = 1 if x 6= 0.

(k) x/1 = x.

(l) x 6= 0 and y 6= 0⇒ xy 6= 0.

(m) (1/y)(1/z) = 1/(yz) if y, z 6= 0.

(n) (x/y)(w/z) = (xw)/(yz) if y, z 6= 0.

(o) (x/y) + (w/z) = (xz + wy)/(yz) if y, z 6= 0.

(p) x 6= 0⇒ 1/x 6= 0.

(q) 1/(w/z) = z/w if w, z 6= 0.

(r) (x/y)/(w/z) = (xz)/(yw) if y, w, z 6= 0.

(s) (ax)/y = a(x/y) if y 6= 0.

(t) (−x)/y = x/(−y) = −(x/y) if y 6= 0.

Solution:

Lemma 4.1.1. x+ y = x+ z if and only if y = z.
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Proof. (⇐) Clearly if y = z then x+ y = x+ z since the + operation is a function.

(⇒) If x+ y = x+ z then we have

y = y + 0 (by (3))

= 0 + y (by (2))

= (x+ (−x)) + y (by (4))

= (−x+ x) + y (by (2))

= −x+ (x+ y) (by (1))

= −x+ (x+ z) (by what was just shown for (⇐))

= (−x+ x) + z (by (1))

= (x+ (−x)) + z (by (2))

= 0 + z (by (4))

= z + 0 (by (2))

= z (by (3))

as desired.

Lemma 4.1.2. If x 6= 0 then x · y = x · z if and only if y = z.

Proof. (⇐) Clearly if y = z then x · y = x · z since the · operation is a function.

(⇒) If x · y = x · z then we have

y = y · 1 (by (3))

= 1 · y (by (2))

=

(
x · 1

x

)
· y (by (4), noting that x 6= 0)

=

(
1

x
· x
)
· y (by (2))

=
1

x
· (x · y) (by (1))

=
1

x
· (x · z) (by what was just shown for (⇐))

=

(
1

x
· x
)
· z (by (1))

=

(
x · 1

x

)
· z (by (2))

= 1 · z (by (4))

= z · 1 (by (2))

= z (by (3))

as desired.

Lemma 4.1.3. 1/(yz) = 1/(zy) if y, z 6= 0.

Proof. We have (zy) · 1/(yz) = (yz) · 1/(yz) = 1 by (2) followed by (4) so that 1/(yz) is a reciprocal
of zy. Since this reciprocal is unique, however, it must be that 1/(yz) = 1/(zy) as desired.

Main Problem.

(a) If x+ y = x, then y = 0.
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Proof. Clearly by (3) we have x + 0 = x = x + y so that it has to be that y = 0 by Lemma 4.1.1.

(b) 0 · x = 0. [Hint: Compute (x+ 0) · x.]

Proof. We have

x · x+ 0 · x = x · x+ x · 0 (since 0 · x = x · 0 by (2))

= x · (x+ 0) (by (5))

= x · x . (since x+ 0 = x by (3))

Thus it must be that 0 · x = 0 by part (a).

(c) −0 = 0.

Proof. By (4) we have 0 + (−0) = 0 so that it has to be that −0 = 0 by part (a).

(d) −(−x) = x.

Proof. We have

−(−x) = −(−x) + 0 (by (3))

= −(−x) + (x+ (−x)) (by (4))

= −(−x) + ((−x) + x) (by (2))

= (−(−x) + (−x)) + x (by (1))

= ((−x) + (−(−x))) + x (by (2))

= 0 + x (by (4))

= x+ 0 (by (2))

= x (by (3))

as desired.

(e) x(−y) = −(xy) = (−x)y.

Proof. First we have

x(−y) = x(−y) + 0 (by (3))

= x(−y) + (xy + (−(xy)) (by (4))

= (x(−y) + xy) + (−(xy)) (by (1))

= x(−y + y) + (−(xy)) (by (5))

= x(y + (−y)) + (−(xy)) (by (2))

= x · 0 + (−(xy)) (by (4))

= 0 · x+ (−(xy)) (by (2))

= 0 + (−(xy)) (by part(b))

= −(xy) + 0 (by (2))

= −(xy) . (by (3))
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We also have

(−x)y = y(−x) (by (2))

= −(yx) (by what was just shown)

= −(xy) (by (2))

so that the result follows since equality is transitive.

(f) (−1)x = −x.

Proof. We have

(−1)x = −(1 · x) (by part(e))

= −(x · 1) (by (2))

= −x (since x · 1 = x by (3))

as desired.

(g) x(y − z) = xy − xz.

Proof. We have

x(y − z) = x(y + (−z)) (by the definition of subtraction)

= xy + x(−z) (by (5))

= xy + (−(xz)) (by part(e))

= xy − xz (by the definition of subtraction)

as desired.

(h) −(x+ y) = −x− y; −(x− y) = −x+ y.

Proof. We have

−(x+ y) = (−1)(x+ y) (by part (f))

= (−1)x+ (−1)y (by (5))

= −x+ (−y) (by part (f) twice)

= −x− y (by the definition of subtraction)

and

−(x− y) = −(x+ (−y)) (by the definition of subtraction)

= −x− (−y)) (by what was just shown)

= −x+ (−(−y)) (by the definition of subtraction)

= −x+ y (by part (d))

as desired.

(i) If x 6= 0 and x · y = x, then y = 1.

Proof. By (3) we have x · 1 = x = x · y so that it has to be that y = 1 by Lemma 4.1.2, noting that
this applies since x 6= 0.
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(j) x/x = 1 if x 6= 0.

Proof. By the definition of division we have x/x = x ·(1/x) = 1 by (4) since x 6= 0 and 1/x is defined
as the reciprocal (i.e. the multiplicative inverse) of x.

(k) x/1 = x.

Proof. First, we have by (4) that 1 · (1/1) = 1, where 1/1 is the reciprocal of 1. We also have that
1 ·(1/1) = (1/1) ·1 = 1/1 by (2) and (3). Therefore 1/1 = 1 ·(1/1) = 1 so that 1 is its own reciprocal.
Then, by the definition of division, we have x/1 = x · (1/1) = x · 1 = x by (3).

(l) x 6= 0 and y 6= 0⇒ xy 6= 0.

Proof. Suppose that x 6= 0 and y 6= 0. Also suppose to the contrary that xy = 0. Since y 6= 0 it
follows from (4) that 1/y exists. So, we have (xy) · (1/y) = 0 · (1/y) = 0 by part (b). We also have

(xy) · 1

y
= x

(
y · 1

y

)
(by (1))

= x · 1 (by (4))

= x (by (3))

so that x = (xy) · (1/y) = 0, which is a contradiction since we supposed that x 6= 0. Hence it must
be that xy 6= 0 as desired.

(m) (1/y)(1/z) = 1/(yz) if y, z 6= 0.

Proof. We have

(yz)

(
1

y
· 1

z

)
= (yz)

(
1

z
· 1

y

)
(by (2))

=

(
(yz) · 1

z

)
1

y
(by (1))

=

(
y

(
z · 1

z

))
1

y
(by (1))

= (y · 1)
1

y
(by (4))

= y · 1

y
(by (3))

= 1 (by (4))

so that (1/y)(1/z) is a multiplicative inverse of yz. Since this inverse is unique by (4), however, it
has to be that (1/y)(1/z) = 1/(yz) as desired.

(n) (x/y)(w/z) = (xw)/(yz) if y, z 6= 0.

Proof. We have

x

y
· w
z

=

(
x · 1

y

)(
w · 1

z

)
(by the definition of division)

=

(
x · 1

y

)(
1

z
· w
)

(by (2))
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=

((
x · 1

y

)
1

z

)
w (by (1))

=

(
x

(
1

y
· 1

z

))
w (by (1))

=

(
x · 1

yz

)
w (by part (m) since y, z 6= 0)

=

(
1

yz
· x
)
w (by (2))

=
1

yz
(xw) (by (1))

= (xw)
1

yz
(by (2))

=
xw

yz
(by the definition of division)

as desired.

(o) (x/y) + (w/z) = (xz + wy)/(yz) if y, z 6= 0.

Proof. We have

x

y
+
w

z
=
x

y
· 1 +

w

z
· 1 (by (3))

=
x

y
· z
z

+
w

z
· y
y

(by part (j))

=
xz

yz
+
wy

zy
(by part(n))

= (xz)
1

yz
+ (wy)

1

zy
(by the definition of division)

= (xz)
1

yz
+ (wy)

1

yz
(by Lemma 4.1.3)

=
1

yz
(xz) +

1

yz
(wy) (by (2))

=
1

yz
(xz + wy) (by (5))

= (xz + wy)
1

yz
(by (2))

=
xz + wy

yz
(by the definition of division)

as desired.

(p) x 6= 0⇒ 1/x 6= 0.

Proof. Suppose that x 6= 0 but 1/x = 0. Then we first have that x · (1/x) = x · 0 = 0 · x = 0 by (2)
and part (b). However, we also have x · (1/x) = 1 by (4). Hence we have 0 = x · (1/x) = 1, which is
a contradiction since we know that 0 and 1 are distinct by (3). So, if we accept that x 6= 0, then it
must be that 1/x 6= 0 also.

(q) 1/(w/z) = z/w if w, z 6= 0.
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Proof. We have

w

z
· z
w

=
wz

zw
(by part (n) since w, z 6= 0)

= (wz)
1

zw
(by the definition of division)

= (wz)
1

wz
(by Lemma 4.1.3 since w, z 6= 0)

= 1 (by (4))

so that by definition z/w is the reciprocal of w/z. Since this is unique by (4) we then have z/w =
1/(w/z) as desired.

(r) (x/y)/(w/z) = (xz)/(yw) if y, w, z 6= 0.

Proof. We have

x/y

w/z
=
x

y
· 1

w/z
(by the definition of division)

=
x

y
· z
w

(by part (q) since w, z 6= 0)

=
xz

yw
(by part (n) since y, w 6= 0)

as desired.

(s) (ax)/y = a(x/y) if y 6= 0.

Proof. We have

ax

y
= (ax) · 1

y
(by the definition of division)

= a

(
x · 1

y

)
(by (1))

= a · x
y

(by the definition of division)

as desired.

(t) (−x)/y = x/(−y) = −(x/y) if y 6= 0.

Proof. We have

−x
y

= (−x) · 1

y
(by the definition of division)

= ((−1)x) · 1

y
(by part (f))

= (−1)

(
x · 1

y

)
(by (1))

= (−1)
x

y
(by the definition of division)

= −
(
x

y

)
. (by part (f))
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Now, we have (−1)(−1) = −(−1) = 1 by parts (f) and (d) so that −1 is its own reciprocal, since
the reciprocal is unique, i.e. 1/(−1) = −1. We also have

−x
y

= (−x) · 1

y
(by the definition of division)

= ((−1)x) · 1

y
(by part (f))

= (x(−1)) · 1

y
(by (2))

= x

(
(−1)

1

y

)
(by (1))

= x

(
1

−1
· 1

y

)
(by what was just shown above)

= x
1

(−1)y
(part (m) since y 6= 0)

= x
1

−y
(by part (f))

so that −(x/y) = (−x)/y = x/(−y) as desired.

Exercise 4.2

Prove the following “laws of inequalities” for R, using axioms (1)-(6) along with the results of Exercise 1:

(a) x > y and w > z ⇒ x+ w > y + z.

(b) x > 0 and y > 0⇒ x+ y > 0 and x · y > 0.

(c) x > 0⇔ −x < 0.

(d) x > y ⇔ −x < −y.

(e) x > y and z < 0⇒ xz < yz.

(f) x 6= 0⇒ x2 > 0, where x2 = x · x.

(g) −1 < 0 < 1.

(h) xy > 0 ⇔ x and y are both positive or both
negative.

(i) x > 0⇒ 1/x > 0.

(j) x > y > 0⇒ 1/x < 1/y.

(k) x < y ⇒ x < (x+ y)/2 < y.

Solution:

Lemma 4.2.1. x+ x = 2x for any real x.

Proof. We simply have

x+ x = x · 1 + x · 1 (by (3))

= x(1 + 1) (by (5))

= x · 2 (since 2 is defined as 1 + 1)

= 2x (by (2))

as desired.

Main Problem.

(a) x > y and w > z ⇒ x+ w > y + z.
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Proof. We have

x+ w > y + w (by (6) since x > y)

= w + y (by (2))

> z + y (by (6) since w > z)

= y + z (by (2))

as desired.

(b) x > 0 and y > 0⇒ x+ y > 0 and x · y > 0.

Proof. First we have

x+ y > 0 + y (by (6) since x > 0)

= y + 0 (by (2))

= y (by (3))

> 0 .

Also

x · y > 0 · y (by (6) since x > 0 and y > 0)

= 0 (by Exercise 4.1 part (b))

as desired.

(c) x > 0⇔ −x < 0.

Proof. (⇒) Suppose that x > 0. Then we have

−x = −x+ 0 (by (3))

= 0 + (−x) (by (2))

< x+ (−x) (by (6) since 0 < x)

= 0 . (by (4))

(⇐) Suppose now that −x < 0. Then we have

x = x+ 0 (by (3))

= 0 + x (by (2))

> −x+ x (by (6) since 0 > −x)

= x+ (−x) (by (2))

= 0 (by (4))

as desired.

(d) x > y ⇔ −x < −y.

Proof. (⇒) Suppose that x > y. Then we have

−y = −y + 0 (by (3))

= −y + (x+ (−x)) (by (4))
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= (x+ (−x)) + (−y) (by (2))

= x+ (−x+ (−y)) (by (1))

> y + (−x+ (−y)) (by (6) since x > y)

= y + (−y + (−x)) (by (2))

= (y + (−y)) + (−x) (by (1))

= 0 + (−x) (by (4))

= −x+ 0 (by (2))

= −x . (by (3))

(⇐) Now suppose that −x < −y. Then we have

x = x+ 0 (by (3))

= x+ (y + (−y)) (by (4))

= (y + (−y)) + x (by (2))

= (−y + y) + x (by (2))

= −y + (y + x) (by (1))

> −x+ (y + x) (by (6) since −y > −x)

= −x+ (x+ y) (by (2))

= (−x+ x) + y (by (1))

= (x+ (−x)) + y (by (2))

= 0 + y (by (4))

= y + 0 (by (2))

= y (by (3))

as desired.

(e) x > y and z < 0⇒ xz < yz.

Proof. First, by Exercise 4.1 part (d), we have −(−z) = z < 0 so that −z > 0 by part (c). Then,
since x > y, it follows from (6) that

x(−z) > y(−z)
−(xz) > −(yz) (by Exercise 4.1 part (e) applied to both sides)

xz < yz (by part (d))

as desired.

(f) x 6= 0⇒ x2 > 0, where x2 = x · x.

Proof. Since x 6= 0 we either have that x > 0 or x < 0 since the < relation is an order (in particular
a linear order since this is part of the definition of order in this text). If x > 0 then we have
x2 = x · x > 0 · x = 0 by (6) (since x > 0) and Exercise 4.1 part (b). If x < 0 then we have
0 = 0 · x < x · x = x2 by part (e) (since 0 > x) and Exercise 4.1 part (b). Together these show the
desired result.

(g) −1 < 0 < 1.
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Proof. By (4) we know that 1 6= 0 so that 12 > 0 by part (f). However, we have 12 = 1 · 1 = 1 by
(3). Hence 1 = 12 > 0. It then follows from part (c) that −1 < 0 so that we have −1 < 0 < 1 as
desired.

(h) xy > 0⇔ x and y are both positive or both negative.

Proof. (⇒) Suppose that xy > 0. It cannot be that x = 0, for then we would have 0 = 0 ·y = xy > 0
by Exercise 4.1 part (b), which is impossible by the definition of an order. Hence we have x 6= 0,
and an analogous argument shows that y 6= 0 as well. We then have the following:

Case: x > 0. Suppose that y < 0. Then, by part (e) and Exercise 4.1 part (b), we have xy < 0 ·y = 0
since x > 0 and y < 0, which contradicts our initial supposition. Thus, since we know that y 6= 0,
it has to be that y > 0 as well.

Case: x < 0. Suppose that y > 0. Then, by (6) and Exercise 4.1 part (b), we have 0 = 0 · y > xy
since 0 > x and y > 0, which again contradicts the initial supposition. So it must be that y < 0 also
since y 6= 0.

Therefore in every case either both x and y are positive or they are both negative. Since x 6= 0,
these cases are exhaustive so that this shows the result.

(⇐) Suppose that either x > 0, y > 0 or x < 0, y < 0. In the case where both x > 0 and y > 0 we
clearly have xy > 0 · y = 0 by (6) and Exercise 4.1 part (b). In the other case in which x < 0 and
y < 0 we have 0 = 0 · y < xy by part (e) and Exercise 4.1 part (b) since 0 > x and y < 0. Hence
xy > 0 in both cases.

(i) x > 0⇒ 1/x > 0.

Proof. First, it cannot be that 1/x = 0 because then we would have 1 = x(1/x) = x · 0 = 0 · x = 0
by (4), (2), and Exercise 4.1 part (b). This is clearly a contradiction since we know that 1 6= 0 by
(3). Hence 1/x 6= 0. Now suppose that 1/x < 0 so that 1 = x(1/x) < 0 · (1/x) = 0 by part (e) since
x > 0 and 1/x < 0, and we have also used Exercise 4.1 part (b). This is also a contradiction since it
was proved in part (g) that 1 > 0. Hence the only remaining possibility is that 1/x > 0 as desired.

(j) x > y > 0⇒ 1/x < 1/y.

Proof. First, since the order is transitive, we have x, y > 0. It then follows from part (i) that
1/x, 1/y > 0. Then (1/x)(1/y) > 0 by part (h). We then have

1

x
=

1

x
· 1 (by (3))

=
1

x

(
y · 1

y

)
(by (4))

=

(
1

x
· y
)

1

y
(by (1))

=

(
y · 1

x

)
1

y
(by (2))

= y

(
1

x
· 1

y

)
(by (1))

< x

(
1

x
· 1

y

)
(by (6) since y < x and (1/x)(1/y) > 0)

=

(
x · 1

x

)
1

y
(by (1))
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= 1 · 1

y
(by (4))

=
1

y
· 1 (by (2))

=
1

y
(by (3))

as desired.

(k) x < y ⇒ x < (x+ y)/2 < y.

Proof. First, we know by part (g) that 1 > 0 so that

2 = 1 + 1 (by the definition of 2)

> 0 + 1 (by (6) since 1 > 0 )

= 1 + 0 (by (2))

= 1 (by (3))

> 0 . (by part (g))

To summarize, 0 < 1 < 2. It then follows from part (i) that 1/2 > 0. We then have

x < y

x+ x < x+ y (by (6))

2x < x+ y (by Lemma 4.2.1)

(2x)
1

2
< (x+ y)

1

2
(by (6) since 1/2 > 0)

(x · 2)
1

2
<
x+ y

2
(by (2) and the definition of division)

x

(
2 · 1

2

)
<
x+ y

2
(by (1))

x · 1 < x+ y

2
(by (4))

x <
x+ y

2
. (by (3))

Similarly, we have

x < y

x+ y < y + y (by (6))

x+ y < 2y (by Lemma 4.2.1)

(x+ y)
1

2
< (2y)

1

2
(by (6) since 1/2 > 0)

x+ y

2
< (y · 2)

1

2
(by the definition of division and (2))

x+ y

2
< y

(
2 · 1

2

)
(by (1))

x+ y

2
< y · 1 (by (4))

x+ y

2
< y . (by (3))

This shows that x < (x+ y)/2 < y as desired.
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Exercise 4.3

(a) Show that if A is a collection of inductive sets, then the intersection of the elements of A is an
inductive set.

(b) Prove the basic properties (1) and (2) of Z+.

Solution:

(a) We must show that
⋂
A∈AA is inductive.

Proof. First, consider any A ∈ A. Then, since A is inductive, 1 ∈ A. Since A was arbitrary, this
shows that 1 ∈

⋂
A∈AA. Now suppose that x ∈

⋂
A∈AA and again consider arbitrary A ∈ A.

Then x ∈ A so that x + 1 ∈ A also since A is inductive. Since A was arbitrary, this shows that
x+ 1 ∈

⋂
A∈AA. Hence by definition

⋂
A∈AA is inductive.

(b)

Proof. Let A be the collection of all inductive sets of R so that by definition Z+ =
⋂
A∈AA. It then

follows immediately from part (a) that Z+ is inductive since A is a collection of inductive sets. This
shows property (1).

Now suppose that A is an inductive set of positive integers. That is, A is inductive and A ⊂ Z+.
Consider any x ∈ Z+ =

⋂
B∈AB, where again A is the the collection of all inductive subsets of R.

Clearly we have that A ⊂ Z+ ⊂ R so that A ∈ A since A is an inductive subset of R. Hence x ∈ A
(since x ∈

⋂
B∈AB and A ∈ A) so that Z+ ⊂ A since x was arbitrary. This shows that A = Z+ as

desired since also A ⊂ Z+. This shows property (2).

Exercise 4.4

(a) Prove by induction that given n ∈ Z+, every nonempty subset of {1, . . . , n} has a largest element.

(b) Explain why you cannot conclude from (a) that every nonempty subset of Z+ has a largest element.

Solution:

(a)

Proof. Let A be the set of integers such that the hypothesis is true. Clearly the result is then shown
if we can prove that A = Z+. So first, clearly 1 ∈ A since the set {1} has only a single nonempty
subset, i.e. {1} itself, in which 1 is clearly the largest element. Now suppose that n ∈ A so that
every nonempty subset of Sn+1 = {1, . . . , n} has a largest element. Consider any nonempty subset
B of Sn+2 = {1, . . . , n+ 1}, noting that Sn+2 = Sn+1 ∪ {n+ 1}.
Case: n + 1 ∈ B. Then, for any other k ∈ B, k ∈ Sn+2 so that either k = n + 1 or k ∈ Sn+1 so
that k < n+ 1 by the definition of Sn+1. Thus in either case k ≤ n+ 1 so that n+ 1 is the largest
element of B since k was arbitrary.

Case: n+1 /∈ B. Then clearly B ⊂ Sn+1 so that B has a largest element by the induction hypothesis
since B is nonempty.

Hence in either case B has a largest element so that n+ 1 ∈ A since B was an arbitrary nonempty
subset of Sn+2 = {1, . . . , n+ 1}. This shows that A is an inductive set of positive integers so that
A = Z+ as desired by the Principle of Induction.
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(b) There could be nonempty subsets of Z+ that are not subsets of Sn+1 = {1, . . . , n} for any
n ∈ Z+, in which cases the hypothesis of part (a) is not satisfied so that the conclusion does not
necessarily apply. In fact, Z+ itself is an example of such a set where both the hypothesis and the
conclusion are false.

Exercise 4.5

Prove the following properties of Z and Z+:

(a) a, b ∈ Z+ ⇒ a+ b ∈ Z+. [Hint: Show that given a ∈ Z+, the set X = {x | x ∈ R and a+ x ∈ Z+}
is inductive.]

(b) a, b ∈ Z+ ⇒ a · b ∈ Z+.

(c) Show that a ∈ Z+ ⇒ a − 1 ∈ Z+ ∪ {0}. [Hint: Let X = {x | x ∈ R and x− 1 ∈ Z+ ∪ {0}}; show
that X is inductive.]

(d) c, d ∈ Z⇒ c+ d ∈ Z and c− d ∈ Z. [Hint: Prove it first for d = 1.]

(e) c, d ∈ Z⇒ c · d ∈ Z.

Solution:

Lemma 4.5.1. If x ∈ Z then −x ∈ Z.

Proof. Let Z− = {−x | x ∈ Z+} so that by definition Z = Z+ ∪ {0} ∪ Z−. Suppose that x ∈ Z so
that x ∈ Z+ ∪ {0} ∪ Z−.

Case: x ∈ Z+. Then −x ∈ Z− by definition.

Case: x = 0. Then by Exercise 4.1 part (c) we have −x = −0 = 0 ∈ {0}.
Case: x ∈ Z−. Then by definition there is a y ∈ Z+ such that x = −y. Then −x = −(−y) = y ∈ Z+

by Exercise 4.1 part (d).

Hence in all cases either −x ∈ Z+, −x ∈ {0}, or −x ∈ Z− so that −x ∈ Z+ ∪ {0} ∪ Z− = Z as
desired.

Main Problem.

(a)

Proof. Consider any a ∈ Z+ and define Xa = {x ∈ R | a+ x ∈ Z+}. We show that Xa is inductive.
First, since a ∈ Z+ we have that a + 1 ∈ Z+ since Z+ is inductive. Hence 1 ∈ Xa by definition.
Now suppose that x ∈ Xa so that a+ x ∈ Z+. Then we have a+ (x+ 1) = (a+ x) + 1 ∈ Z+ since
a+ x ∈ Z+ and Z+ is inductive. This shows by definition that x+ 1 ∈ Xa and therefore that Xa is
inductive. It follows that Z+ ⊂ Xa since Z+ is defined as the intersection of all inductive subsets of
reals, of which Xa is one.

Therefore, for any a, b ∈ Z+, we have that b ∈ Xa since Z+ ⊂ Xa. Thus by definition a+ b ∈ Z+ as
desired

(b)

Proof. Consider any a ∈ Z+ and define Xa = {x ∈ R | a · x ∈ Z+}. We show that Xa is inductive.
To this end, we first have that a · 1 = a ∈ Z+ so that 1 ∈ Xa by definition. Now suppose that
x ∈ Xa so that ax ∈ Z+. Then we have a · (x+ 1) = a · x+ a · 1 = ax+ a ∈ Z+ by part (a) since we
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know both ax and a are in Z+. Hence x+ 1 ∈ Xa by definition. This shows that Xa is inductive so
that again Z+ ⊂ Xa.

Hence for any a, b ∈ Z+ we have that b ∈ Xa since Z+ ⊂ Xa. It then follows by definition that
a · b ∈ Z+ as desired.

(c)

Proof. Let X = {x ∈ R | x− 1 ∈ Z+ ∪ {0}}, which we show is inductive. First, we have 1 − 1 =
1 + (−1) = 0 so that clearly 1 ∈ Z+ ∪ {0} and hence 1 ∈ X. Now suppose that x ∈ X so that
x− 1 ∈ Z+ ∪ {0}.
Case: x − 1 ∈ {0}. Then it must be that x − 1 = 0, which clearly implies x = 1 ∈ Z+ since Z+ is
inductive. Then (x + 1) − 1 = x + (1 − 1) = x + 0 = x ∈ Z+ so that (x + 1) − 1 ∈ Z+ ∪ {0} and
therefore x+ 1 ∈ X.

Case: x − 1 ∈ Z+. Then (x + 1) − 1 = x + (1 − 1) = x + ((−1) + 1) = (x − 1) + 1 ∈ Z+ since
x−1 ∈ Z+ and Z+ is inductive. Thus clearly (x+ 1)−1 ∈ Z+∪{0} so that x+ 1 ∈ X by definition.

Hence in both cases x + 1 ∈ X, which shows that X is inductive, and so Z+ ⊂ X. Therefore, for
any a ∈ Z+, we have that also x ∈ X since Z+ ⊂ X. Then, by the definition of X, it follows that
a− 1 ∈ Z+ ∪ {0} as desired.

(d)

Proof. First we show that the set Xc = {x ∈ R | c+ x ∈ Z and c− x ∈ Z} is inductive for any c ∈ Z.
So consider any c and b in Z so that c, b ∈ Z+ ∪ {0} ∪ Z−.

Case: b ∈ Z+. Then b+ 1 ∈ Z+ since Z+ is inductive and b− 1 ∈ Z+ ∪ {0} by part (c).

Case: b = 0. Then b+ 1 = 0 + 1 = 1 ∈ Z+ since it is inductive, and b− 1 = 0− 1 = −1 ∈ Z− since
1 ∈ Z+.

Case: b ∈ Z−. Then b = −a for a ∈ Z+, and we then have that a + 1 ∈ Z+ since Z+ is inductive.
Hence b− 1 = −a− 1 = −(a+ 1) ∈ Z−. We also have that a− 1 ∈ Z+ ∪{0} by part (c), from which
it is trivial to show that −(a− 1) ∈ Z− ∪ {0}. Therefore b+ 1 = −a+ 1 = −(a− 1) ∈ Z− ∪ {0}.
Thus in all cases we have that b + 1 and b − 1 are in Z+ or {0} or Z− so that they are both in Z,
and so 1 ∈ Xb. Note that this is the case for any b ∈ Z so that it is clearly true for c, i.e. 1 ∈ Xc.
Now suppose that x ∈ Xc so that c+ x and c− x are both in Z. It then follows that 1 ∈ Xc+x and
1 ∈ Xc−x so that c+ (x+ 1) = (c+ x) + 1 ∈ Z and c− (x+ 1) = (c− x)− 1 ∈ Z. This then shows
that x+ 1 ∈ Xc. Hence Xc is inductive for any c ∈ Z so that Z+ ⊂ Xc.

Now consider c, d ∈ Z.

Case: d ∈ Z+. Then clearly d ∈ Xc since Z+ ⊂ Xc. Hence by definition c+ d and c− d are both in
Z.

Case: d = 0. Then c+ d = c+ 0 = c ∈ Z and c− d = c− 0 = c ∈ Z.

Case: d ∈ Z−. Then by definition d = −a for a ∈ Z+ so that a ∈ Xc since Z+ ⊂ Xc. Then
c + a and c − a are both in Z by the definition of Xc. Hence c + d = c + (−a) = c − a ∈ Z and
c− d = c− (−a) = c+ a ∈ Z.

Therefore we have shown that c + d and c − d are both integers in all cases, which is the desired
result.

(e)
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Proof. For any c ∈ Z, define Xc = {x ∈ R | c · x ∈ Z}. We first show that Xc is inductive for any
such c ∈ Z. We have c · 1 = c ∈ Z so that 1 ∈ Xc. Now suppose that x ∈ Xc so that c · x ∈ Z. Then
c · (x + 1) = c · x + c · 1 = c · x + c ∈ Z by part (d) since both c · x and c are integers. This shows
that Xc is inductive so that Z+ ⊂ Xc.

Now consider any c, d ∈ Z.

Case: d ∈ Z+. Then d ∈ Xc since Z+ ⊂ Xc. Thus c · d ∈ Z.

Case: d = 0. The c · d = c · 0 = 0 ∈ Z.

Case: d ∈ Z−. Then there is an a ∈ Z+ such that d = −a. Hence a ∈ Xc since Z+ ⊂ Xc, from
which it follows that c · a ∈ Z. We then have c · d = c · (−a) = −(c · a) ∈ Z as well by Lemma 4.5.1.

Thus in all cases c · d ∈ Z as desired.

Exercise 4.6

Let a ∈ R. Define inductively

a1 = a ,

an+1 = an · a

for n ∈ Z+. (See §7 for a discussion of the process of inductive definition.) Show that for n,m ∈ Z+ and
a, b ∈ R,

anam = an+m

(an)
m

= anm

ambm = (ab)m .

These are called the laws of exponents. [Hint: For fixed n, prove the formulas by induction on m.]

Solution:

The following lemma is the familiar proof by induction, which is more straightforward than having to
frame everything in terms of inductive sets. Henceforth we use this whenever induction is required.

Lemma 4.6.1. (Proof by Induction) Suppose that P (x) is a statement with parameter x. Suppose
also that P (1) is true and that P (x) implies P (x+ 1). Then P (n) is true for all n ∈ Z+.

Proof. Define the set X = {x ∈ R | P (x)}. We show that X is inductive. Clearly since P (1) is true
we have 1 ∈ X. Now suppose that x ∈ X so that P (x) is true. Then P (x + 1) is also true so that
x+ 1 ∈ X. This shows that X is inductive so that Z+ ⊂ X. So, for any positive integer n we have
that n ∈ X since Z+ ⊂ X. Therefore P (n) is true. Since n was arbitrary, this shows the desired
result.

Main Problem.

In what follows, suppose that a, b ∈ R.

First we show that anam = an+m for all n,m ∈ Z+.

Proof. Fix n ∈ Z+. We show the result by induction on m. First, we clearly have ana1 = an · a =
an+1 by the inductive definition. Now suppose that anam = an+m. Then

anam+1 = an · (am · a) (by the inductive definition)

Page 53



= (anam) · a (since multiplication is associative)

= an+m · a (by the induction hypothesis)

= a(n+m)+1 (by the inductive definition)

= an+(m+1) , (since addition is associative)

which completes the induction step. Therefore the result holds for all m ∈ Z+ by induction.

Next we show that (an)
m

= anm for all n,m ∈ Z+.

Proof. We again fix n ∈ Z+ and use induction on m. First, we have (an)
1

= an = an·1 by the
inductive definition. Supposing now that (an)

m
= an·m, we have

(an)
m+1

= (an)
m · an (by the inductive definition)

= an·man (by the induction hypothesis)

= an·m+n (by what was shown above)

= an·m+n·1

= an·(m+1) . (by the distributive property)

This completes the induction so that the result holds for all m ∈ Z+.

Lastly, we show that ambm = (ab)m for all m ∈ Z+.

Proof. We show this by induction on m. First, we have a1b1 = ab = (ab)1 by the inductive definition.
Now suppose that ambm = (ab)m so that

am+1bm+1 = (am · a)(bm · b) (by the inductive definition)

= (a · am)(bm · b) (since multiplication is commutative)

= ((a · am)bm) · b (since multiplication is associative)

= (a · (ambm)) · b (since multiplication is associative)

= (a(ab)m) · b (by the induction hypothesis)

= ((ab)ma) · b (since multiplication is commutative)

= (ab)m(ab) (since multiplication is associative)

= (ab)m+1 . (by the inductive definition)

This completes the induction.

Exercise 4.7

Let a ∈ R and a 6= 0. Define a0 = 1, and for n ∈ Z+, a−n = 1/an. Show that the laws of exponents
hold for a, b 6= 0 and n,m ∈ Z.

Solution:

Lemma 4.7.1. For any n ∈ Z, 1n = 1.

Proof. We show this for n ∈ Z+ by simple induction on n. First, clearly 11 = 1 by the inductive
definition of exponentiation. Next, if 1n = 1, then we have 1n+1 = 1n · 1 = 1n = 1 by the inductive
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definition of exponentiation and the inductive hypothesis. This completes the induction so that the
result holds for all n ∈ Z+.

Clearly if n = 0 then, by the definition of 0 as an exponent, 1n = 10 = 1.

Lastly, if n ∈ Z− then there is a k ∈ Z+ where n = −k. Then we have

1n = 1−k

=
1

1k
(by the definition of negative exponentiation)

=
1

1
(by what was just shown by induction since k ∈ Z+)

= 1 . (since 1 is its own reciprocal)

Thus the result has been shown for all the resulting cases when n ∈ Z.

Lemma 4.7.2. 1/an = (1/a)n for any real a 6= 0 and n ∈ Z+.

Proof. We have(
1

a

)n
an =

(
1

a
· a
)n

(by Exercise 4.6 since n ∈ Z+)

= 1n (by the definition of the reciprocal)

= 1 . (by Lemma 4.7.1)

Thus (1/a)n must be the unique reciprocal of an, that is (1/a)n = 1/an as desired.

Lemma 4.7.3. ana−n = 1 for any real a 6= 0 and n ∈ Z+.

Proof. We have

ana−n = an
(

1

an

)
(by the definition of negative exponentiation)

= an
(

1

a

)n
(by Lemma 4.7.2)

=

(
a · 1

a

)n
(by Exercise 4.6 since n ∈ Z+)

= 1n (by the definition of the reciprocal)

= 1 (by Lemma 4.7.1)

as desired.

Main Problem.

First we show that anam = an+m for all real a 6= 0 and n,m ∈ Z.

Proof. Consider any real a 6= 0 and n,m ∈ Z. We number the following cases for reference:

1. Case: n ∈ Z+.

(a) Case: m ∈ Z+. Then the result immediately applies by Exercise 4.6.

(b) Case: m = 0. Then we have anam = ana0 = an · 1 = an = an+0 = an+m.

(c) Case: m ∈ Z−. Then m = −k for some k ∈ Z+.
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i. Case: n > k. Then n − k > 0 so that n − k ∈ Z+ since n − k ∈ Z by Exercise 4.5
part (d). We then have

anam = ana−k

= an−k+ka−k (since n = n+ 0 = n− k + k)

= (an−kak)a−k (by Exercise 4.6 since k, n− k ∈ Z+)

= an−k(aka−k) (since multiplication is associative)

= an−k · 1 (by Lemma 4.7.3 since k ∈ Z+)

= an−k

= an+m .

ii. Case: n = k. Then clearly n + m = n − k = k − k = 0, so that we have anam =
aka−k = 1 = a0 = an+m by Lemma 4.7.3 and the definition of 0 as an exponent.

iii. Case: n < k. Then n − k < 0 so that n − k ∈ Z− since n − k ∈ Z by Exercise 4.5
part (d). Also, clearly −n ∈ Z− since n ∈ Z+. Then we have

anam = ana−k

= ana−k+n−n (since −k = −k + 0 = −k + n− n)

= anan−k−n (since addition is commutative)

= an(an−ka−n) (by case 3c below since n− k,−n ∈ Z−)

= an(a−nan−k) (since multiplication is commutative)

= (ana−n)an−k (since multiplication is associative)

= 1 · an−k (by Lemma 4.7.3)

= an−k

= an+m .

2. Case: n = 0.

(a) Case: m ∈ Z+. Since anam = aman and an+m = am+n, this the same as case 1b above.

(b) Case: m = 0. Then we have anam = a0a0 = 1 · 1 = 1 = a0 = a0+0 = an+m.

(c) Case: m ∈ Z−. Then there is a k ∈ Z+ such that m = −k, and anam = a0a−k =
1 · (1/ak) = 1/ak = a−k = am = a0+m = an+m.

3. Case: n ∈ Z−.

(a) Case: m ∈ Z+. This is the same as case 1c above.

(b) Case: m = 0. This is the same as case 2c above.

(c) Case: m ∈ Z−. Here we have that n = −k and m = −l for some k, l ∈ Z+. Hence we
have

anam = a−ka−l

=

(
1

ak

)(
1

al

)
(by the definition of negative exponents)

=

(
1

a

)k (
1

a

)l
(by Lemma 4.7.2)

=

(
1

a

)k+l

(by Exercise 4.6 since k, l ∈ Z+)
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=
1

ak+l
(by Lemma 4.7.2)

= a−(k+l) (by the definition of negative exponents)

= a−k−l

= an+m .

Thus in all cases we have shown the result.

Next we show that (an)m = anm for all real a 6= 0 and n,m ∈ Z.

Proof. Consider any real a 6= 0 and n,m ∈ Z. We again number the cases for reference:

1. Case: n ∈ Z+.

(a) Case: m ∈ Z+. Then the result immediately applies by Exercise 4.6.

(b) Case: m = 0. Then we have (an)m = (an)0 = 1 = a0 = an·0 = anm by the definition of a
0 exponent.

(c) Case: m ∈ Z−. Then there is a k ∈ Z+ such that m = −k. Then we have

(an)m = (an)−k

=
1

(an)k
(by the definition of negative exponents)

=
1

ank
(by Exercise 4.6 since n, k ∈ Z+)

= a−(nk) (by the definition of negative exponents)

= an(−k)

= anm .

2. Case: n = 0. Then we have (an)m = (a0)m = 1m = 1 = a0 = a0·m = anm by the definition of
0 as an exponent and Lemma 4.7.1.

3. Case: n ∈ Z−. Then n = −k for some k ∈ Z+.

(a) Case: m ∈ Z+. Then we have

(an)m = (a−k)m

=

(
1

ak

)m
(by the definition of negative exponents)

=

[(
1

a

)k]m
(by Lemma 4.7.2)

=

(
1

a

)km
(by Exercise 4.6 since k,m ∈ Z+)

=
1

akm
(by Lemma 4.7.2)

= a−(km) (by the definition of negative exponents)

= a(−k)m

= anm .
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(b) Case: m = 0. The same argument as in case 1b above applies here as it does not depend
on n being positive.

(c) Case: m ∈ Z−. Then m = −l for some l ∈ Z+, and we have

(an)m = (a−k)−l

=

(
1

ak

)−l
(by the definition of negative exponents)

=
1

(1/ak)l
(by the definition of negative exponents)

=
1

[(1/a)k]l
(by Lemma 4.7.2)

=
1

(1/a)kl
(by Exercise 4.6 since k, l ∈ Z+)

=

(
1

1/a

)kl
(by Lemma 4.7.2)

= akl

= a(−k)(−l)

= anm .

Thus in all cases we have shown the result.

Lastly, we show that ambm = (ab)m for all real a, b 6= 0 and m ∈ Z.

Proof. We have the following cases:

Case: m ∈ Z+. The result then follows immediately from Exercise 4.6.

Case: m = 0. Then we have ambm = a0b0 = 1 · 1 = 1 = (ab)0 = (ab)m by the definition of a 0
exponent.

Case: m ∈ Z−. Then there is a k ∈ Z+ such that m = −k. Then we have

ambm = a−kb−k

=
1

ak
· 1

bk
(by the definition of negative exponents)

=

(
1

a

)k (
1

b

)k
(by Lemma 4.7.2)

=

(
1

a
· 1

b

)k
(by Exercise 4.6 since k ∈ Z+)

=

(
1

ab

)k
(by Exercise 4.1 part (m))

=
1

(ab)k
(by Lemma 4.7.2)

= (ab)−k (by the definition of negative exponents)

= (ab)m .

Therefore in all cases the result has been shown.
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Exercise 4.8

(a) Show that R has the greatest lower bound property.

(b) Show that inf {1/n | n ∈ Z+} = 0.

(c) Show that given a with 0 < a < 1, inf {an | n ∈ Z+} = 0. [Hint: Let h = (1− a)/a, and show that
(1 + h)n ≥ 1 + nh.]

Solution:

(a)

Proof. Suppose that A is an arbitrary nonempty set of real number that is bounded below by a.
Now let B = {−x | x ∈ A} and b = −a. First, we claim that b is an upper bound of B. So consider
any y ∈ B so that y = −x for some x ∈ A. Then a ≤ x since a a lower bound of A. It then follows
from Exercise 4.2 part (d) that y = −x ≤ −a = b. Since y ∈ B was arbitrary, this shows that b is
an upper bound of B.

Since B is clearly nonempty (since A is), we have that B has a least upper bound d = supB since
the reals have the least upper bound property. We claim that c = −d is the greatest lower bound
of A. So first consider any x ∈ A so that y = −x ∈ B. Then we have y ≤ d since d = supB. Hence
c = −d ≤ −y = x again by Exercise 4.2 part (d). Since x ∈ A was arbitrary, this shows that c is in
fact a lower bound of A.

Now suppose that x is any lower bound of A. Then, by the same argument as above for b = −a,
we have that y = −x is an upper bound of B. It then follows that d ≤ y since d is the least upper
bound of B. Then, again by Exercise 4.2 part (d), we have x = −(−x) = −y ≤ −d = c, which shows
that c is in fact the greatest lower bound since x was arbitrary. This completes the proof.

(b)

Proof. First, let A = {1/n | n ∈ Z+} so that we must show that inf A = 0. For any x ∈ A we have
that x = 1/n for some n ∈ Z+. Then n > 0 so that x = 1/n > 0 also by Exercise 4.2 part (i). Hence
0 ≤ x is true, which shows that 0 is a lower bound of A since x was arbitrary.

Now consider any x > 0 so that also 1/x > 0 by Exercise 4.2 part (i). Then, by the Archimedean
ordering property there is an n ∈ Z+ such that n > 1/x > 0 (since otherwise 1/x would be an upper
bound of Z+). It then follows from Exercise 4.2 part (j) that 1/n < 1/(1/x) = x. Since clearly
1/n ∈ A we have that x is not a lower bound of A. Since x > 0 was arbitrary, this shows that 0 is
the greatest lower bound of A since, by the contrapositive, x being a lower bound of A implies that
x ≤ 0.

(c)

Proof. Consider any real a where 0 < a < 1. First we show that the set {1/an | n ∈ Z+} has no
upper bound. To this end define h = (1 − a)/a = 1/a − 1 so that 1 + h = 1 + (1/a − 1) = 1/a.
Clearly we have

a < 1

−a > −1

1− a > 1− 1 = 0

1− a
a

>
0

a
= 0 (since a > 0)

h > 0
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so that 1 + h > 1 > 0 and

h > 0

h2 > h · 0 = 0 (since h > 0)

nh2 > n · 0 = 0

for any n ∈ Z+ since n > 0.

We show by induction that (1 + h)n ≥ 1 + nh for all n ∈ Z+. For n = 1 we clearly have (1 + h)n =
(1 + h)1 = 1 + h ≥ 1 + h = 1 + 1 · h = 1 + nh. Now, supposing that (1 + h)n ≥ 1 + nh,we have

(1 + h)n+1 = (1 + h)n(1 + h)

≥ (1 + nh)(1 + h) (since 1 + h > 0)

= 1 + nh+ h+ nh2

≥ 1 + nh+ h (since nh2 > 0)

= 1 + (n+ 1)h ,

which completes the induction. So consider any real x. Then, since we know that Z+ has no upper
bound, there is an n ∈ Z+ where n > x/h (noting that h > 0) so that

n > x/h

nh > (x/h)h = x (since h > 0)

1 + nh > 1 + x > x .

Then we have 1/an = (1/a)n = (1 + h)n ≥ 1 + nh > x, which shows that the set {1/an | n ∈ Z+} is
unbounded above since x was arbitrary.

Now we show the main result. Let A = {an | n ∈ Z+} so that we must show that inf A = 0. First
we show by induction that 0 is a lower bound of A. For n = 1 we clearly have an = a1 = a ≥ 0.
Then, if an ≥ 0, we have an+1 = an · a ≥ 0 · a = 0 since a > 0. This completes the induction so that
clearly 0 is indeed a lower bound of A.

Now consider any real x > 0 so that 1/x > 0 also. Then, by what was shown above, we know
that there is an n ∈ Z+ such that 1/an > 1/x > 0. We then have an = 1/(1/an) < 1/(1/x) = x
by Exercise 4.2 part (j). This shows that x is not a lower bound of A since obviously an ∈ A. It
then follows that 0 is the greatest lower bound of A since x > 0 was arbitrary, because, by the
contrapositive, x being a lower bound of A implies that x ≤ 0. Hence 0 = inf A as desired.

Exercise 4.9

(a) Show that every nonempty subset of Z that is bounded above has a largest element.

(b) If x /∈ Z, show that there is exactly one n ∈ Z such that n < x < n+ 1.

(c) If x− y > 1, show there is at least one n ∈ Z such that y < n < x.

(d) If y < x, show there is a rational number z such that y < z < x.

Solution:

Lemma 4.9.1. The set of integers Z is an inductive set that has no lower or upper bounds in R.
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Proof. First we show that Z is inductive. Clearly 1 ∈ Z since 1 ∈ Z+ ⊂ Z. Now suppose that n ∈ Z
so that clearly n+ 1 ∈ Z by Exercise 4.5 part (d) since 1 ∈ Z.

Next, consider any x ∈ R. Then we know that Z+ has no upper bound so that there is an n ∈ Z+

such that n > x, and clearly n ∈ Z since Z+ ⊂ Z. By the same token there is an m ∈ Z+ such that
m > −x. But then we have −m < −(−x) = x by Exercise 4.2 part (d), and −m ∈ Z− so that also
−m ∈ Z since Z− ⊂ Z. Since x was arbitrary, this shows that Z is not bounded above or below.

Lemma 4.9.2. There is no integer n such that 0 < n < 1.

Proof. Suppose to the contrary that n ∈ Z and 0 < n < 1. Let S = {k ∈ Z | 0 < k < 1} so that
clearly n ∈ S so that S 6= ∅. Also since 0 < k and k ∈ Z for any k ∈ S, clearly S ⊂ Z+. Thus S
is a nonempty subset of positive integers so that it has a smallest element m by the well-ordering
property. Since m ∈ S we have 0 < m < 1 and hence m2 = m ·m < 1 ·m = m < 1 by property (6)
since m > 0. By the same property clearly 0 = 0 ·m < m ·m = m2 as well so that 0 < m2 < 1.
Also, clearly m2 = m ·m ∈ Z by Exercise 4.5 part (e) since m ∈ Z, and so m2 ∈ S. However, this
cannot be since m is the smallest element of S and yet m2 < m. Therefore we have a contradiction,
which proves the result.

Corollary 4.9.3. For any integer n, there is no integer a such that n < a < n+ 1.

Proof. Consider any n ∈ Z and suppose to the contrary that there is an a ∈ Z such that n < a < n+1.
First, we have n − a ∈ Z by Exercise 4.5 part (d) since a, n ∈ Z. Also, n < a clearly implies that
0 < a − n. Similarly, a < n + 1 means that a − n < 1. But then we have that a − n is an integer
where 0 < a − n < 1, which contradicts Lemma 4.9.2. Thus it must be the case that there is no
such integer a.

Main Problem.

(a)

Proof. Suppose that A is a nonempty subset of Z and that it is bounded above by α ∈ R. Since
A 6= ∅, there is an a ∈ A, so define A′ = {n− a+ 1 | n ∈ A}. First we claim that α′ = α− a+ 1 is
an upper bound of A′ So consider any n′ ∈ A′ so that n′ = n− a+ 1 for some n ∈ A. Since α is an
upper bound of A we have

n ≤ α
n− a ≤ α− a

n− a+ 1 ≤ α− a+ 1

n′ ≤ α′ ,

which shows that α′ is an upper bound of A′ since n′ was an arbitrary element. We also have that
there is an N ′ ∈ Z+ such that α′ < N ′ since Z+ has no upper bound.

Now let B′ = A′ ∩Z+. Then, for any n′ ∈ B′, we have that n′ ∈ A′ so that n′ ≤ α′ < N ′. Since also
clearly n′ ∈ Z+, we have that n′ ∈ SN ′ = {k ∈ Z+ | k < N ′} = {1, . . . , N ′ − 1}. Hence B′ ⊂ SN ′

since n′ was arbitrary. We also have that 1 ∈ A′ since a ∈ A and a − a + 1 = 1. Hence 1 ∈ B′
since clearly also 1 ∈ Z+ since it is inductive. Thus B′ is a nonempty subset of SN ′ so that it has a
largest element b′ by Exercise 4.4 part (a).

Since b′ ∈ B′, we have that b′ ∈ A′ so that there is a b ∈ A such that b′ = b− a+ 1. We claim that
b is the largest element of A. We already know that b ∈ A so we need only show that it is also an
upper bound of A. So consider any n ∈ A so that clearly n′ = n− a+ 1 ∈ A′. Now, it follows from
Exercise 4.5 part (d) that n′ ∈ Z since n, a, 1 ∈ Z. Thus we have the following:
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Case: n′ ∈ Z+. Then, clearly n′ ∈ A′ ∩Z+ = B′ so that n′ ≤ b′ since b′ is the largest element of B′.

Case: n′ ∈ Z− ∪ {0}. Then n′ < 1 ≤ b′ since 1 ∈ B′ and b′ is the largest element of B′.

Thus in either case n′ ≤ b′ is true so that

n′ ≤ b′

n− a+ 1 ≤ b− a+ 1

n− a ≤ b− a
n ≤ b ,

which shows that b is an upper bound and thus the largest element of A since n was arbitrary.

(b)

Proof. Suppose an x ∈ R where x /∈ Z and let A = {n ∈ Z | n < x}. It follows from Lemma 4.9.1
that there is an m ∈ Z where m < x since Z has no lower bounds. Hence by definition m ∈ A so
that A 6= ∅. Clearly also x is an upper bound of A so that A is a nonempty subset of Z that is
bounded above. It then follows from part (a) that A has a largest element n, where clearly n < x
since n ∈ A.

Now, suppose for the moment that n + 1 ≤ x. Then, since Z is inductive (again by Lemma 4.9.1)
and n ∈ Z, we have that n+ 1 ∈ Z as well. But x /∈ Z so that it must be that n+ 1 6= x, and hence
n + 1 < x. Then n + 1 ∈ A so that n + 1 ≤ n since n is the largest element of A. However, this
contradicts the obvious fact that n + 1 > n so that it must be that n + 1 ≤ x is not true. Hence
n+ 1 > x and thus we have shown that n < x < n+ 1.

Lastly, suppose that there is an integer m such that m < x < m + 1. Then m ∈ A so that m ≤ n
since n is the largest element of A. Suppose for a moment that m < n. Then we would have
m < n < x < m + 1 so that n is an integer between m and m + 1, which violates Corollary 4.9.3.
Thus is has to be that m = n (since m ≤ n), which shows that n is the unique integer such that
n < x < n+ 1.

(c)

Proof. Suppose that x, y ∈ R and x − y > 1. If x ∈ Z then let n = x − 1 so that clearly n ∈ Z by
Exercise 4.5 part (d). First, we have

x− y > 1

x > 1 + y

x− 1 > y

n > y .

We also clearly have n = x− 1 < x so that y < n < x.

On the other hand, if x /∈ Z, then we know from part (b) that there is a unique integer n such that
n < x < n+ 1. We also have that

x < n+ 1

1 < x− y < n+ 1− y
0 < n− y
y < n

so that again y < n < x.

Hence in both cases we have found an integer n such that y < n < x, which proves the result.
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(d)

Proof. Suppose that x, y ∈ R where y < x. Then 0 < x − y so that 1/(x − y) exists.. Since Z+ is
unbounded above there is a b ∈ Z+ where b > 1/(x− y). Hence

b >
1

x− y
b(x− y) > 1 (since x− y > 0)

bx− by > 1 .

It then follows from part (c) that there is an integer a such that by < a < bx. We then have that
y < a/b < x since b > 0 (since b ∈ Z+). This shows the result since clearly a/b is rational because
a, b ∈ Z.

Exercise 4.10

Show that every positive number a has exactly one positive square root, as follows:

(a) Show that if x > 0 and 0 ≤ h < 1, then

(x+ h)2 ≤ x2 + h(2x+ 1) ,

(x− h)2 ≥ x2 − h(2x) .

(b) Let x > 0. Show that if x2 < a, then (x+ h)2 < a for some h > 0; and if x2 > a, then (x− h)2 > a
for some h > 0.

(c) Given a > 0, let B be the set of all real numbers x such that x2 < a. Show that B is bounded
above and contains at least one positive number. Let b = supB; show that b2 = a.

(d) Show that if b and c are positive and b2 = c2, then b = c.

Solution:

Lemma 4.10.1. If x ∈ R and x2 < 1, then x < 1 also.

Proof. Suppose that x ≥ 1. If x = 1 then clearly x2 = 11 = 1. On the other hand, if x > 1 then
clearly x2 = x · x > 1 · x = x > 1 by property (6) since x > 1 > 0. Thus in either case x2 ≥ 1 so
that we have shown that x ≥ 1 implies that x2 ≥ 1. It then follows that x2 < 1 implies x < 1 by
the contrapositive.

Lemma 4.10.2. If 0 < y < x then 0 < y2 < x2.

Proof. Supposing that 0 < y < x, we have 0 = 0 · y < y · y = y2 = y · y < x · y = y · x < x · x = x2

all by property (6) since both x and y are positive.

Main Problem.

(a)

Proof. First, we know that 0 ≤ h < 1. If h = 0 then clearly h = 0 = 02 = h2 so that 0 ≤ h2 ≤ h is
true. If h 6= 0 then 0 < h < 1 so that 0 = 0 · h < h · h = h2 < 1 · h = h by property (6) since h > 0
so that again 0 ≤ h2 ≤ h is true.
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We then have

(x+ h)2 = (x+ h)(x+ h)

= x2 + 2xh+ h2

≤ x2 + 2xh+ h (since h2 ≤ h)

= x2 + h(2x+ 1) .

Also

(x− h)2 = (x− h)(x− h)

= x2 − 2xh+ h2

≥ x2 − 2xh+ 0 (since h2 ≥ 0)

= x2 − h(2x) ,

which show the desired results.

(b) We modify this result so that the h in the second part is not just positive but also h < x. In
fact, without this stipulation, the theorem becomes obvious since any arbitrarily large h will suffice.
Because then then x − h is arbitrarily large in magnitude (but negative) so that (x − h)2 can be
made arbitrarily large so that of course (x− h)2 > a. Adding the stipulation that 0 < h < x makes
the theorem more useful and is necessary for it to be of use in part (c) below.

Proof. Suppose that x > 0. Then clearly 2x > 2 · 0 = 0 as well. Also it then follows that 2x+ 1 >
1 > 0.

If x2 < a then clearly 0 < a− x2. Hence we have that 0 < (a− x2)/(2x+ 1) by Exercise 4.2 parts
(i) and (h) since both a − x2 and 2x + 1 are positive. So let y = min(1, (a − x2)/(2x + 1)) so that
clearly both y ≤ 1 and y ≤ (a− x2)/(2x+ 1). Since 0 < 1 and 0 < (a− x2)/(2x+ 1), we have that
0 < y so that it follows from Exercise 4.9 part (d) that there is a rational h such that 0 < h < y.
Hence 0 < h < y ≤ 1 so that, by part (a), we have

(x+ h)2 ≤ x2 + h(2x+ 1)

< x2 +

(
a− x2

2x+ 1

)
(2x+ 1) (since h < y ≤ (a− x2)/(2x+ 1) and 2x+ 1 > 0)

= x2 + (a− x2)

= a .

If x2 > a then clearly x2−a > 0. Then we have again that (x2−a)/(2x) is positive since we showed
previously that 2x is. So let y = min(1, (x2 − a)/(2x), x) so that clearly y ≤ 1, y ≤ (x2 − a)/(2x),
and y ≤ x. Since both 1, (x2 − a)/(2x), and x are all positive it follows that 0 < y so that there
is a rational h such that 0 < h < y by Exercise 4.9 part (d). Therefore 0 > −h > −y. Since
0 < h < y ≤ 1 we have by part (a) that

(x− h)2 ≥ x2 − h(2x)

> x2 −
(
x2 − a

2x

)
(2x) (since −h > −y ≥ −(x2 − a)/(2x) and 2x > 0)

= x2 − (x2 − a)

= a ,

which show the desired results since clearly 0 < h < y ≤ x.
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(c)

Proof. Suppose that a > 0 and let B =
{
x ∈ R | x2 < a

}
.

If a < 1 then 0 < a < 1 so that a2 = a · a < 1 · a = a so that a itself is in B (and of course a
is positive). Now consider any x ∈ B so that x2 < a. Then x2 < a < 1 so that also x < 1 by
Lemma 4.10.1. Since x ∈ B was arbitrary, this shows that 1 is an upper bound of B.

If a ≥ 1 then (1/2)2 = 1/22 = 1/4 < 1 ≤ a so that 1/2 ∈ B (and of course 1/2 is positive). Now
consider any x ∈ B so that x2 < a. If x ≤ 1 then x ≤ 1 ≤ a. On the other hand, if x > 1 then
x2 = x · x > 1 · x = x since x > 1 > 0 so that x < x2 < a. Thus in both cases x ≤ a so that a is an
upper bound of B since x was arbitrary.

Therefore in each case B contains a positive element (so that b 6= ∅) and B is bounded above. It
then follows that B has a least upper bound b (so that b = supB). Clearly since B has a positive
element x, it follows that 0 < x ≤ b so that b is positive.

Now suppose that b2 < a. Then by definition b ∈ B so that b has to be the largest element of b since
it is the least upper bound. Since we know that b is positive and b2 < a, it follows from part (b)
that there is an h > 0 where (b+h)2 < a and hence b+h ∈ B. However, since h > 0, it follows that
b < b + h, which contradicts the fact that b is the greatest element of B. Hence it cannot be that
b2 < a.

So suppose that b2 > a. Then again by part (b) there is an h where 0 < h < b such that (b−h)2 > a.
Now, since h > 0, it follows that b − h < b so that n − h is not an upper bound of B (since then
b would not be the least upper bound). Hence there is an x ∈ B such that b − h < x, noting that
x2 < a by the definition of B. Since h < b, we have that 0 < b− h < x so that (b− h)2 < x2 < a by
Lemma 4.10.2. But this contradicts the established fact that (b− h)2 > a so that it cannot be that
b2 > a.

Thus the only possibility remaining is that b2 = a as desired.

(d)

Proof. Suppose that b and c are positive and that b2 = c2. If it were the case that b < c then
0 < b < c so that 0 < b2 < c2 by Lemma 4.10.2 so that clearly b2 6= c2. As this is a contradiction, it
has to be that b ≥ c. An analogous argument shows that b > c also leads to a contradiction so that
b ≤ c. Hence it must be that b = c as desired.

Exercise 4.11

Given m ∈ Z, we say that m is even if m/2 ∈ Z, and m is odd otherwise.

(a) Show that if m is odd, m = 2n+ 1 for some n ∈ Z. [Hint: Choose n so that n < m/2 < n+ 1.]

(b) Show that if p and q are odd, so are p · q and pn, for any n ∈ Z+.

(c) Show that if a > 0 is rational, then a = m/n for some m,n ∈ Z+ where not both n and m are even.
[Hint: Let n be the smallest element of the set {x | x ∈ Z+ and x · a ∈ Z+}.]

(d) Theorem:
√

2 is irrational.

Solution:

Lemma 4.11.1. If n,m ∈ Z and n < m, then n+ 1 ≤ m and n ≤ m− 1.
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Proof. Suppose that n+ 1 > m so that n < m < n+ 1, which violates Corollary 4.9.3 since m ∈ Z.
Thus it has to be that n+ 1 ≤ m. From this it immediately follows that n = n+ 1− 1 ≤ m− 1 by
simply subtracting 1 from both sides of the previous inequality.

Lemma 4.11.2. An integer m is even if and only if m = 2n for some integer n.

Proof. (⇒) Supposing that m is even, then n = m/2 ∈ Z. Then clearly m = 2n.

(⇐) Now suppose that m = 2n for some integer n. Then clearly m/2 = n is an integer so that m is
even by definition.

Lemma 4.11.3. An integer a is odd if and only if a2 is also odd.

Proof. (⇒) Suppose that a is odd so that a = 2n + 1 for some integer n (this is shown in part (a)
below, which does not depend on this lemma). Then

a2 = a · a = (2n+ 1)(2n+ 1) = 4n2 + 2n+ 2n+ 1 = 4n2 + 4n+ 1 = 2
[
2(n2 + n)

]
+ 1

noting that clearly 2(n2 + n) is an integer since n is. Hence a2 is odd again by what will be shown
in part (a).

(⇐) We prove this by contrapositive, so suppose that a is not odd so that it must be even. Therefore
a = 2n for some integer n by Lemma 4.11.2. Then a2 = a · a = (2n)(2n) = 4n2 = 2(2n2) so that a2

is even since clearly 2n2 is an integer since n is. Thus a2 is not odd.

Main Problem.

(a) Here we show the converse as well, i.e. we show that m is odd if and only if m = 2n+ 1 for some
n ∈ Z.

Proof. (⇒) Suppose that m is odd so that by definition m/2 /∈ Z. It then follows from Exercise 4.9
part (b) that there is a unique integer n such that n < m/2 < n+ 1. We then have that 2n < m <
2(n+ 1) = 2n+ 2 since obviously 2 > 0. Hence by Lemma 4.11.1 we have that 2n+ 1 ≤ m and also
m ≤ 2n+ 2− 1 = 2n+ 1. Therefore it has to be that m = 2n+ 1 as desired.

(⇐) Now suppose that there is an n ∈ Z such that m = 2n+ 1. Then we have that

m

2
=

2n+ 1

2
= n+

1

2
.

We then clearly have that n = n + 0 < n + 1/2 < n + 1 since 0 < 1/2 < 1 so that m/2 = n + 1/2
cannot be an integer by Corollary 4.9.3. Hence m is odd by definition.

(b)

Proof. Suppose that p and q are odd so that p = 2k + 1 and q = 2m + 1 for some k,m ∈ Z by
part (a). We then have that

p · q = (2k + 1)(2m+ 1) = 4km+ 2m+ 2k + 1 = 2(2km+m+ k) + 1

so that p · q is odd by what was shown in part (a) since clearly 2km + m + k ∈ Z by Exercise 4.5
since k and m are integers.

Now we show by induction on n that pn is odd for any n ∈ Z+. First, for n = 1 we clearly have
pn = p1 = p is odd by supposition. Then, if we assume that pn is odd, we have that the product
pn+1 = pn · p is odd as well by what was just shown since both pn and p are odd. This completes
the induction.
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(c)

Proof. Suppose that a > 0 is rational. Then a = p/q for some integers p and q. Clearly it cannot
be that q = 0, and if q < 0 then q = −b for some b ∈ Z+. Then we have a = p/q = p/(−b) = (−p)/b
so that ab = −p. Furthermore, since a and b are both positive, we have that ab = −p is positive by
Exercise 4.2 part (h). Thus clearly −p ∈ Z+ since p ∈ Z.

Now, let X = {x ∈ Z+ | ax ∈ Z+}. Since we just showed that b ∈ Z+ and ab = −p ∈ Z+ it follows
that b ∈ X. Since clearly X ⊂ Z+ and X is nonempty (since b ∈ X), it has a smallest element n by
the well-ordering property. Letting m = an, we clearly have that m ∈ Z+ since n ∈ X. Then, we
have a = m/n, noting again that m,n ∈ Z+.

To show that not both m and n are even, suppose to the contrary that they are both even. Then
by Lemma 4.11.2 we have that m = 2k and n = 2l for some k, l ∈ Z. Clearly then k = m/2 and
l = n/2 so that both k and l are positive by Exercise 4.2 part (h) since m and n (and 1/2) are.
Hence k, l ∈ Z+. We have a = m/n = 2k/2l = k/l so that al = k, which implies that l ∈ X since l
and al = k are both in Z+. However, we also have that l = n/2 < n since n > 0, which contradicts
the fact that n is the smallest element of X. Thus it has to be the case that not both m and n are
even.

(d) This is one of the most famous proofs in all of mathematics, and is often used as an example of
mathematical proofs since it can be understood by most laymen.

Proof. Obviously we take
√

2 to be the unique positive real number such that (
√

2)2 = 2 as was
shown to exist in Exercise 4.10. Suppose to the contrary that

√
2 is rational so that

√
2 = a/b

for a, b ∈ Z+ where not both a and b are even by part (c) since
√

2 > 0. We therefore have that
2 = (

√
2)2 = (a/b)2 = a2/b2 so that 2b2 = a2. Since b2 is an integer (clearly, since b is and b2 = b·b) it

follows from Lemma 4.11.2 that a2 is even. This means that a itself is even by Lemma 4.11.3. Hence
a = 2n for some integer n so that a2 = (2n)2 = 4n2. From before, we then have 2b2 = a2 = 4n2

so that clearly b2 = 2n2, from which it follows as before that b2 and therefore b itself is even by
Lemmas 4.11.2 and 4.11.3. However, this is a contradiction since we previously established that a
and b cannot both be even! So it has to be that

√
2 is not rational and is therefore irrational as

desired.

§5 Cartesian Products

Exercise 5.1

Show that there is a bijective correspondence of A×B with B ×A.

Solution:

Proof. We define a function f : A×B → B×A. For any element (a, b) ∈ A×B we set f(a, b) = (b, a),
noting that of course a ∈ A and b ∈ B. It should be obvious then that f(a, b) = (b, a) ∈ B × A so
that B ×A can be the range of f .

First we show that f is injective. To this end consider (a1, b1) and (a2, b2) in A×B where (a1, b1) 6=
(a2, b2). Of course we have that f(a1, b1) = (b1, a1) and f(a2, b2) = (b2, a2). Since (a1, b1) 6= (a2, b2)
clearly either a1 6= a2 or b1 6= b2. In either case it should be clear that f(a1, b1) = (b1, a1) 6=
(b2, a2) = f(a2, b2), which shows that f is injective since (a1, b1) and (a2, b2) were arbitrary.

It is very easy to that f is also surjective since, for any (b, a) ∈ B × A, clearly (a, b) ∈ A × B and
f(a, b) = (b, a). Hence f is a bijection as desired. Note that if A×B = ∅ then f = ∅ as well, which
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is vacuously a bijective function since it must be that B ×A = ∅ as well (because either A = ∅ or
B = ∅).

Exercise 5.2

(a) Show that if n > 1 there is a bijective correspondence of

A1 × · · · ×An with (A1 × · · · ×An−1)×An .

(b) Given the indexed family {A1, A2, . . .}, let Bi = A2i−1 ×A2i for each positive integer i. Show that
there is a bijective correspondence of A1 ×A2 × · · · with B1 ×B2 × · · ·

Solution:

Lemma 5.2.1. If n ∈ Z+ is even, then n/2 ∈ Z+. If n ∈ Z+ is odd, then (n+ 1)/2 ∈ Z+.

Proof. First, suppose that n ∈ Z+ is even. Then by definition n/2 is an integer. However, since
both n and 1/2 are positive, it follows from Exercise 4.2 part (h) that n · (1/2) = n/2 is positive
also so that n/2 ∈ Z+.

Now, suppose that n ∈ Z+ is odd so that n = 2k + 1 for some integer k by Exercise 4.11a. Then

n+ 1

2
=

(2k + 1) + 1

2
=

2k + 2

2
=

2(k + 1)

2
= k + 1 ,

which is clearly an integer since k is. Moreover, we have n + 1 > n > 0 since n ∈ Z+ and again
1/2 > 0 so that (n+ 1) · (1/2) = (n+ 1)/2 is positive by Exercise 4.2 part (h). Thus (n+ 1)/2 ∈ Z+.

Main Problem.

(a)

Proof. For brevity, let X = A1 × · · · ×An and Y = (A1 × · · · ×An−1)×An. Suppose that n > 1 so
that X and Y make sense. We construct a bijective function f : X → Y . For any x = (x1, . . . , xn) ∈
X we have that xi ∈ Ai for 1 ≤ i ≤ n. So set f(x) = ((x1, . . . , xn−1) , xn), which is clearly an
element of Y .

To see that f is injective consider x = (x1, . . . , xn) and y = (y1, . . . , yn) in X where x 6= y. It
then follows that there must be an i ∈ {1, . . . , n} where xi 6= yi. Let x′ = (x1, . . . , xn−1) and
y′ = (y1, . . . , yn−1) so that clearly f(x) = (x′, xn) and f(y) = (y′, yn). Now, if i = n, then clearly
f(x) = (x′, xn) 6= (y′, yn) = f(y) since xn = xi 6= yi = yn. On the other hand, if i 6= n then it has
to be that i < n, and hence i ≤ n−1. It then follows that x′ = (x1, . . . , xn−1) 6= (y1, . . . , yn−1) = y′

so that then f(x) = (x′, xn) 6= (y′, yn) = f(y) again. Since x and y were arbitrary, this shows that
f is indeed injective.

Now consider any y = ((x1, . . . , xn−1) , xn) ∈ Y and let x = (x1, . . . , xn). It should be obvious that
both x ∈ X and f(x) = y so that f is surjective. Hence f is a bijective function as desired.

(b)
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Proof. First let A = A1 × A2 × · · · and B = B1 × B2 × · · · . We construct a bijective f : A → B.
So, for any a ∈ A, we have that a = (a1, a2, . . .), where ai ∈ Ai for any i ∈ Z+. Then, for
any i ∈ Z+, define bi = (a2i−1, a2i) so that clearly bi ∈ A2i−1 × A2i = Bi. We then have that
b = (b1, b2, . . .) ∈ B1 ×B2 × · · · = B. So set f(a) = b so that f is a function from A to B.

To show that f is injective, consider a = (a1, a2, . . .) and a′ = (a′1, a
′
2, . . .) in A where a 6= a′. For

each i ∈ Z+, define bi = (a2i−1, a2i) and b′i = (a′2i−1, a
′
2i) as above and set b = (b1, b2, . . .) and

b′ = (b′1, b
′
2, . . .) so that clearly f(a) = b and f(a′) = b′. Since a 6= a′, it follows that there must be

an i ∈ Z+ where ai 6= a′i.

Case: i is even. Then let j = i/2 so that j ∈ Z+ by Lemma 5.2.1. We also clearly have that i = 2j
so that bj = (a2j−1, a2j) 6= (a′2j−1, a

′
2j) = b′j since a2j = ai 6= a′i = a′2j .

Case: i is odd. Then let j = (i + 1)/2 so that j ∈ Z+ by Lemma 5.2.1. We then clearly have that
i = 2j − 1 so that bj = (a2j−1, a2j) 6= (a′2j−1, a

′
2j) = b′j since a2j−1 = ai 6= a′i = a′2j−1.

Hence in all cases we have that there is a j ∈ Z+ where bj 6= b′j . It then follows that f(a) = b =
(b1, b2, . . .) 6= (b′1, b

′
2, . . .) = b′ = f(a′) so that f is injective since a and a′ were arbitrary.

Lastly, to show that f is surjective, consider any b ∈ B so that b = (b1, b2, . . .) where bi ∈ Bi =
A2i−1 × A2i for every i ∈ Z+. Then, for any i ∈ Z+, bi = (a′i, a

′′
i ) where a′i ∈ A2i−1 and a′′i ∈ A2i.

So consider any j ∈ Z+. If j is even, then i = j/2 ∈ Z+ by Lemma 5.2.1. Clearly also j = 2i.
So, define aj = a′′i so that aj = a2i = a′′i ∈ A2i = Aj . On the other hand, if j is odd, then
i = (j + 1)/2 ∈ Z+ again by Lemma 5.2.1. Then clearly j = 2i − 1. So, here let aj = a′i so that
aj = a2i−1 = a′i ∈ A2i−1 = Aj . Hence aj ∈ Aj for all j ∈ Z+ so that a = (a1, a2, . . .) ∈ A. Then,
for any i ∈ Z+, we have bi = (a′i, a

′′
i ) = (a2i−1, a2i) ∈ A2i−1 × A2i = Bi so that by definition

f(a) = b = (b1, b2, . . .). This shows that f is surjective since b was arbitrary.

This completes the proof that f is bijective so that the desired result follows.

Exercise 5.3

Let A = A1 ×A2 × · · · and B = B1 ×B2 × · · · .

(a) Show that if Bi ⊂ Ai for all i, then B ⊂ A. (Strictly speaking, if we are given a function mapping
the index set Z+ into the union of the sets Bi, we must change its range before it can be considered
as a function mapping Z+ into the union of the sets Ai. We shall ignore this technicality when
dealing with cartesian products)

(b) Show the converse of (a) holds if B is nonempty.

(c) Show that if A is nonempty, each Ai is nonempty. Does the converse hold? (We will return to this
question in the exercises of §19.)

(d) What is the relation between the set A ∪ B and the cartesian product of the sets Ai ∪ Bi? What
is the relation between the set A ∩B and the cartesian product of the sets Ai ∩Bi?

Solution:

(a)

Proof. Suppose that b ∈ B so that b = (b1, b2, . . .) where bi ∈ Bi for every i ∈ Z+. Consider any
such i ∈ Z+ so that bi ∈ Bi. Then also bi ∈ Ai since Bi ⊂ Ai. Since i was arbitrary, bi ∈ Ai for
every i ∈ Z+ so that b = (b1, b2, . . .) ∈ A1 × A2 × · · · = A. Since b was arbitrary, this shows that
B ⊂ A. Note that we ignore the function range technicality issue mentioned above.

(b)

Page 69



Proof. Suppose that B ⊂ A. Since B 6= ∅, there is a b′ ∈ B so that b′ = (b′1, b
′
2, . . .) where b′i ∈ Bi

for every i ∈ Z+. Now consider any i ∈ Z+ and b0 ∈ Bi. Then define

bj =

{
b0 j = i

b′j j 6= i

for any j ∈ Z+. Clearly we have that bj ∈ Bj for any j ∈ Z+ so that b = (b1, b2, . . .) ∈ B1×B2×· · · =
B. It then follows that also b ∈ A since B ⊂ A. Hence bj ∈ Aj for every j ∈ Z+. In particular, we
have b0 = bi ∈ Ai. Since b0 was arbitrary, this shows that Bi ⊂ Ai, and since i was arbitrary, this
shows the desired result.

(c)

Proof. Suppose that A is nonempty so that there is an a ∈ A. Then, since A = A1 × A2 × · · · , it
follows that a = (a1, a2, . . .) where ai ∈ Ai for every i ∈ Z+. Therefore, for any such i ∈ Z+, we
have that ai ∈ Ai so that Ai 6= ∅. Hence every Ai is nonempty as desired since i was arbitrary.

Consider the converse. Suppose that each Ai is nonempty (for i ∈ Z+). Then there is an ai ∈ Ai
for every i ∈ Z+ so that a = (a1, a2, . . .) ∈ A1 × A2 × · · · = A so that then A 6= ∅. While this may
seem like an innocuous argument, especially out of the context of axiomatic set theory, it actually
requires the Axiom of Choice. The reason is that, in the general case when each Ai may have more
than one element, or even an infinite number of elements, we have to choose a specific ai in each
Ai. Since the index set Z+ is infinite, an infinite number of these choices must be made, which is
precisely when the Axiom of Choice is required. If the index set was finite, then the axiom would
not be needed.

(d) First, let Ci = Ai ∪ Bi for every i ∈ Z+, and let C = C1 × C2 × · · · , so that we are asked to
compare C with A ∪B.

We claim that A ∪B ⊂ C but that C is not generally a subset of A ∪B.

Proof. First consider any x ∈ A ∪ B so that x ∈ A or x ∈ B. If x ∈ A then it has to be that
x = (x1, x2, . . .) where xi ∈ Ai for every i ∈ Z+. Consider then any such i ∈ Z+. Then xi ∈ Ai
so that clearly xi ∈ Ai ∪ Bi = Ci. Since i was arbitrary, we conclude that x = (x1, x2, . . .) ∈
C1×C2×· · · = C. An analogous argument shows that x ∈ C when x ∈ B as well. Hence A∪B ⊂ C
since x was arbitrary.

To show that C is not a subset of A ∪ B in general, consider the following counterexample. Let
A1 = ∅ and Ai = {1} for every i ∈ Z+ where i > 1. Also let Bi = {2} for every i ∈ Z+. Now,
it follows from the contrapositive of part (c) that A = ∅ since A1 = ∅. We also clearly have
B = B1×B2×· · · = {(2, 2, . . .)} so that A∪B = ∅∪B = B = {(2, 2, . . .)}. Clearly C1 = A1∪B1 =
∅ ∪ {2} = {2} while, for i > 1 we have Ci = Ai ∪Bi = {1} ∪ {2} = {1, 2}. It then follows that, for
a1 = 2 and ai = 1 for i > 1, we have a = (a1, a2, . . .) = (2, 1, 1, . . .) ∈ C1 × C2 × · · · = C. However,
clearly a /∈ A ∪B, which suffices to show that C cannot be a subset of A ∪B in general.

Now let Ci = Ai ∩ Bi for every i ∈ Z+ so that we are asked to compare C = C1 × C2 × · · · and
A ∩B.

Here we claim that in fact A ∩B = C.

Proof. First consider any x ∈ A ∩B so that x ∈ A and x ∈ B. It then follows that x = (x1, x2, . . .)
where xi ∈ Ai for every i ∈ Z+ and xi ∈ Bi for every i ∈ Z+. Then, for any such i ∈ Z+, clearly
xi ∈ Ai and xi ∈ Bi so that xi ∈ Ai∩Bi = Ci. We then have that x = (x1, x2, . . .) ∈ C1×C2×· · · =
C. Since x was arbitrary, this shows that A ∩B ⊂ C.
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Now consider any x ∈ C so that x = (x1, x2, . . .) where xi ∈ Ci for any i ∈ Z+. Then, for any such
i ∈ Z+, we have xi ∈ Ci = Ai ∩ Bi so that xi ∈ Ai and xi ∈ Bi. Since i was arbitrary, this shows
that both x = (x1, x2, . . .) ∈ A1 × A2 × · · · = A and x = (x1, x2, . . .) ∈ B1 × B2 × · · · = B. Hence
x ∈ A ∩B, which shows that C ⊂ A ∩B since x was arbitrary.

Therefore it must be that A ∩B = C as desired.

Exercise 5.4

Let m,n ∈ Z+. Let X 6= ∅.

(a) If m ≤ n, find an injective map f : Xm → Xn.

(b) Find a bijective map g : Xm ×Xn → Xm+n.

(c) Find an injective map h : Xn → Xω.

(d) Find a bijective map k : Xn ×Xω → Xω.

(e) Find a bijective map l : Xω ×Xω → Xω.

(f) If A ⊂ B, find an injective map m : (Aω)
n → Bω.

NOTE: For part (f), older printings of the text say, “If A ⊂ B, find an injective map m : XA → XB .”
This is assumed to be an error since the meaning of XA and XB are not defined in the text (though,
for example, XA would typically mean the set of functions from A to X) as well as the fact that it was
changed.

Solution:

(a) If m ≤ n, find an injective map f : Xm → Xn.

Proof. Suppose that m ≤ n. Since X 6= ∅, there is an x0 ∈ X. Now, for any x ∈ Xm we have that
x = (x1, . . . , xm) where each xi ∈ X. Then define

yi =

{
xi 1 ≤ i ≤ m
x0 m < i ≤ n

for i ∈ {1, . . . , n}. Clearly yi ∈ X for every i ∈ {1, . . . , n} so that y = (y1, . . . , yn) ∈ Xn. Then set
f(x) = y so that f : Xm → Xn.

To show that f is injective consider x and x′ in Xm so that x = (x1, . . . , xm) and x′ = (x′1, . . . , x
′
m)

where both xi and x′i are of course in X for any i ∈ {1, . . . ,m}. Also suppose that x 6= x′ so
that it follows that there is an i ∈ {1, . . . ,m} where xi 6= x′i. Let y = (y1, . . . , yn) = f(x) and
y′ = (y′1, . . . , y

′
n) = f(x′). Then, since clearly 1 ≤ i ≤ m, we have yi = xi 6= x′i = y′i by the

definition of f . Hence we have f(x) = y 6= y′ = f(x′), which shows that f is injective since x and
x′ were arbitrary.

(b) Find a bijective map g : Xm ×Xn → Xm+n.

Proof. Consider any x ∈ Xm×Xn so that x = (a,b) where a ∈ Xm and b ∈ Xn. Then we have that
a = (a1, . . . , am) and b = (b1, . . . , bn) where ai, bj ∈ X for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
Then define

yk =

{
ak 1 ≤ k ≤ m
bk−m m < k ≤ m+ n
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for any k ∈ {1, . . . ,m+ n}, noting that for m < k ≤ m + n we have m + 1 ≤ k ≤ m + n, and
hence 1 ≤ k −m ≤ n so that bk−m is defined. Now set g(x) = y = (y1, . . . , ym+n) so that clearly
g(x) ∈ Xm+n since each yk ∈ X. Thus g is a function from Xm ×Xn to Xm+n.

To show that g is injective, consider any x = (a,b) and x′ = (a′,b′) in Xm×Xn where x 6= x′. Also
let y = (y1, . . . , ym+n) = g(x) and y′ =

(
y′1, . . . , y

′
m+n

)
= g(x′). Since x 6= x′, it must be that a 6= a′

or b 6= b′. In the former case we have that a = (a1, . . . , am) and a′ = (a′1, . . . , a
′
m) since they are

both in Xm. Since a 6= a′ there is an i ∈ {1, . . . ,m} where ai 6= a′i. Then, since clearly 1 ≤ i ≤ m,
we have that yi = ai 6= a′i = y′i. In the latter case we have that b = (b1, . . . , bn) and b′ = (b′1, . . . , b

′
n)

since they are both in Xn. Then, since b 6= b′, we have that there is an i ∈ {1, . . . , n} such that
bi 6= b′i. Let k = m+ i so that clearly k −m = i. Also m < m+ i = k ≤ m+ n since 0 < 1 ≤ i ≤ n
so that yk = bk−m = bi 6= b′i = b′k−m = y′k. Hence in both cases there is a k ∈ {1, . . . ,m+ n} such

that yk 6= y′k so that g(x) = y = (y1, . . . , ym+n) 6=
(
y′1, . . . , y

′
m+n

)
= y′ = g(x′). Since x and x′ were

arbitrary, this shows that g is indeed injective.

Now consider any y = (y1, . . . , ym+n) ∈ Xm+n, and define ai = yi for any i ∈ {1, . . . ,m} and
bj = ym+j for any j ∈ {1, . . . , n}, noting that ym+j is defined since 0 < 1 ≤ j ≤ n implies
that m < m + j ≤ m + n. Then let a = (a1, . . . , am), b = (b1, . . . , bn), and x = (a,b) so that
clearly x ∈ Xm ×Xn. Let y′ = g(x) as defined above so that y′ =

(
y′1, . . . , y

′
m+n

)
. Consider any

k ∈ {1, . . . ,m+ n}. If 1 ≤ k ≤ m then we have by the definition of g that y′k = ak = yk. On the
other hand, if m < k ≤ m + n, then we have y′k = bk−m = ym+(k−m) = yk. Thus in both cases

y′k = yk so that clearly g(x) = y′ =
(
y′1, . . . , y

′
m+n

)
= (y1, . . . , ym+n) = y since k was arbitrary.

This shows that g is surjective since y was arbitrary.

Therefore we have shown that g is bijective as desired.

(c) Find an injective map h : Xn → Xω.

Proof. First, we know that X 6= ∅ so that there is an x0 ∈ X. So, for any x = (x1, . . . , xn) ∈ Xn,
define

yi =

{
xi 1 ≤ i ≤ n
x0 n < i

for any i ∈ Z+. Then set h(x) = y = (y1, y2, . . .) so that clearly h(x) ∈ Xω. Thus h is a function
that maps Xn into Xω.

To show that h is injective, consider x and x′ in Xn where x 6= x′. Clearly we have that x =
(x1, . . . , xn) and x′ = (x′1, . . . , x

′
n), and let y = (y1, y2, . . .) = h(x) and y′ = (y′1, y

′
2, . . .) = h(x′).

Since x 6= x′, there must an i ∈ {1, . . . , n} where xi 6= x′i. Then we have yi = xi 6= x′i = y′i by the
definition of h since obviously 1 ≤ i ≤ n. It then follows that h(x) = y = (y1, y2, . . .) 6= (y′1, y

′
2, . . .) =

y′ = h(x′), which shows that h is injective since x and x′ were arbitrary.

(d) Find a bijective map k : Xn ×Xω → Xω.

Proof. Consider any x = (a,b) ∈ Xn × Xω so that clearly a = (a1, . . . , an) ∈ Xn and b =
(b1, b2, . . .) ∈ Xω. Then define the sequence

yi =

{
ai 1 ≤ i ≤ n
bi−n n < i

for any i ∈ Z+, noting that when n < i we have n+ 1 ≤ i so that 1 ≤ i− n so that bi−n is defined.
We then of course set k(x) = y = (y1, y2, . . .) so that clearly k(x) ∈ Xω. Therefore k is a function
from Xn ×Xω to Xω.
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To show that k is injective consider x and x′ in Xn × Xω where x 6= x′. Of course we have
x = (a,b) and x′ = (a′,b′) where a,a′ ∈ Xn while b,b′ ∈ Xω. It then follows that a = (a1, . . . , an),
a′ = (a′1, . . . , a

′
n), b = (b1, b2, . . .), and b′ = (b′1, b

′
2, . . .), where every ai, a

′
i, bj , and b′j are in X (for

i ∈ {1, . . . , n} and j ∈ Z+). Also, let y = (y1, y2, . . .) = k(x) and y′ = (y′1, y
′
2, . . .) = k(x′). Now,

since x 6= x′, we have that either a 6= a′ or b 6= b′. If a 6= a′ then there is an i ∈ {1, . . . , n} where
ai 6= a′i. We then have that yi = ai 6= a′i = y′i by the definition of k, since obviously 1 ≤ i ≤ n. If, on
the other hand, b 6= b′, then there is an i ∈ Z+ such that bi 6= b′i. Then clearly n < n+ i since 0 < i
so that yn+i = b(n+i)−n = bi 6= b′i = b′(n+i)−n = y′n+i, noting that clearly n+ i ∈ Z+. Hence in either

case there is an i ∈ Z+ such that yi 6= y′i so that k(x) = y = (y1, y2, . . .) 6= (y′1, y
′
2, . . .) = y′ = k(x′).

This shows that k is injective since x and x′ were arbitrary.

Now consider any y = (y1, y2, . . .) ∈ Xω and set ai = yi for any i ∈ {1, . . . , n} so that clearly
a = (a1, . . . , an) ∈ Xn. Also, for any j ∈ Z+, let bj = yn+j so that clearly b = (b1, b2, . . .) ∈ Xω.
Let x = (a,b) so that clearly x ∈ Xn × Xω. Now set y′ = (y′1, y

′
2, . . .) = k(x) as defined above.

Consider any i ∈ Z+. If 1 ≤ i ≤ n then y′i = ai = yi by the definition of k. If n < i then y′i = bi−n =
yn+(i−n) = yi. Hence y′i = yi for every i ∈ Z+ so that k(x) = y′ = (y′1, y

′
2, . . .) = (y1, y2, . . .) = y,

which shows that k is surjective since y was arbitrary.

This completes the proof that k is bijective.

(e) Find a bijective map l : Xω ×Xω → Xω.

Proof. Consider any x = (a,b) ∈ Xω × Xω so that clearly a = (a1, a2, . . .) and b = (b1, b2, . . .).
Now define

yi =

{
ai/2 i is even

b(i+1)/2 i is odd

for any i ∈ Z+. Note that i/2 and (i+1)/2 are in Z+ if i is even or odd, respectively by Lemma 5.2.1
so that yi is defined. Clearly we have that yi ∈ X for any i ∈ Z+ so that y = (y1, y2, . . .) ∈ Xω.
Setting l(x) = y, we then have that l is a function from Xω ×Xω to Xω.

To show that l is injective, consider x = (a,b) and x′ = (a′,b′) in Xω × Xω where x 6= x′. Also
set y = (y1, y2, . . .) = l(x) and y′ = (y′1, y

′
2, . . .) = l(x′). Since x 6= x′, we have that either a 6= a′ or

b 6= b′. If a 6= a′ then there is an i ∈ Z+ such that ai 6= a′i. Then, since clearly 2i is even, we have
y2i = a(2i)/2 = ai 6= a′i = a′(2i)/2 = y′2i. On the other hand, if b 6= b′ then there is a j ∈ Z+ where

bj 6= b′j . Set k = 2j − 1, noting that

1 ≤ j
2 ≤ 2j

1 ≤ 2j − 1

1 ≤ k

so that k ∈ Z+. Clearly also (k + 1)/2 = j. Since obviously k is odd, we have yk = b(k+1)/2 = bj 6=
b′j = b′(k+1)/2 = y′k. Hence in both cases we have that there is a k ∈ Z+ where yk 6= y′k so that

l(x) = y = (y1, y2, . . .) 6= (y′1, y
′
2, . . .) = y′ = l(x′). Since x and x′ were arbitrary, this shows that l

is injective.

Now consider any y = (y1, y2, . . .) ∈ Xω. For any i ∈ Z+, define ai = y2i and bi = y2i−1, noting
again that 2i − 1 ∈ Z+ (and clearly 2i ∈ Z+). Then set a = (a1, a2, . . .), b = (b1, b2, . . .), and
x = (a,b). Now let y′ = (y′1, y

′
2, . . .) = l(x) and consider any i ∈ Z+. If i is even then we have by

the definition of l that y′i = ai/2 = y2(i/2) = yi. If i is odd then let j = (i + 1)/2 so that clearly
i = 2j − 1. Then y′i = b(i+1)/2 = bj = y2j−1 = yi. Hence in either case we have y′i = yi so that
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l(x) = y′ = (y′1, y
′
2, . . .) = (y1, y2, . . .) = y since i was arbitrary. Since y was arbitrary this shows

that l is surjective.

Thus we have shown that l is bijective as desired.

(f) If A ⊂ B, find an injective map m : (Aω)
n → Bω.

Proof. Consider any x ∈ (Aω)
n

so that x = (x1, . . . ,xn) where xi ∈ Aω for any i ∈ {1, . . . , n}.
Then let xij = xi(j) for i ∈ {1, . . . , n} and j ∈ Z+ so that clearly xij ∈ A, from which it follows
that each xij ∈ B as well since A ⊂ B. Consider any k ∈ Z+. Since n 6= 0 (since n ∈ Z+), it
follows from the Division Theorem from algebra that there are unique integers q and 0 ≤ r < n
where k = qn + r. Suppose for a moment that q < 0 so that q + 1 ≤ 0. Then we have that
k = qn + r < qn + n = (q + 1)n ≤ 0 · n = 0 < k (since k ∈ Z+) since r < n and n > 0 (so that
(q + 1)n ≤ 0 · n since q + 1 ≤ 0). This is of course a contradiction so that it must be that q ≥ 0.
Then set i = r + 1 ≥ 1 and j = q + 1 ≥ 1 so that i ∈ {1, . . . , n} and j ∈ Z+. Set yk = xij so that
clearly yk ∈ B since xij is. It then follows that y = (y1, y2, . . .) ∈ Bω. Then set m(x) = y so that
clearly m is a function from (Aω)

n
to Bω.

To show that m is injective, consider any x and x′ in (Aω)
n

where x 6= x′. Then x = (x1, . . . ,xn)
and x′ = (x′1, . . . ,x

′
n) where each xi and x′i are in Aω for i ∈ {1, . . . , n}. As before set xij = xi(j)

and x′ij = x′i(j) for i ∈ {1, . . . , n} and j ∈ Z+, and also let y = m(x) and y′ = m(x′). Now, since
x 6= x′, there is an i ∈ {1, . . . , n} where xi 6= x′i. It then follows that there is a j ∈ Z+ such that
xij = xi(j) 6= x′i(j) = x′ij . Now let k = (j − 1)n+ (i− 1) so that it follows from the definition of m
that yk = xij and y′k = x′ij since the quotient q and remainder r are unique by the Division Theorem.
Hence yk = xij 6= x′ij = y′k so that clearly m(x) = y = (y1, y2, . . .) 6= (y′1, y

′
2, . . .) = y′ = m(x′). This

shows that m is injective as desired since x and x′ were arbitrary.

Exercise 5.5

Which of the following subsets of Rω can be expressed as the cartesian product of subsets of R?

(a) {x | xi is an integer for all i}.
(b) {x | xi ≥ i for all i}.
(c) {x | xi is an integer for all i ≥ 100}.
(d) {x | x2 = x3}.

Solution:

(a) Let X = {x ∈ Rω | xi is an integer for all i} and Y = Zω, noting that Z ⊂ R. We claim that
X = Y .

Proof. Consider any x ∈ X so that xi ∈ Z for any i ∈ Z+. It is then immediately obvious that
x ∈ Zω = Y . Hence X ⊂ Y since x was arbitrary.

Now consider any x ∈ Y = Zω so that xi ∈ Z for every i ∈ Z+. Again it is obvious by the definition
of X that x ∈ X. Hence Y ⊂ X since x was arbitrary. This shows that X = Y as desired.

(b) Let X = {x ∈ Rω | xi ≥ i for all i} and define Yi = {x ∈ R | x ≥ i} for i ∈ Z+, noting that
obviously each Yi ⊂ R. Then let Y = Y1 × Y2 × · · · . We claim that X = Y .

Proof. First consider x ∈ X so that xi ≥ i for any i ∈ Z+. Then, for any i ∈ Z+ clearly xi ∈ Yi by
definition since xi ≥ i (and also xi ∈ R). Hence it follows that x = (x1, x2, . . .) ∈ Y1 × Y2 × · · · = Y .
Since x was arbitrary, this shows that X ⊂ Y .
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Now suppose that x ∈ Y so that xi ∈ Yi for every i ∈ Z+. Consider any such i ∈ Z+ so that xi ∈ Yi.
Then, by definition xi ≥ i. Since i was arbitrary, this shows that x ∈ X by definition. Hence Y ⊂ X
since x was arbitrary so that X = Y .

(c) Define X = {x ∈ Rω | xi is an integer for all i ≥ 100}. Also define Yi = R when i < 100 and
Yi = Z when i ≥ 100 (and i ∈ Z+ for both), noting that of course Yi ⊂ R for either case. Let
Y = Y1 × Y2 × · · · , and we claim that X = Y .

Proof. Consider any x ∈ X so that xi ∈ Z for all i ≥ 100. Suppose i ∈ Z+. If i < 100 then clearly
xi ∈ R = Yi since x ∈ Rω. If i ≥ 100 then we have that xi ∈ Z = Yi. Hence in either case xi ∈ Yi
so that x ∈ Y1 × Y2 × · · · = Y since i was arbitrary. Since x was arbitrary, this shows that X ⊂ Y .

Now consider any x ∈ Y and any i ∈ Z+ where i ≥ 100. Then xi ∈ Yi = Z so that xi is an integer.
From this it follows that x ∈ X by definition since obviously x ∈ Rω (since xi ∈ Yi = R when
i < 100). Hence Y ⊂ X since x was arbitrary. This completes the proof that X = Y .

(d) We claim that X = {x ∈ Rω | x2 = x3} cannot be expressed as the cartesian product of subsets
of R.

Proof. Suppose to the contrary that there are Xi ⊂ R for i ∈ Z+ where X = X1 ×X2 × · · · . Let
(a, a, . . .) denote the sequence (x1, x2, . . .) where xi = a for all i ∈ Z+. We then have that (1, 1, . . .)
and (2, 2, . . .) are both in X since clearly x2 = x3 in both. Hence we have that 1 and 2 are both in
Xi for every i ∈ Z+ since X = X1 ×X2 × · · · . Now define

yi =

{
1 i 6= 2

2 i = 2

for i ∈ Z+. Clearly y = (y1, y2, . . .) ∈ X1 ×X2 × · · · since both 1 and 2 are in each Xi. However,
it is also clear that y /∈ X by definition since y2 = 2 6= 1 = y3. This contradicts the fact that
X = X1 ×X2 × · · · , which shows the desired result.

§6 Finite Sets

Exercise 6.1

(a) Make a list of all the injective maps

f : {1, 2, 3} → {1, 2, 3, 4} .

Show that none is bijective. (This constitutes a direct proof that a set A of cardinality three does
not have cardinality four.)

(b) How many injective maps

f : {1, . . . , 8} → {1, . . . , 10}

are there? (You can see why one would not wish to try to prove directly that there is no bijective
correspondence between these sets.)

Solution:
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Lemma 6.1.1. The number of injective mappings (i.e. the cardinality of the set of injective func-
tions) from {1, . . . ,m} to {1, . . . , n}, where m ≤ n, is equal to the number of m-permutations of n,
which is

n!

(n−m)!
.

Proof. We fix n and show this for all m ≤ n by induction. First, for m = 1, the domain of the
mappings is simply {1} so that we need only choose a single element to which to map 1. Since there
are n elements to choose from (since the range is {1, . . . , n}) there are clearly

n =
n!

(n− 1)!
=

n!

(n−m)!

mappings, all of which are trivially injective.

Now suppose that m < n and that there are n!/(n − m)! injective mappings from {1, . . . ,m} to
{1, . . . , n}. Consider any such mapping (f1, . . . , fm). Since this mapping is injective, each fi is
unique so that it uses m of the n available numbers in {1, . . . , n}. Thus there are n −m numbers
to choose from to which to set fm+1 so that the mapping (f1, . . . , fm+1) is still injective. Hence
for each injective mapping (f1, . . . , fm) there are n −m injective mappings from {1, . . . ,m+ 1} to
{1, . . . , n}. Since there are n!/(n−m)! such mappings by the induction hypothesis, the total number
of mappings from {1, . . . ,m+ 1} to {1, . . . , n} will be

n!

(n−m)!
(n−m) =

n!

(n−m− 1)!
=

n!

[n− (m+ 1)]!
,

which completes the induction.

Main Problem.

(a) Here we have n = 4 and m = 3 in Lemma 6.1.1 so that we expect 4!/(4− 3)! = 4!/1! = 4! = 24
injective mappings. Since the domain of each f is a section of the positive integers, these maps can
be written simply as 3-tuples. They are enumerated below:

1. (1, 2, 3)

2. (1, 2, 4)

3. (1, 3, 2)

4. (1, 3, 4)

5. (1, 4, 2)

6. (1, 4, 3)

7. (2, 1, 3)

8. (2, 1, 4)

9. (2, 3, 1)

10. (2, 3, 4)

11. (2, 4, 1)

12. (2, 4, 3)

13. (3, 1, 2)

14. (3, 1, 4)

15. (3, 2, 1)

16. (3, 2, 4)

17. (3, 4, 1)

18. (3, 4, 2)

19. (4, 1, 2)

20. (4, 1, 3)

21. (4, 2, 1)

22. (4, 2, 3)

23. (4, 3, 1)

24. (4, 3, 2)

Note that they are all injective since no number is used more than once in each tuple. Also none
are surjective since it is easily verified that there is always an element of {1, 2, 3, 4} that is not in
each tuple. Thus none are a bijection since they are not surjective.

(b) Here we have n = 10 and m = 8 in Lemma 6.1.1 so that there are 10!/(10−8)! = 10!/2! = 1814400
injective mappings. That is nearly two million! Certainly a direct proof would be unfeasible by hand,
but could be done by computer fairly easily.

Exercise 6.2

Show that if B is not finite and B ⊂ A, then A is not finite.
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Solution:

Proof. Suppose that B is not finite and B ⊂ A but that A is finite. Since B ⊂ A, either B = A or
B is a proper subset of A. In the former case we clearly have a contradiction since B would be finite
since A is and B = A. In the latter case we have that there is a bijection from A to {1, . . . , n} for
some n ∈ Z+ by definition since A is finite. Then, since B is a proper subset of A, it follows from
Theorem 6.2 that there is a bijection from B to {1, . . . ,m} for some m < n. However, then clearly
B is finite by definition, which is also a contradiction since we know B is not finite. Hence in either
case there is a contradiction so that A must not be finite.

Exercise 6.3

Let X be the two-element set {0, 1}. Find a bijective correspondence between Xω and a proper subset
of itself.

Solution:

Proof. Let Y = {x ∈ Xω | x1 = 0}, which is clearly a proper subset of Xω since, for example,
(1, 1, . . .) is in Xω but not in Y . We construct a bijective function f from Xω to Y . So consider
any x ∈ Xω and define

yi =

{
0 i = 1

xi−1 i 6= 1

for i ∈ Z+, noting that when i 6= 1 we have i > 1 so that i − 1 ≥ 1, and thus yi = xi−1 is defined.
Now define f(x) = y = (y1, y2, . . .) so that clearly f is a function from Xω to Y , since y1 = 0 for
any input x.

To show that f is injective, consider x and x′ in Xω where x 6= x′, and let y = f(x) and y′ = f(x′).
Now, since x 6= x′, there is an i ∈ Z+ where xi 6= x′i. Since i > 0 (since i ∈ Z+) it follows that
i + 1 > 1 so that i + 1 6= 1. We then have by the definition of f that yi+1 = x(i+1)−1 = xi 6= x′i =
x′(i+1)−1 = y′i+1 so that clearly f(x) = y 6= y′ = f(x′). Since x and x′ were arbitrary, this shows
that f is indeed injective.

Now consider any y ∈ Y so that y1 = 0. Define xi = yi+1 for any i ∈ Z+ and let x = (x1, x2, . . .).
Then x ∈ Xω since clearly each xi = yi+1 ∈ X. Now let y′ = f(x) and consider any i ∈ Z+.
If i = 1 then clearly y′i = y′1 = 0 = y1 = yi (y′1 = 0 since the range of f is Y ). If i 6= 1 then
y′i = x′i−1 = y(i−1)+1 = yi. Hence y′i = yi in both cases so that f(x) = y′ = y since i was arbitrary.
This shows that f is surjective since y was arbitrary.

Therefore f is bijective as desired.

Exercise 6.4

Let A be a nonempty finite simply ordered set.

(a) Show that A has a largest element. [Hint: Proceed by induction on the cardinality of A.]

(b) Show that A has the order type of a section of positive integers.

Solution:

(a)
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Proof. We show by induction that, for all n ∈ Z+, any simply ordered set with cardinality n has a
largest element. This of course shows the result since, by definition, A 6= ∅ has cardinality n for
some n ∈ Z+ when A is finite.

First, suppose that A is simply ordered and has cardinality 1 so that clearly A = {a} for some
element a. It is also clear that a is trivially the largest element of A since it is the only element.

Now suppose that any simply ordered set with cardinality n has a largest element. Suppose that A is
simply ordered by ≺ and has cardinality n+ 1. Then there is a bijection f from A to {1, . . . , n+ 1},
noting that obviously f−1 is also a bijection. Clearly A is nonempty (since the cardinality of A
is n + 1 > n > 0) so that there is an a ∈ A. Let A′ = A − {a} so that A′ has cardinality n by
Lemma 6.1. Note also that clearly A′ is simply ordered by ≺ as well (technically we must restrict ≺
to elements of A′ so that it is really ordered by ≺ ∩(A′ ×A′)). It then follows that A′ has a largest
element b by the induction hypothesis. Since a and b must be comparable in ≺ by the definition of
a simple order we have the following:

Case: a = b. This is not possible since b ∈ A′ but clearly a /∈ A− {a} = A′.

Case: a ≺ b. We claim that b is the largest element of A. To see this, consider any x ∈ A so that
either x = a or x ∈ A′. In the former case clearly x = a 4 b, and in the latter x 4 b since b is the
largest element of A′. This shows that b is the largest element of A since x was arbitrary.

Case: b ≺ a. We claim that a is the largest element of A. So consider any x ∈ A so that x = a or
x ∈ A′. In the first case obviously x 4 x = a, and in the second x 4 b 4 a since b is the largest
element of A′. This shows that a is the largest element of A since x was arbitrary.

Thus in all cases we have shown that A has a largest element, which completes the induction.

(b)

Proof. We again show this by induction on the (finite) cardinality of the set. First, if A is a simply
ordered set with cardinality 1 then clearly A = {a} for some a, which is clearly trivially the same
order type as the section {1}.
Now suppose that all simply ordered sets of cardinality n have the order type of a section of positive
integers. Consider then a set A simply ordered by ≺ that has cardinality n + 1. Clearly A 6= ∅
so that it has a largest element a by part (a). Then the set A′ = A − {a} has cardinality n by
Lemma 6.1. Since A′ is also clearly simply ordered by ≺ (with the appropriate restriction) it follows
from the induction hypothesis that it has order type of {1, . . . ,m} for some m ∈ Z+. Since this also
implies that A′ has the cardinality of m, it has to be that m = n since this cardinality is unique (by
Lemma 6.5). So let f ′ be the order-preserving bijection from A′ to {1, . . . ,m} = {1, . . . , n}. Now
define

f(x) =

{
f ′(x) x 6= a

n+ 1 x = a

for any x ∈ A. It is clear that f is a function from A to {1, . . . , n+ 1} since obviously n + 1 ∈
{1, . . . , n+ 1} and the image of f ′ is {1, . . . , n} ⊂ {1, . . . , n+ 1}.
Consider next any x and x′ in A where x ≺ x′. Suppose for the moment that x = a. Then x′ 4 a = x
since a is the largest element of A. This contradicts the fact that x ≺ x′ so that it must be that
x 6= a. Then f(x) = f ′(x). If also x′ 6= a then clearly f(x) = f ′(x) < f ′(x′) = f(x′) since f ′

preserves order. If x′ = a then f(x′) = n + 1 so that f(x) = f ′(x) ≤ n < n + 1 = f(x′) since the
image of f ′ is only {1, . . . , n}. Hence in all cases f(x) < f(x′) so that f preserves order since x and
x′ were arbitrary. Note that this also shows that f is injective since, for any x, x′ ∈ A where x 6= x′,
we can assume without loss of generality that x ≺ x′ (since it must be that x ≺ x′ or x′ ≺ x) so
that f(x) < f(x′), and hence f(x) 6= f(x′).
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Lastly consider any k ∈ {1, . . . , n+ 1}. If k = n + 1 then clearly by definition f(a) = n + 1 = k,
noting that obviously a ∈ A. On the other hand, if k 6= n + 1 then it has to be that k < n + 1 so
k ≤ n. Then k ∈ {1, . . . , n}, which is the image of f ′ so that there is an x ∈ A′ where f ′(x) = k
since f ′ is bijective (and therefore surjective). Since x ∈ A′ we have that x ∈ A but x 6= a so that
f(x) = f ′(x) = k. This shows that f is surjective since k was arbitrary.

Thus we have shown that f is an order-preserving bijection from A to {1, . . . , n+ 1}, which completes
the induction since by definition A has order type {1, . . . , n+ 1}.

Exercise 6.5

If A×B is finite, does it follow that A and B are finite?

Solution:

We claim that in general this does not follow.

Proof. As a counterexample, let A = Z+ and B = ∅. Clearly A is infinite by Corollary 6.4 so that
not both A and B are finite. It also follows from Exercise 5.3 part (c) that A × B = ∅ since B is
empty. Hence clearly A×B is finite.

If we add the additional stipulation that both A and B are nonempty, then the statement becomes
true.

Proof. Since A × B is finite there is a bijective function f : A × B → {1, . . . , n} for some n ∈ Z+.
We then show that A is finite by first constructing an injective function g from A to A× B. Since
B 6= ∅, there is a b ∈ B. So, for any x ∈ A, set g(x) = (x, b), which is clearly in A × B so
that g is a function from A to A × B. Now consider x and x′ in A where x 6= x′. Then clearly
g(x) = (x, b) 6= (x′, b) = g(x′). This shows that g is injective since x and x′ were arbitrary.

We then have that the composition f ◦g is an injective function from A to {1, . . . , n} by Exercise 2.4
part (b) since f is injective as well (since it is a bijection). Therefore A is finite by Corollary 6.7.
An analogous argument uses the fact that A 6= ∅ to show that B is also finite.

Exercise 6.6

(a) Let A = {1, . . . , n}. Show there is a bijection of P (A) with the cartesian product Xn, where X is
the two-element set X = {0, 1}.

(b) Show that if A is finite, then P (A) is finite.

Solution:

(a)

Proof. We construct a bijection f : P (A)→ Xn. So, for any Y ∈ P (A) we have that clearly Y ⊂ A.
Then set

xi =

{
0 i /∈ Y
1 i ∈ Y
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for any i ∈ {1, . . . , n} = A. Now set f(Y ) = x = (x1, . . . , xn), noting that clearly f(Y ) ∈ Xn since
each xi ∈ {0, 1} = X. Hence f is a function from P (A) to Xn.

To show that f is injective consider Y and Y ′ in P (A) where Y 6= Y ′. Also let x = f(Y ) and
x′ = f(Y ′) as defined above. Since Y 6= Y ′, we can without loss of generality assume that there is
an i ∈ Y where i /∈ Y ′. It then follows that xi = 1 6= 0 = x′i by the definition of f . Hence clearly
f(Y ) = x = (x1, . . . , xn) 6= (x′1, . . . , x

′
n) = x′ = f(Y ′), which shows that f is injective since Y and

Y ′ were arbitrary.

Now consider any x ∈ Xn and let Y = {i ∈ A | xi = 1}. Clearly Y ⊂ A so that Y ∈ P (A). Let
x′ = f(Y ) and consider any i ∈ {1, . . . , n} = A. If i ∈ Y then xi = 1 = x′i by the definitions of Y
and f . It i /∈ Y then xi 6= 1 so that it has to be that xi = 0 since xi ∈ X = {0, 1}. Also, by the
definition of f , we have that x′i = 0 = xi. Thus in either case xi = x′i so that x = x′ = f(Y ) since i
was arbitrary. Since x was arbitrary, this shows that f is surjective.

Therefore f is a bijection from A to Xn as desired.

(b)

Proof. First, if A = ∅ then clearly P (A) = P (∅) = {∅} is finite. So assume in what follows that
A 6= ∅. Since A is finite and nonempty there is a bijection f from A to B = {1, . . . , n} for some
n ∈ Z+. Let X = {0, 1} so that by part (a) there is a bijection g from P (B) to Xn. For any
Y ∈ P (A) clearly the mapping h(Y ) =

{
i ∈ B | f−1(i) ∈ Y

}
is a bijection from P (A) to P (B). It

then follows that g ◦ h is bijection from P (A) to Xn. Since clearly Xn is a finite cartesian product
of finite sets, it follows from Corollary 6.8 that Xn is finite so that P (A) must be as well since there
is a bijection between them.

Exercise 6.7

If A and B are finite, show that the set of all functions f : A→ B is finite.

Solution:

Proof. As is customary, denote the set of all functions from A to B by BA. First, if A = ∅, then
the only function from A to B is the vacuous function ∅ so that BA = {∅}, which is clearly finite.
So assume that A 6= ∅. Then, since A is finite, there is a bijection f from A to {1, . . . , n} for some
n ∈ Z+, noting that of course f−1 is then a bijection from {1, . . . , n} to A.

We construct a bijection h from BA to Bn. So, for any g ∈ BA set h(g) = g ◦ f−1, noting that
clearly this is a function from {1, . . . , n} to B. Hence h is a function from BA to Bn.

To show that h is injective consider g and g′ in BA where g 6= g′. It then follows that there is an
a ∈ A where g(a) 6= g′(a). Then let k = f(a) so that clearly f−1(k) = a and k ∈ {1, . . . , n}. We
then have that (g ◦ f−1)(k) = g(f−1(k)) = g(a) 6= g′(a) = g′(f−1(k)) = (g′ ◦ f−1)(k) so that it
must be that h(g) = g ◦ f−1 6= g′ ◦ f−1 = h(g′). Since g and g′ were arbitrary, this shows that h is
injective.

Now consider any function i ∈ Bn and let g = i ◦ f so that clearly g is a function from A to B since
f : A → {1, . . . , n} and i : {1, . . . , n} → B. Hence g ∈ BA, and h(g) = g ◦ f−1 = (i ◦ f) ◦ f−1 =
i ◦ (f ◦ f−1) = i. Since i was arbitrary, this shows that h is surjective as well.

Hence h is bijection from BA to Bn. Now, since Bn is a finite cartesian product of finite sets (since
B is finite), it is finite by Corollary 6.8. Thus it must be that BA is also finite since there is bijection
between them.
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§7 Countable and Uncountable Sets

Exercise 7.1

Show that Q is countably infinite.

Solution:

Lemma 7.1.1. The set Z× Z is countably infinite.

Proof. First, by Example 7.1, the set of integers Z is countably infinite so that there is a bijection
f from Z to Z+. We construct a bijection g from Z× Z to Z+ × Z+. For any (a, b) ∈ Z× Z define
g(a, b) = (f(a), f(b)), noting that clearly g(a, b) ∈ Z+ ×Z+ since Z+ is the range of f . Hence g is a
function from Z× Z to Z+ × Z+.

It is easy to show that g is bijective. First, consider any (a, b) and (a′, b′) in Z×Z where (a, b) 6= (a′, b′)
so that a 6= a′ or b 6= b′. If a 6= a′ then f(a) 6= f(a′) since f is bijective (and therefore injective).
Thus we have that g(a, b) = (f(a), f(b)) 6= (f(a′), f(b′)) = g(a′, b′). A similar argument shows the
same result when b 6= b′. Since (a, b) and (a′, b′) were arbitrary, this shows that g is injective.

Now consider any (c, d) ∈ Z+×Z+ so that c, d ∈ Z+. Since f is surjective (since it is a bijection) there
are a, b ∈ Z where f(a) = c and f(b) = d. We then clearly have that g(a, b) = (f(a), f(b)) = (c, d)
so that g is surjective (c, d) was arbitrary.

Therefore g is a bijection. Now, we know from Corollary 7.4 that Z+ × Z+ is countably infinite so
that there must be a bijection h from Z+ × Z+ to Z+. It then follows that h ◦ g is bijection from
Z× Z to Z+, which shows the desired result by definition.

Main Problem.

Proof. First we define a straightforward function f from Z×Z to Q. First consider any (m,n) ∈ Z×Z.
If n 6= 0 then let q = m/n. If n = 0 then set q = 0. Setting f(m,n) = q we clearly have that f is
a function from Z× Z to Q. Now consider any rational q so that by definition there are integers m
and n where q = m/n. It then of course follows that f(m,n) = m/n = q, which shows that f is
surjective since q was arbitrary.

Now, from Lemma 7.1.1 we know that Z×Z is countably infinite so that there is a bijection g from
Z× Z to Z+. Hence g−1 is a bijection from Z+ to Z× Z. It then follows that the function f ◦ g−1

is a surjective function from Z+ to Q. From this it follows from Theorem 7.1 that Q is countable.
Since Z+ is a subset of Q, it has to be that Q is infinite, and hence must be countably infinite.

Exercise 7.2

Show that the maps f and g of Examples 1 and 2 are bijections.

Solution:

It is claimed in Example 7.1 that the function

f(n) =

{
2n n > 0

−2n+ 1 n ≤ 0

is a bijection from Z to Z+.

Proof. To show that f is injective, consider n,m ∈ Z where n 6= m.
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Case: n > 0. Then f(n) = 2n, which is clearly even. If m > 0, then clearly f(n) = 2n 6= 2m = f(m)
since n 6= m. If m ≤ 0 then f(m) = −2m + 1 = 2(−m) + 1 is clearly odd so that it must be that
f(n) 6= f(m).

Case: n ≤ 0. Then f(n) = −2n + 1 = 2(−n) + 1, which is clearly odd. If m > 0 then f(m) = 2m
is even so that it has to be that f(n) 6= f(m). If m ≤ 0 then f(m) = −2m + 1 6= −2n + 1 = f(n)
since n 6= m.

Thus in every case f(n) 6= f(m), which shows that f is injective since n and m were arbitrary.

To show that f is surjective, consider any k ∈ Z+. If k is even then k = 2n for some n ∈ Z+. Hence
n > 0 (since k > 0 and n = k/2) so that f(n) = 2n = k, noting that n ∈ Z since Z+ ⊂ Z. If k is
odd then k = 2m− 1 for some m ∈ Z+. So let n = 1−m so that clearly n is an integer and

m ≥ 1 (since m ∈ Z+)

−m ≤ −1

1−m ≤ 0

n ≤ 0 .

Thus f(n) = −2n+ 1 = −2(1−m) + 1 = −2 + 2m+ 1 = 2m−1 = k. This shows that f is surjective
since k was arbitrary. Therefore we have shown that f is a bijection as desired.

Regarding Example 7.2, the following set is defined:

A = {(x, y) ∈ Z+ × Z+ | y ≤ x} .

Then the function f is defined from Z+ × Z+ to A by

f(x, y) = (x+ y − 1, y)

for (x, y) ∈ Z+ × Z+. It is claimed that f is a bijection.

Proof. First, it is not even clear that the range of f is constrained to A, so let us show this.
Consider any (x, y) ∈ Z+ × Z+ so that f(x, y) = (x + y − 1, y). Since x ≥ 1 and y ≥ 1, we have
that x + y ≥ 1 + 1 = 2 > 1 so that x + y − 1 > 0 and hence x + y − 1 ∈ Z+. Thus clearly
f(x, y) = (x+ y − 1, y) ∈ Z+ × Z+. We also have

1 ≤ x
0 ≤ x− 1

y ≤ x+ y − 1 .

Therefore it is clear that f(x, y) = (x+ y − 1, y) ∈ A by definition.

To show that f is injective consider (x, y) and (x′, y′) in Z+ × Z+ where f(x, y) = (x+ y − 1, y) =
(x′+y′−1, y′) = f(x′, y′). Thus x+y−1 = x′+y′−1 and y = y′. Therefore x+y−1 = x′+y′−1 =
x′ + y − 1, from which it obviously follows that x = x′ as well. Then (x, y) = (x′, y′), which shows
that f is injective since (x, y) and (x′, y′) were arbitrary.

Now consider any (z, y) ∈ A so that (z, y) ∈ Z+ × Z+ and y ≤ z. Let x = z − y + 1 so that clearly
z = x+ y − 1. We also have

y ≤ z = x+ y − 1

0 ≤ x− 1

1 ≤ x

so that (x, y) ∈ Z+ × Z+. Since also we have f(x, y) = (x + y − 1, y) = (z, y), f is surjective since
(z, y) was arbitrary. This completes the proof that f is a bijection.
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The function g is then defined from A to Z+ by

g(x, y) =
1

2
(x− 1)x+ y

for (x, y) ∈ A. This is also claimed to be a bijection.

Proof. First we show that the range of g is indeed Z+ since this is not obvious. Consider any
(x, y) ∈ A so that (x, y) ∈ Z+×Z+ and y ≤ x. First, if x is even then x = 2n for some n ∈ Z. Then
g(x, y) = (x − 1)x/2 + y = (2n − 1)(2n)/2 + y = (2n − 1)n + y, which is clearly an integer. If x is
odd then x = 2n+ 1 for some integer n so that

g(x, y) = (x− 1)x/2 + y = (2n+ 1− 1)(2n+ 1)/2 + y = (2n)(2n+ 1)/2 + y = n(2n+ 1) + y ,

which is also clearly an integer. We also have that −y < 0 since y > 0 so that

x ≥ 1

x− 1 ≥ 0

1

2
(x− 1) ≥ 0 (since 1/2 > 0)

1

2
(x− 1)x ≥ 0 > −y (since x > 0)

1

2
(x− 1)x+ y > 0

g(x, y) > 0 .

Since we have shown that g(x, y) ∈ Z as well, it follows that g(x, y) ∈ Z+.

Consider any (x, y) ∈ A so that (x, y) ∈ Z+ × Z+ and y ≤ x. Then clearly

g(x, y) =
1

2
(x− 1)x+ y ≤ 1

2
(x− 1)x+ x

<
1

2
(x− 1)x+ x+ 1 =

1

2
(x2 − x+ 2x) + 1

=
1

2
(x2 + x) + 1 =

1

2
x(x+ 1) + 1

=
1

2
(x+ 1− 1)(x+ 1) + 1

= g(x+ 1, 1) .

A simple inductive argument shows that g(x, y) < g(x+ n, 1) for any n ∈ Z+. This was just shown
for n = 1. Then, assuming it true for n, we have that g(x, y) < g(x + n, 1) < g((x + n) + 1, 1) =
g(x+ (n+ 1), 1), which completes the induction.

So consider any (x, y) and (x′, y′) in A so that (x, y) and (x′, y′) are in Z+×Z+, y ≤ x, and y′ ≤ x′.
Also suppose that (x, y) 6= (x′, y′) so that either x 6= x′ or y 6= y. If x = x′ then it has to be that
y 6= y′ so that clearly

y 6= y′

1

2
(x− 1)x+ y 6= 1

2
(x− 1)x+ y′

1

2
(x− 1)x+ y 6= 1

2
(x′ − 1)x′ + y′

g(x, y) 6= g(x′, y′) .
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If x 6= x′ then we can assume that x < x′. Then let n = x′− x so that clearly n > 0 and x′ = x+n.
By what was just shown, we have

g(x, y) < g(x+ n, 1) = g(x′, 1) =
1

2
(x′ − 1)x′ + 1 ≤ 1

2
(x′ − 1)x′ + y′ = g(x′, y′)

since 1 ≤ y′. Thus g(x, y) 6= g(x′, y′). Since this is true in both cases, this shows that g is injective
since (x, y) and (x′, y′) were arbitrary.

To show that g is also surjective, consider any z ∈ Z+. Define the set B = {x ∈ Z+ | g(x, 1) ≤ z}.
First, we have that g(1, 1) = 1 ≤ z since z ∈ Z+ so that 1 ∈ B and therefore B 6= ∅. If z = 1 then
clearly z = 1 ≤ 1 = g(1, 1) = g(z, 1). If z 6= 1 then we have

2 ≤ z

1 ≤ 1

2
z

z − 1 ≤ 1

2
(z − 1)z

z ≤ 1

2
(z − 1)z + 1

z ≤ g(z, 1)

Now consider any x, y ∈ Z+ where x < y. It then follows from what was shown above that
g(x, 1) ≤ g(x, y) < g(x+ 1, 1). From this we clearly have that the function g(x, 1) is monotonically
increasing in x, i.e. for x, y ∈ Z+, x < y implies that g(x, 1) < g(y, 1). By the contrapositive of this,
g(x, 1) ≥ g(y, 1) implies that x ≥ y. With this in mind, consider any x ∈ B so g(x, 1) ≤ z ≤ g(z, 1).
Then this implies that x ≤ z, which shows that z is an upper bound of B since x was arbitrary.

We have thus shown that B is a nonempty set of integers that is bounded above. It then follows
from Exercise 4.9 part (a) that B has a largest element x. Now let y = z − g(x, 1) + 1, noting that,
since x ∈ B,

g(x, 1) ≤ z
0 ≤ z − g(x, 1)

1 ≤ z − g(x, 1) + 1

1 ≤ y

and hence y ∈ Z+ so that (x, y) ∈ Z+ ×Z+. We also must have that z < g(x+ 1, 1) since otherwise
we would have that x+ 1 ∈ B, which would violate the definition of x as being the largest element
of B. Thus we have

z ≤ g(x+ 1, 1)− 1

z ≤ 1

2
(x+ 1− 1)(x+ 1) + 1− 1

z ≤ 1

2
(x+ 1)x

z ≤ x+
1

2
(x− 1)x

z ≤ x+
1

2
(x− 1)x+ 1− 1

z ≤ x+ g(x, 1)− 1

z − g(x, 1) + 1 ≤ x
y ≤ x
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so that (x, y) ∈ A.

Lastly, since y = z − g(x, 1) + 1, we clearly have

z = y + g(x, 1)− 1 = y +
1

2
(x− 1)x+ 1− 1 =

1

2
(x− 1)x+ y = g(x, y) .

This shows that g is surjective since z was arbitrary, thereby completing the long and arduous proof
that g is a bijection.

Exercise 7.3

Let X be the two-element set {0, 1}. Show there is a bijective correspondence between the set P (Z+)
and the cartesian product Xω.

Solution:

Proof. Similar to Exercise 6.6 part (a), we construct such a bijection f from P (Z+) to Xω. For any
A ∈ P (Z+) we have that A ⊂ Z+. Then, for i ∈ Z+, set

xi =

{
1 i ∈ A
0 i /∈ A

and set f(A) = (x1, x2, . . .) so that clearly f(A) ∈ Xω.

To show that f is injective consider A and A′ in P (Z+) where A 6= A′. Without loss of generality,
we can assume that there is an i ∈ A where i /∈ A′, noting that of course i ∈ Z+ since A ⊂ Z+. Let
x = (x1, x2, . . .) = f(A) and x′ = (x′1, x

′
2, . . .) = f(A′). Then xi = 1 6= 0 = x′i by the definition of f

since i ∈ A but i /∈ A′. Thus clearly f(A) = x 6= x′ = f(A′), which shows that f is injective since
A and A′ were arbitrary.

Now consider any x = (x1, x2, . . .) ∈ Xω and define the set A = {i ∈ Z+ | xi = 1} so that clearly
A ⊂ Z+ and hence A ∈ P (Z+). Let x′ = (x′1, x

′
2, . . .) = f(A) and consider i ∈ Z+. If i ∈ A

then x′i = 1 = xi by the definitions of A and f . If i /∈ A then xi 6= 1 since otherwise i ∈ A by
definition. Since xi ∈ X = {0, 1} it clearly must be that xi = 0. We then also have that x′i = 0 by
the definition of f , and thus xi = 0 = x′i. Since xi = x′i in both cases and i was arbitrary, it follows
that x = x′ = f(A). This proves that f is surjective since x was arbitrary.

Hence it has been shown that f is a bijection as desired.

Exercise 7.4

(a) A real number x is said to be algebraic (over the rationals) if it satisfies some polynomial equation
of positive degree

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

with rational coefficients ai. Assuming that each polynomial equation has only finitely many roots,
show that the set of algebraic numbers is countable.

(b) A real number is said to be transcendental if it is not algebraic. Assuming the reals are uncount-
able, show that the transcendental numbers are uncountable. (It is a somewhat surprising fact that
only two transcendental numbers are familiar to us: e and π. Even proving these two numbers
transcendental is highly nontrivial.)
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Solution:

(a)

Proof. First consider arbitrary degree n ∈ Z+. Then for each q = (q1, . . . , qn) ∈ Qn, there is a
corresponding polynomial equation in x:

xn +

n∑
i=1

qix
i−1 = xn + qnx

n−1 + · · ·+ q2x+ q1 = 0 ,

which is assumed to have a finite number of solutions. So let Xq be the finite set real numbers
that are solutions. (We note that the polynomial corresponding to the vector q = (0, . . . , 0) ∈ Qn
becomes 0 = 0 so that any real number x satisfies it. Similarly the polynomial corresponding to
q = (q1, 0, . . . , 0) ∈ Qn for nonzero q1 corresponds to the equation q1 = 0, which has no solutions.
Of course Xq = ∅ is still finite in this case. For the infinite-solution case we could simply remove the
zero vector from Qn without changing the argument in any substantial way. This is also taken care
of if we really do assume that any polynomial has a finite number of solutions as we are evidently
doing here.)

Now, we clearly have that Qn is countable by Theorem 7.6 since it is a finite product of countable
sets (since it was shown in Exercise 7.1 that Q is countable). Thus the set An =

⋃
q∈Qn Xq is

countable by Theorem 7.5 since it is a countable union of finite (and therefore countable) sets. Of
course, this is the set of all algebraic numbers from polynomials of degree n. Then A =

⋃
n∈Z+

An
is the set of all algebraic numbers, which is also then countable by Theorem 7.5 since each An was
shown to be countable.

(b)

Proof. As in part (a), let A ⊂ R be the set of algebraic numbers so that clearly, by definition,
T = R − A is the set of transcendental numbers. Note that clearly R = A ∪ T so that, if T were
countable, then R would be too since it is a finite union of countable sets. This of course contradicts
the (hitherto unproven) fact that R is uncountable so that it must be that T is also uncountable as
desired.

Exercise 7.5

Determine, for each of the following sets, whether or not it is countable. Justify your answers.

(a) The set A of all functions f : {0, 1} → Z+.

(b) The set Bn of all functions f : {1, . . . , n} → Z+.

(c) The set C =
⋃
n∈Z+

Bn.

(d) The set D of all functions f : Z+ → Z+.

(e) The set E of all functions f : Z+ → {0, 1}.
(f) The set F of all functions f : Z+ → {0, 1} that are “eventually zero.” [We say that f is eventually

zero if there is a positive integer N such that f(n) = 0 for all n ≥ N .]

(g) The set G of all functions f : Z+ → Z+ that are eventually 1.

(h) The set H of all functions f : Z+ → Z+ that are eventually constant.

(i) The set I of all two-element subsets of Z+.

(j) The set J of all finite subsets of Z+.
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Solution:

(a) The set A of all functions f : {0, 1} → Z+.

We claim that A is countable.

Proof. For any f ∈ A, clearly the mapping g(f) = (f(0), f(1)) is a bijection from A to Z+
2. Since

Z+
2 is a finite cartesian product of countable sets, it follows that it is also countable by Theorem 7.6.

Hence there is a bijection h : Z+
2 → Z+. It is then obvious that h ◦ g is a bijection from A to Z+

so that A is countable.

(b) The set Bn of all functions f : {1, . . . , n} → Z+.

We claim that Bn (for some n ∈ Z+) is also countable.

Proof. By the definition of Z+
n, Bn = Z+

n, which is clearly a finite cartesian product of countable
sets. Thus Bn is countable by Theorem 7.6.

(c) The set C =
⋃
n∈Z+

Bn.

We claim that C is countable.

Proof. Since n was arbitrary in part (b), we showed that Bn is countable for any n ∈ Z+. Thus
C =

⋃
n∈Z+

Bn is a countable union of countable sets, which is itself also countable by Theorem 7.5
as desired.

(d) The set D of all functions f : Z+ → Z+.

Clearly D = Z+
ω, which we claim is uncountable.

Proof. We proceed to show, as in Theorem 7.7, that any function g : Z+ → D is not surjective. So
denote

g(n) = xn = (xn1, xn2, . . .) ,

where of course each xnm ∈ Z+ since xn ∈ D and so is a function from Z+ to Z+. Now set

yn =

{
0 xnn 6= 0

1 xnn = 0

so that clearly y = (y1, y2, . . .) is an element of D. Now consider any n ∈ Z+. If xnn = 0 then
yn = 1 6= 0 = xnn, and if xnn 6= 0 then yn = 0 6= xnn. Thus clearly g(n) = xn 6= y since the nth
element of each differs. This shows that g cannot be surjective since y ∈ D and n was arbitrary. It
then follows from Theorem 7.1 that D is not countable.

(e) The set E of all functions f : Z+ → {0, 1}.

This is exactly the set Xω in Theorem 7.7, wherein it was shown to be uncountable.

(f) The set F of all functions f : Z+ → {0, 1} that are “eventually zero.” [We say that f is
eventually zero if there is a positive integer N such that f(n) = 0 for all n ≥ N .]

We claim that F is countable.
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Proof. For brevity define X = {0, 1}. First let FN be the set of all eventually zero functions
f : Z+ → X that are zero for n ≥ N , where of course N ∈ Z+. Then clearly F =

⋃
N∈Z+

FN .

We show that each FN is countable. So consider any N ∈ Z+. If N = 1 then clearly f : Z+ → X
defined by f(n) = 0 for n ∈ Z+ (which could be denoted (0, 0, . . .)) is the only element of FN = F1

so that fN is clearly finite and therefore countable. If N > 1 then for x = (x1, . . . , xN−1) ∈ XN−1

define

yn =

{
xn n < N

0 n ≥ N

for n ∈ Z+. It then trivial to show that g defined by g(x) = y = (y1, y2, . . .) is a bijection from
XN−1 to FN . Now, since X = {0, 1} is finite, XN−1 is finite by Corollary 6.8. Since this is in
bijective correspondence with FN , it follows that it must also be finite and therefore countable.

Thus F =
⋃
N∈Z+

FN is a countable union of countable sets, and so is countable by Theorem 7.5 as
desired

(g) The set G of all functions f : Z+ → Z+ that are eventually 1.

Since G is clearly a subset of H in part (h) below, it is countable by Corollary 7.3 since H is.

(h) The set H of all functions f : Z+ → Z+ that are eventually constant.

We claim that H is countable.

Proof. For N ∈ Z+, let HN be the set of functions f : Z+ → Z+ such that f(n) is constant for
n ≥ N . Thus clearly H =

⋃
N∈Z+

HN .

We show that each HN is countable. So consider N ∈ Z+. For any x = (x1, . . . , xN ) ∈ Z+
N define

yn =

{
xn n < N

xN n ≥ N

for n ∈ Z+, and set g(x) = y = (y1, y2, . . .). It is then a simple matter to show that g is a
bijection from Z+

N to HN . Then, since Z+
N is a finite product of countable sets, it is countable by

Theorem 7.6. Hence HN must also be countable since there is a bijective correspondence between
them.

Thus H =
⋃
N∈Z+

HN is the countable union of countable sets so that it must also be countable by
Theorem 7.5.

(i) The set I of all two-element subsets of Z+.

In part (j) below it is shown that the set J of all finite subsets of Z+ is countable. Since clearly
I ⊂ J , it follows that I is also countable by Corollary 7.3.

(j) The set J of all finite subsets of Z+.

We claim that J is countable.

Proof. First, let Jn denote the set of n-element subsets of Z+ (for n ∈ pints), and let J0 = {∅}
since ∅ is the only “zero-element” subset of Z+. Clearly then J =

⋃
n∈Z+∪{0} Jn. Obviously J0 is

finite and therefore countable. Next, we show that Jn is countable for any n ∈ Z+.

So consider any such n ∈ Z+. Clearly Z+
n is countable by Theorem 7.6 since it is a finite product

of countable sets. Hence there is a bijection f : Z+
n → Z+. We now construct an injective function

g : Jn → Z+
n. For any X ∈ Jn, we can choose a bijection h : X → {1, . . . , n} since it has n elements.

Since X ⊂ Z+, clearly h−1 ∈ Z+
n, so set g(X) = h−1. To show that g is injective, consider X and
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X ′ in Jn where X 6= X ′. Without loss of generality we can assume that there is an x ∈ X where
x /∈ X ′. Let h and h′ be the chosen bijections from X and X ′, respectively, to {1, . . . , n} so that
by definition g(X) = h−1 and g(X ′) = h′−1. Now let k = h(x) so that h−1(k) = x. It has to be
that h′−1(k) 6= x since otherwise x would be in X ′. Hence h−1(k) = x 6= h′−1(k), which shows that
g(X) = h−1 6= h′−1 = g(X ′). Thus g is injective since X and X ′ were arbitrary. It then follows that
f ◦ g is an injective function from Jn to Z+ so that Jn must be countable by Theorem 7.1.

Since n was arbitrary, this shows that Jn is countable for any n ∈ Z+. From this it follows from
Theorem 7.5 that J =

⋃
n∈Z+∪{0} Jn is also countable since it is clearly a countable union of countable

sets.

Exercise 7.6

We say that two sets A and B have the same cardinality if there is a bijection of A with B.

(a) Show that if B ⊂ A and if there is an injection

f : A→ B ,

then A and B have the same cardinality. [Hint: Define A1 = A, B1 = B, and for n > 1, An =
f(An−1) and Bn = f(Bn−1). (Recursive definition again!) Note that A1 ⊃ B1 ⊃ A2 ⊃ B2 ⊃ A3 ⊃
· · · . Define a bijection h : A→ B by the rule

h(x) =

{
f(x) if x ∈ An −Bn for some n,

x otherwise.]

(b) Theorem (Schroeder-Bernstein theorem). If there are injections f : A→ C and g : C → A, then A
and C have the same cardinality.

Solution:

(a)

Proof. Following the hint, we define two sequences of sets recursively:

A1 = A B1 = B

and

An = f(An−1) Bn = f(Bn−1)

for integer n > 1. Now define a function from A to B by

h(x) =

{
f(x) x ∈ An −Bn for some n ∈ Z+

x otherwise

for any x ∈ A.

First we show that B really is the range of h as this is not readily apparent. So consider any x ∈ A.
Clearly if x ∈ An − Bn for some n ∈ Z+ then h(x) = f(x) ∈ B since B is the range of f . On the
other hand, if this is not the case then x /∈ An − Bn for any n ∈ Z+, and h(x) = x. In particular,
x /∈ A1 − B1 = A − B so that it has to be that h(x) = x ∈ B, for otherwise it would be that
x ∈ A−B since x ∈ A. Hence, in either case, h(x) ∈ B so that h is indeed a function from A to B.

To show that h is injective, consider any x, x′ ∈ A where x 6= x′.
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1. Case: x ∈ An −Bn for some n ∈ Z+. Then by definition h(x) = f(x).

(a) Case: x′ ∈ Am−Bm for some m ∈ Z+. Then we clearly have h(x) = f(x) 6= f(x′) = h(x′)
since f is injective and x 6= x′.

(b) Case: x′ /∈ Am − Bm for all m ∈ Z+. Then h(x′) = x′. Since x ∈ An, we have that
f(x) ∈ f(An) = An+1. If it were the case that f(x) ∈ Bn+1 = f(Bn), then there would
be a y ∈ Bn such that f(y) = f(x). Of course, since f is injective, it would have to be
that x = y ∈ Bn, which we know is not the case since x ∈ An − Bn. Hence it has to be
that f(x) /∈ Bn+1 so that f(x) ∈ An+1 − Bn+1. From this it is clearly that it cannot be
that x′ = f(x) so that h(x′) = x′ 6= f(x) = h(x).

2. Case: x /∈ An −Bn for all n ∈ Z+. Then by definition h(x) = x.

(a) Case: x′ ∈ Am −Bm for some m ∈ Z+. This is the same as case 1b above with the roles
of x and x′ reversed.

(b) Case: x′ /∈ Am −Bm for all m ∈ Z+. Then clearly h(x) = x 6= x′ = h(x′).

Thus in all cases h(x) 6= h(x′), which shows that h is injective since x and x′ were arbitrary.

To show that h is also surjective, consider any y ∈ B, noting that also y ∈ A since B ⊂ A.

Case: y ∈ An − Bn for some n ∈ Z+. It cannot be that n = 1 since then y ∈ A1 − B1 = A − B,
and we know that y ∈ B. Hence n > 1 so that n − 1 ∈ Z+. Since y ∈ An = f(An−1), there is an
x ∈ An−1 where f(x) = y. Suppose for a moment that x ∈ Bn−1 so that y = f(x) ∈ f(Bn−1) = Bn,
which we know not to be the case. Thus it must be that x /∈ Bn−1 so that x ∈ An−1−Bn−1 and so
by definition h(x) = f(x) = y.

Case: y /∈ An −Bn for all n ∈ Z+. Then clearly h(y) = y by definition.

This shows that h is surjective since y was arbitrary.

Therefore it has been shown that h is a bijection from A to B, which shows that they have the same
cardinality by definition.

(b)

Proof. Clearly f is a bijection from A to f(A) since f is injective. Also, clearly the function g ◦ f
is an injective function from C into f(A) since both f and g are injective. Noting that obviously
f(A) ⊂ C, it then follows from part (a) that C and f(A) have the same cardinality so that there is
a bijection h : f(A)→ C. We then have that h ◦ f is a bijection from A to C so that they have the
same cardinality by definition.

Exercise 7.7

Show that the sets D and E of Exercise 7.5 have the same cardinality.

Solution:

Throughout what follows let AB denote the set of all functions from set A to set B.

Lemma 7.7.1. If there is an injection from A1 to A2 with A2 6= ∅, and an injection from B1 to
B2, then there is also an injection from AB1

1 to AB2
2 .

Proof. Since A2 6= ∅, there is an a2 ∈ A2. Since we know they exist, let fA : A1 → A2 and
fB : B1 → B2 be injections. We construct an injection F : AB1

1 → AB2
2 . So, for any g ∈ AB1

1 , define
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F (g) = h, where h ∈ AB2
2 is defined by

h(b) =

{
(fA ◦ g ◦ f−1

B )(b) b ∈ fB(B1)

a2 b /∈ fB(B1)

for b ∈ B2, noting that f−1
B is a function with domain fB(B1) since it is injective.

To show that F is injective, consider g1, g2 ∈ AB1
1 where g1 6= g2. Then there is a b1 ∈ B1 where

g1(b1) 6= g2(b1). Let b2 = fB(b1) so that clearly b2 ∈ fB(B1) and b1 = f−1
B (b2). Then clearly

F (g1)(b2) = (fA ◦ g1 ◦ f−1
B )(b2) = fA(g1(f−1

B (b2))) = fA(g1(b1))

6= fA(g2(b1)) = fA(g2(f−1
B (b2))) = (fA ◦ g2 ◦ f−1

B )(b2)

= F (g2)(b2)

since g1(b1) 6= g2(b1) and fA is injective. Thus F (g1) 6= F (g2), which shows that F is injective since
g1 and g2 were arbitrary.

Lemma 7.7.2. For sets A, B, and C, the set (AB)C has the same cardinality as the set AB×C .

Proof. We construct a bijection F : AB×C → (AB)C . So, for any f ∈ AB×C , we have that
f : B × C → A. Define g : C → AB by g(c) = h for any c ∈ C, where h : B → A is defined by
h(b) = f(b, c). Then assign F (f) = g.

To show that F is injective, consider f, f ′ ∈ AB×C where f 6= f ′. Then there is a (b, c) ∈ B × C
where f(b, c) 6= f ′(b, c). Also let g = F (f), g′ = F (f ′), h = g(c), and h′ = g′(c). Then, by definition,
we have h(b) = f(b, c) 6= f ′(b, c) = h′(b) so that g(c) = h 6= h′ = g′(c). From this it follows that
F (f) = g 6= g′ = F (f ′), which shows that F is injective since f and f ′ were arbitrary.

Now consider any g ∈ (AB)C and any (b, c) ∈ B × C. Let h = g(c) ∈ AB , and then assign
f(b, c) = h(b). Clearly then f : B × C → A so that f ∈ AB×C . So let g′ = F (f) and consider any
c ∈ C. Let h = g(c) and h′ = g′(c) so that h′(b) = f(b, c) by the definition of F . Consider any
b ∈ B so that h(b) = f(b, c) = h′(b) by the definition of f . Since b was arbitrary, this shows that
g(c) = h = h′ = g′(c). Since c was also arbitrary, this shows that F (f) = g′ = g. Lastly, since g was
arbitrary, this shows that F is surjective.

Main Problem.

Recall that we have D = Z+
ω = Z+

Z+ and E = Xω = XZ+ , where we let X = {0, 1}. We show
that these have the same cardinality.

Proof. First consider any f ∈ E = XZ+ . Then define g(n) = f(n) + 1 for n ∈ Z+ so that clearly
g ∈ Z+

Z+ = D. Now define the function h : E → D by h(f) = g. It is then trivial to show that h is
an injection.

Now, for n ∈ Z+, define xn = 1 and xi = 0 when i ∈ Z+ and i 6= n. Clearly then x = (x1, x2, . . .) ∈
XZ+ , and it is easily shown that the function defined by f(n) = x is an injection from Z+ to XZ+

Also clearly the identity function on Z+ is an injection since it is a bijection. It then follows from
Lemma 7.7.1 that there is an injection f1 : Z+

Z+ → (XZ+)Z+ , noting that clearly XZ+ 6= ∅.

We presently have that there is a bijection f2 : (XZ+)Z+ → XZ+×Z+ by Lemma 7.7.2, which is of
course also an injection. Finally, since Z+ × Z+ has the same cardinality as Z+ (by Corollary 7.4),
it follows that there is an injection from Z+ × Z+ to Z+. Since also the identity function on X is
an injection, we have again that there is an injection f3 : XZ+×Z+ → XZ+ by Lemma 7.7.1. Thus
clearly then f3 ◦ f2 ◦ f1 is an injection from Z+

Z+ = D to XZ+ = E.

Therefore, since there is an injection from E to D as well as from D to E, it follows from Exercise 7.6
part (b) that D and E have the same cardinality as desired.
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Exercise 7.8

Let X denote the two-element set {0, 1}; let B be the set of countable subsets of Xω. Show that Xω and
B have the same cardinality.

Solution:

Again let AB denote the set of functions from A to B.

Proof. First, for x ∈ Xω, clearly the function that maps x to the set {x} is an injective function
from Xω to B.

Now we construct an injection f1 : B → (Xω)ω. So consider any S ∈ B so that S is a countable
subset of Xω. Then, by Theorem 7.1, we can choose a surjective function g : Z+ → S. Note that
this does require the Axiom of Choice since we must choose such a surjection for each S ∈ B, and
clearly B is infinite. Since S ⊂ Xω, g can be considered as a function from Z+ to Xω so that
g ∈ (Xω)ω, though of course it would no longer necessarily be surjective with this range. So we
simply set f1(S) = g

To show that f1 is injective consider S, S′ ∈ B where S 6= S′. Then, setting g = f1(S) and
g′ = f1(S′), we have that g(Z+) = S and g′(Z+) = S′ by definition. Since S 6= S′, we have that g and
g′ have the same domain but different image sets. Clearly this means that f1(S) = g 6= g′ = f1(S′),
which shows that f1 is injective since S and S′ were arbitrary.

Hence f1 is an injection from B to (Xω)ω = (XZ+)Z+ . Now, from Lemma 7.7.2, we have that
(XZ+)Z+ has the same cardinality as XZ+×Z+ so that there is a bijection f2 : (XZ+)Z+ → XZ+×Z+ ,
which is of course also an injection. Finally, since Z+ × Z+ has the same cardinality as Z+ (by
Corollary 7.4), it follows that there is an injection from Z+ × Z+ to Z+. Since also the identity
function on X is an injection, we have that there is an injection f3 : XZ+×Z+ → XZ+ by Lemma 7.7.1.
Then clearly f3 ◦ f2 ◦ f1 is an injection from B to XZ+ = Xω.

Since there is an injection from Xω to B and vice-versa, it follows that they have the same cardinality
by Exercise 7.6 part (b) as desired.

Exercise 7.9

(a) The formula

h(1) = 1 ,

(∗) h(2) = 2 ,

h(n) = [h(n+ 1)]2 − [h(n− 1)]2 for n ≥ 2

is not one to which the principle of recursive definition applies. Show that nevertheless there does
exist a function h : Z+ → R satisfying this formula. [Hint: Reformulate (∗) so that the principle
will apply and require h to be positive.]

(b) Show that the formula (∗) of part (a) does not determine h uniquely. [Hint: If h is a positive
function satisfying (∗), let f(i) = h(i) for i 6= 3, and let f(3) = −h(3).]

(c) Show that there is no function h : Z+ → R satisfying the formula

h(1) = 1 ,

h(2) = 2 ,

h(n) = [h(n+ 1)]2 + [h(n− 1)]2 for n ≥ 2.
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Solution:

(a) First, notice that (∗) does not satisfy the principle of recursive definition because, for n ≥ 2,
h(n) is not defined strictly in terms of values of h for positive integers less than n, since its definition
depends on h(n+ 1). Now we show that there does exists a function satisfying (∗).

Proof. Consider the following reformulation:

h(1) = 1 ,

h(2) = 2 ,

h(n) =
√
h(n− 1) + [h(n− 2)]2 for n > 2 ,

where as is convention we take the positive square root for h(n). Clearly for n ∈ {1, 2} we have
that h(n) is positive. Now suppose n > 2 and that h(k) is positive for k < n so that h(n − 1)
and h(n − 2) are both positive. Then clearly h(n − 1) + [h(n − 2)]2 is positive so that h(n) =√
h(n− 1) + [h(n− 2)]2 is defined and is positive. Hence h(n) is positive and well-defined for all

n ∈ Z+ by induction.

Thus, since h(n) depends only on values of h for integers less than n, this satisfies the recursion
principle so that a unique h satisfying the above exists. We also claim that this h satisfies (∗).
Clearly the explicitly defined values of h(1) and h(2) are satisfied. For n ≥ 2, we have that n+1 > 2
so that, by definition,

h(n+ 1) =
√
h((n+ 1)− 1) + [h((n+ 1)− 2)]2 =

√
h(n) + [h(n− 1)]2

[h(n+ 1)]2 = h(n) + [h(n− 1)]2

h(n) = [h(n+ 1)]2 − [h(n− 1)]2 ,

which is the final constraint of (∗) so that it is also satisfied since n ≥ 2 was arbitrary.

(b) First note that, for the recursively defined function h from part (a),

h(3) =
√
h(2) + [h(1)]2 =

√
2 + 12 =

√
3

h(4) =
√
h(3) + [h(2)]2 =

√√
3 + 22 =

√√
3 + 4 .

Now define the function f as in the hint, that is f(i) = h(i) for i 6= 3 and f(3) = −h(3). Then we
clearly have f(3) = −h(3) = −

√
3 while

[f(4)]2 − [f(2)]2 = [h(4)]2 − [h(2)]2 =

(√√
3 + 4

)2

− 22 =
√

3 + 4− 4 =
√

3

so that f(n) = −
√

3 6=
√

3 = [f(n + 1)]2 − [f(n − 1)]2 for n = 3, and hence (∗) is violated. So it
would seem that the hint as given does not exactly work.

Now we show that the function satisfying (∗) is not unique, taking inspiration from the hint.

Proof. We construct a function f , different from h from part (a), that also satisfies (∗). We define
f using recursion:

f(1) = 1 ,

f(2) = 2 ,

f(3) = −
√

3 ,

f(n) =
√
f(n− 1) + [f(n− 2)]2 for n > 3 .
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Clearly, since each f(n) is defined only in terms of f(k) for k < n (or without dependence on any
values of f), f exists uniquely by the recursion principle so long as each f(n) is well-defined. We
show this presently by induction.

Clearly f(n) is defined for n ∈ {1, 2, 3}. For n = 4 we have f(n) = f(4) =
√
f(3) + [f(2)]2 =√

−
√

3 + 22
√
−
√

3 + 4. Now, since 1 < 3, we have that
√

3 < 3 < 4 so that −
√

3 + 4 = 4−
√

3 > 0
and hence the square root, and therefore f(4), is defined and positive. Now consider any n > 4
and suppose that f(n− 1) is positive. Then clearly f(n) =

√
f(n− 1) + [f(n− 2)]2 is defined and

positive since f(n − 1) > 0, noting that even if f(n − 2) ≤ 0, its square is non-negative.. This
completes the induction that shows that f is uniquely defined.

Clearly f 6= h since f(3) = −
√

3 6=
√

3 = h(3). Also obviously f(n) satisfies (∗) explicitly for
n ∈ {1, 2}. For n = 2 we have

[f(n+ 1)]2 − [f(n− 1)]2 = [f(3)]2 − [f(1)]2 = [−
√

3]2 − 12 = 3− 1 = 2 = f(n) .

Then, for n > 2 we have n+ 1 > 3 so that, by definition,

f(n+ 1) =
√
f((n+ 1)− 1) + [f((n+ 1)− 2)]2 =

√
f(n) + [f(n− 1)]2

[f(n+ 1)]2 = f(n) + [f(n− 1)]2

f(n) = [f(n+ 1)]2 − [f(n− 1)]2 .

Thus the recursive part of (∗) holds for n ≥ 2 so that (∗) holds over the whole domain of f as
desired.

(c)

Proof. Suppose that such a function h does exist. Since the recursive property holds for n ≥ 2, we
have

h(2) = [h(3)]2 + [h(1)]2

2 = [h(3)]2 + 12

[h(3)]2 = 2− 12 = 1

h(3) = ±1 .

Similarly, we have

h(3) = [h(4)]2 + [h(2)]2

±1 = [h(4)]2 + 22

[h(4)]2 = ±1− 22 = ±1− 4

so that either [h(4)]2 = 1 − 4 = −3 or [h(4)]2 = −1 − 4 = −5. In either case we have [h(4)]2 < 0,
which is of course impossible since the square of a real number is always non-negative! So it must
be that such a function does not exist.

§8 The Principle of Recursive Definition

Exercise 8.1

Let (b1, b2, . . .) be an infinite sequence of real numbers. The sum
∑n
k=1 bk is defined by induction as
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follows:
n∑
k=1

bk = b1 for n = 1,

n∑
k=1

bk =

(
n−1∑
k=1

bk

)
+ bn for n > 1.

Let A be the set of real numbers; choose ρ so that Theorem 8.4 applies to define this sum rigorously.
We sometimes denote the sum

∑n
k=1 bk by the symbol b1 + b2 + · · ·+ bn.

Solution:

For a function f : {1, . . . ,m} → A, define ρ(f) = f(m) + bm+1. For clarity, denote the sum function
by s : Z+ → A so that s(n) =

∑n
k=1 bk. Then by Theorem 8.4 there is a unique s : Z+ → A such

that

s(1) = b1 ,

s(n) = ρ(s � {1, . . . , n− 1}) for n > 1.

Then we clearly have that
∑1
k=1 bk = s(1) = b1 and

n∑
k=1

bk = s(n) = ρ(s � {1, . . . , n− 1}) = s(n− 1) + b(n−1)+1 =

n−1∑
k=1

bk + bn

for n > 1 as desired.

Exercise 8.2

Let (b1, b2, . . .) be an infinite sequence of real numbers. We define the product
∏n
k=1 bk by the equations

1∏
k=1

bk = b1 ,

n∏
k=1

bk =

(
n−1∏
k=1

bk

)
· bn for n > 1.

Use Theorem 8.4 to define the product rigorously. We sometimes denote the product
∏n
k=1 bk by the

symbol b1b2 · · · bn.

Solution:

First, for any function f : {1, . . . ,m} → R, define ρ by ρ(f) = f(m) · bm+1. Then, by the recursion
theorem (Theorem 8.4), there is a unique function p : Z+ → R such that

p(1) = b1 ,

p(n) = ρ(p � {1, . . . , n− 1}) for n > 1.

Then we define
∏n
k=1 bk = p(n) so that we have

∏1
k=1 bk = p(1) = b1 and

n∏
k=1

bk = p(n) = ρ(p � {1, . . . , n− 1}) = p(n− 1) · b(n−1)+1 =

(
n−1∏
k=1

bk

)
· bn

for n > 1 as desired.
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Exercise 8.3

Obtain the definitions of an and n! for n ∈ Z+ as special cases of Exercise 8.2.

Solution:

Regarding an, defined the sequence (b1, b2, . . .) by bi = a for every i ∈ Z+, which we could denote by
(a, a, . . .). Then define an =

∏n
k=1 bk as it is defined in Exercise 8.2, and we claim that this satisfies

the inductive definition given in Exercise 4.6 and Example 8.2.

Proof. First, we clearly have a1 =
∏1
k=1 bk = b1 = a. Next, for n > 1, we have

∗an =

n∏
k=1

bk =

(
n−1∏
k=1

bk

)
· bn = an−1 · a ,

which shows that the inductive definition is satisfied.

Since it does not seem to be given in the book thus far, we reiterate the typical inductive definition
for n!:

1! = 1 ,

n! = (n− 1)! · n for n > 1.

Now, define the sequence (b1, b2, . . .) by bi = i for i ∈ Z+. We then claim that defining n! =
∏n
k=1 bk

as defined in Exercise 8.2 satisfies this definition.

Proof. First, we have 1! =
∏1
k=1 bk = b1 = 1. Then we also have

n! =

n∏
k=1

bk =

(
n−1∏
k=1

bk

)
· bn = (n− 1)! · n

for n > 1 so that the definition is clearly satisfied.

Exercise 8.4

The Fibonacci numbers of number theory are defined recursively by the formula

λ1 = λ2 = 1 ,

λn = λn−1 + λn−2 for n > 2.

Define them rigorously by use of Theorem 8.4.

Solution:

First, note that the Fibonacci numbers are all positive integers. So, for any function f : {1, . . . ,m} →
Z+ define

ρ(f) =

{
1 m = 1

f(m) + f(m− 1) m > 1 ,

noting that clearly the range of ρ is still Z+ since that is the range of f . Then, by Theorem 8.4,
there is a unique function F : Z+ → Z+ such that

F (1) = 1 ,
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F (n) = ρ(F � {1, . . . , n− 1}) for n > 1.

We claim that the Fibonacci numbers are λn = F (n) for n ∈ Z+.

Proof. To show that the numbers λn satisfy the inductive definition of the Fibonacci numbers, first
note that we clearly have λ1 = F (1) = 1. We also have that

λ2 = F (2) = ρ(F � {1}) = 1 .

Lastly, for any n > 2, clearly n > 1 also and n− 1 > 1 so that

λn = F (n) = ρ(F � {1, . . . , n− 1}) = F (n− 1) + F ([n− 1]− 1) = λn−1 + λn−2 ,

which shows that the inductive definition is satisfied.

Exercise 8.5

Show that there is a unique function h : Z+ → R+ satisfying the formula

h(1) = 3 ,

h(i) = [h(i− 1) + 1]1/2 for i > 1.

Solution:

Proof. First, for any function f : {1, . . . ,m} → R+, define

ρ(f) = [f(m) + 1]1/2 .

Consider any m ∈ Z+ and any function f : {1, . . . ,m} → R+. Since f(m) ∈ R+, it follows that
f(m) + 1 ∈ R+ also so that ρ(f) = [f(m) + 1]1/2 is defined and is positive. Hence ρ is a well-defined
function with range R+ since m and f were arbitrary. It then follows from the principle of recursive
definition (Theorem 8.4) that there is a unique function h : Z+ → R+ such that

h(1) = 3 ,

h(n) = ρ(h � {1, . . . , n− 1}) for n > 1.

It is easy to see that this h satisfies the required property since h(1) = 3 and

h(i) = ρ(h � {1, . . . , i− 1}) = [h(i− 1) + 1]1/2

for i > 1 as desired.

Now we show that such a function is unique. Suppose that g and h both satisfy the inductive
formula. We show by induction that g(i) = h(i) for all i ∈ Z+, from which it clearly follows that
g = h. First, we clearly have g(1) = 3 = h(1). Now suppose that g(i) = h(i) for i ∈ Z+. Then we
have that i + 1 > 1 so that g(i + 1) = [g(i) + 1]1/2 = [h(i) + 1]1/2 = h(i + 1) since g(i) = h(i) and
we are taking the positive root. This completes the induction.

Exercise 8.6
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(a) Show that there is no function h : Z+ → R+ satisfying the formula

h(1) = 3 ,

h(i) = [h(i− 1)− 1]1/2 for i > 1.

Explain why this example does not violate the principle of recursive definition.

(b) Consider the recursion formula

h(1) = 3 ,

h(i) =

{
[h(i− 1)− 1]1/2 if h(i− 1) > 1

5 if h(i− 1) ≤ 1

}
for i > 1.

Show that there exists a unique function h : Z+ → R+ satisfying this formula.

Solution:

(a)

Proof. Suppose to the contrary that there is such a function h. Then clearly h(1) = 3 and h(2) =√
h(1)− 1 =

√
3− 1 =

√
2. Now, since 1 < 2 < 4, we clearly have 1 <

√
2 <

√
4 = 2. Thus

0 <
√

2 − 1 < 1 so that h(3) =
√
h(2)− 1 =

√√
2− 1 is defined. However, we also have that

0 < h(3) =
√√

2− 1 < 1 since 0 <
√

2− 1 < 1, and hence h(3)− 1 < 0. We then have that

h(4) =
√
h(3)− 1

[h(4)]2 = h(3)− 1 < 0 ,

which is of course impossible since a square is always non-negative. This contradiction shows that
such a function h cannot exist.

Note that this does not ostensibly violate the principle of recursive definition since h(n) is defined
only in terms of values of h less than n for n > 1. However, were one to try to show the existence of h
rigorously using the principle, one would find that the required function ρ would not be well-defined.

(b)

Proof. First, for any function f : {1, . . . ,m} → R+, define

ρ(f) =

{
[f(m)− 1]1/2 f(m) > 1

5 f(m) ≤ 1 .

Consider any m ∈ Z+ and any function f : {1, . . . ,m} → R+. If f(m) > 1 then clearly f(m)−1 > 0
so that ρ(f) = [f(m)−1]1/2 is defined and positive. If f(m) ≤ 1 then clearly ρ(f) = 5 is also defined
and positive. Since m and f were arbitrary, this shows that ρ is a well-defined function with range
R+.

It then follows from the principle of recursive definition (Theorem 8.4) that there is a unique function
h : Z+ → R+ such that

h(1) = 3 ,

h(n) = ρ(h � {1, . . . , n− 1}) for n > 1.
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To see that this h satisfies the recursion formula, clearly h(1) = 3, and, for i > 1, we have

h(i) = ρ(h � {1, . . . , i− 1}) =

{
[h(i− 1)− 1]1/2 h(i− 1) > 1

5 h(i− 1) ≤ 1

as desired.

To show that this function is unique, suppose that g and h both satisfy the recursive formula.
We show by induction that g(n) = h(n) for all n ∈ Z+ so that clearly g = h. First, obviously
g(1) = 3 = h(1). Now suppose that g(n) = h(n) for n ∈ Z+ so that n + 1 > 1. Then, if
g(n) = h(n) > 1 then we have g(n+ 1) = [g(n)− 1]1/2 = [h(n)− 1]1/2 = h(n+ 1) since g(n) = h(n)
and the roots are taken to be positive. Similarly, if g(n) = h(n) ≤ 1, then g(n+ 1) = 5 = h(n+ 1).
Thus in either case g(n+ 1) = h(n+ 1), which completes the induction.

Exercise 8.7

Prove Theorem 8.4.

Solution:

The proof follows the same pattern used to prove (∗) at the beginning of the section, which culminates
in Theorem 8.3. Similar to that approach, two lemmas will be proved first. In what follows, (∗)
refers to the properties defined in the statement of Theorem 8.4.

Lemma 8.7.1. Given n ∈ Z+, there exists a function f : {1, . . . , n} → A that satisfies (∗) for all i
in its domain.

Proof. We show this by induction on n. First, for n = 1, clearly the function f : {1} → A defined
by f(1) = a0 satisfies (∗). Now suppose that (∗) holds for some function f ′ : {1, . . . , n} → A for
n ∈ Z+. Now define f : {1, . . . , n+ 1} → A by

f(i) =

{
f ′(i) i ∈ {1, . . . , n}
ρ(f ′) i = n+ 1

for any i ∈ {1, . . . , n+ 1}. Note that f is not defined in terms of itself, but in terms of f ′ and ρ.

First, we clearly have f ′ = f � {1, . . . , n} since f(i) = f ′(i) for all i ∈ {1, . . . , n}. Then, clearly
f(1) = f ′(1) = a0 since 1 ≤ n and f ′ satisfies (∗). Consider any i ∈ {1, . . . , n+ 1} where i > 1.
Then we have

f(i) = f ′(i) = ρ(f ′ � {1, . . . , i− 1}) = ρ(f � {1, . . . , i− 1})

if 1 < i ≤ n since f ′ satisfies (∗). Lastly, if i = n+ 1, then

f(i) = ρ(f ′) = ρ(f � {1, . . . , n}) = ρ(f � {1, . . . , i− 1})

again. This shows that f satisfies (∗), thereby completing the induction.

Lemma 8.7.2. Suppose that f : {1, . . . , n} → A and g : {1, . . . ,m} → C both satisfy (∗) for all i in
their respective domains. Then f(i) = g(i) for all i in both domains.

Proof. Suppose that this is not the case and let i be the smallest integer (in the domain of both f
and g) for which f(i) 6= g(i). Hence f(j) = g(j) for all 1 ≤ j < i so that clearly f � {1, . . . , i− 1} =
g � {1, . . . , i− 1}. Now, it cannot be that i = 1 since clearly f(1) = a0 = g(1). So then it must be
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that 1 < i so that f(i) = ρ(f � {1, . . . , i− 1}) and g(i) = ρ(g � {1, . . . , i− 1}) since they both satisfy
(∗). Since f � {1, . . . , i− 1} = g � {1, . . . , i− 1}, we then clearly have

f(i) = ρ(f � {1, . . . , i− 1}) = ρ(g � {1, . . . , i− 1}) = g(i)

in contradiction with the definition of i. Thus the result must be true as desired.

Main Problem.

Proof. Lemmas 8.7.1 and 8.7.2 show that there exists a unique function fn : {1, . . . , n} → A satis-
fying (∗) for every n ∈ Z+. We then define h =

⋃
n∈Z+

fn and claim that this is the unique function

from Z+ to A satisfying (∗).
First we must show that h is a function at all. So consider any i ∈ Z+ and suppose that (i, x) and
(i, y) are in h. Then there are n,m ∈ Z+ where (i, x) ∈ fn and (i, y) ∈ fm since h =

⋃
n∈Z+

fn,

noting that it must be that i ≤ n and i ≤ m. Since fn and fm both satisfy (∗) and clearly i is in
the domain of both, it follows from Lemma 8.7.2 that x = fn(i) = fm(i) = y. This shows that h is
a function since (i, x) and (i, y) were arbitrary. Also, clearly the domain of h is Z+ since, for any
i ∈ Z+, i is in the domain of fi and so in the domain of h. Lastly, clearly the range of h is A since
that is the range of all the fn functions.

Now we show that h satisfies (∗). First we have that 1 is clearly in the domain of h and f1 so
that it has to be that h(1) = f1(1) = a0 since h is a function, f1 ⊂ h, and f1 satisfies (∗).
Now suppose that i > 1. Then clearly i is in the domain of h and fi so that it has to be that
h(j) = fi(j) for 1 ≤ j ≤ i since h was shown to be a function and fi ⊂ h. It then follows that
h � {1, . . . , i− 1} = fi � {1, . . . , i− 1}. Thus we have

h(i) = fi(i) = ρ(fi � {1, . . . , i− 1}) = ρ(h � {1, . . . , i− 1})

since fi satisfies (∗). This completes the proof that h also satisfies (∗).
Lastly, we show that h is unique, which is very similar to the proof of Lemma 8.7.2. So suppose
that f and g are two functions from Z+ to A that both satisfy (∗). Suppose also that f 6= g
so that there is a smallest integer i such that f(i) 6= g(i). Now, it cannot be that i = 1 since
we have f(1) = a0 = g(1) since they both satisfy (∗). Hence i > 1 and, since i is the smallest
integer where f(i) 6= g(i), it follows that f(j) = g(j) for all 1 ≤ j < i. Therefore we have that
f � {1, . . . , i− 1} = g � {1, . . . , i− 1} so that

f(i) = ρ(f � {1, . . . , i− 1}) = ρ(g � {1, . . . , i− 1}) = g(i)

since f and g both satisfy (∗) and i > 1. This of course contradicts the definition of i so that it has
to be that in fact f = g. This shows the uniqueness of h constructed above.

Exercise 8.8

Verify the following version of the principle of recursive definition: Let A be a set. Let ρ be a function
assigning, to every function f mapping a section Sn of Z+ into A, an element ρ(f) of A. Then there is
a unique function h : Z+ → A such that h(n) = ρ(h � Sn) for each n ∈ Z+.

Solution:

Denote the above property of h by (∗). We show that there is a unique h : Z+ → A satisfying this
using the standard principle of recursive definition, Theorem 8.4.
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Proof. First, note that S1 = {n ∈ Z+ | n < 1} = ∅ by definition. Note also that ∅ itself is vacuously
a function from S1 = ∅ to A, and is the only such function. It then follows that f � S1 = f � ∅ = ∅
for any f : Sn → A for some n ∈ Z+. So then, define a0 = ρ(∅) so that there is a unique function
h such that

h(1) = a0 ,

h(i) = ρ(h � {1, . . . , i− 1}) for i > 1.

by Theorem 8.4. Denote this property by (+).

We first claim that this h satisfies (∗). To see this, consider any n ∈ Z+. If n = 1 then we have

h(n) = h(1) = a0 = ρ(∅) = ρ(h � ∅) = ρ(h � S1) = ρ(h � Sn) .

If n > 1 then by (+) we have

h(n) = ρ(h � {1, . . . , n− 1}) = ρ(h � Sn)

again. Since n was arbitrary, this shows that (∗) is satisfied.

To show that this h satisfying (∗) is unique, suppose that another function f : Z+ → A satisfies (∗).
Then we have

h(1) = ρ(h � S1) = ρ(h � ∅) = ρ(∅) = a0

and

h(i) = ρ(h � Si) = ρ(h � {1, . . . , i− 1})

for i > 1. This shows that f also satisfies (+), and, since we know that the function satisfying (+)
is unique, it must be that f = h as desired.

§9 Infinite Sets and the Axiom of Choice

Exercise 9.1

Define an injective map f : Z+ → Xω, where X is the two-element set {0, 1}, without using the choice
axiom.

Solution:

For any n ∈ Z+, define

xi =

{
0 i 6= n

1 i = n

for i ∈ Z+. Then set f(n) = x = (x1, x2, . . .) so that clearly f is a function from Z+ to Xω. It is
easy to show that f is injective.

Proof. Consider n,m ∈ Z+ where n 6= m. Then let x = f(n) and y = f(m). Then we have that
xn = 1 while yn = 0 by the definition of f since n 6= m. It thus follows that f(n) = x 6= y = f(m),
which shows that f is injective since n and m were arbitrary.
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Exercise 9.2

Find if possible a choice function for each of the following collections, without using the choice axiom:

(a) The collection A of nonempty subsets of Z+.

(b) The collection B of nonempty subsets of Z.

(c) The collection C of nonempty subsets of the rational numbers Q.

(d) The collection D of nonempty subsets of Xω, where X = {0, 1}.

Solution:

Lemma 9.2.1. If A is a countable set and A is the collection of nonempty subsets of A then A has
a choice function.

Proof. Since A is countable, there is an injective function A → Z+ by Theorem 7.1. We define a
choice function c : A →

⋃
B∈AB. Consider any X ∈ A so that X is a nonempty subset of A. Then

f(X) is a nonempty subset of Z+ so that it has a unique smallest element n since Z+ is well-ordered.
Now, since n ∈ f(X), clearly there is an x ∈ X such that f(x) = n. Moreover, it follows from the
fact that f is injective that this x is unique. So set c(X) = x so that clearly x is a choice function
on A since c(X) = x ∈ X.

Main Problem.

(a) Since Z+ is countable, a choice function can be constructed as in Lemma 9.2.1.

(b) Since Z is countable (by Example 7.1), a choice function can be constructed as in Lemma 9.2.1.

(c) Since Q is countable (by Exercise 7.1), a choice function can be constructed as in Lemma 9.2.1.

(d) First, there is an injective function f from the real interval [0, 1] to Xω. The most straightforward
such function is, for each x ∈ [0, 1] let 0.x1x2x3 . . . be a unique binary expansion of x (these can be
made unique by avoiding binary expansions that end in all 1’s, noting though that the expansion
of 1 itself must be 0.111 . . .). So suppose that c were a choice function on D (that is presumably
constructed without the choice axiom). If X is a nonempty subset of [0, 1] then f(X) is a set in
D so that we can choose c(f(X)) ∈ f(X). Since f is injective, there is a unique x ∈ X where
f(x) = c(f(X)), and so choosing x results in a choice function on the collection of nonempty subsets
of [0, 1] since X was arbitrary.

This would allow one to then well-order [0, 1] without using the choice axiom, which evidently
nobody has done. As far as I have been able to determine, this has not yet been proven impossible,
it is just that nobody has been able to do it. So it would seem that such an explicit construction of
a choice function on D would at least make one famous. Or else it is impossible, which is what we
assume to be the case here.

Exercise 9.3

Suppose that A is a set and {fn}n∈Z+
is a given indexed family of injective functions

fn : {1, . . . , n} → A .

Show that A is infinite. Can you define an injective function f : Z+ → A without using the choice
axiom?
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Solution:

We defer the proof that A is infinite until we define an injective f : Z+ → A, which we can do
without using the choice axiom by using the principle of recursive definition.

Proof. First, let a0 = f1(1) ∈ A. Now consider any function g : Sn → A. If g = ∅ then set
ρ(∅) = ρ(g) = a0. Otherwise let Ig = {i ∈ Sn+1 | fn(i) /∈ g(Sn)}. Suppose for the moment that
Ig = ∅. Consider any x ∈ fn(Sn+1) so that there is a k ∈ Sn+1 where fn(k) = x. Then it has to
be that x = fn(k) ∈ g(Sn) since otherwise we would have k ∈ Ig. Since x was arbitrary, this shows
that fn(Sn+1) ⊂ g(Sn). Thus the identity function h1 : fn(Sn+1) → g(Sn) is an injection. Clearly
g is a surjection from Sn to its image g(Sn) so that there is we can construct a particular injection
h2 : g(Sn) → Sn by Corollary 6.7. Lastly, fn is an injection from Sn+1 to fn(Sn+1). Therefore
h = h2 ◦h1 ◦ fn is an injection from Sn+1 to Sn. Hence h is a bijection from Sn+1 to h(Sn+1), which
is clearly a subset of Sn since Sn is the range of h. But, since Sn ( Sn+1, clearly h(Sn+1) ( Sn+1

as well so that h is a bijection from Sn+1 onto a proper subset of itself. As Sn+1 is clearly finite,
this violates Corollary 6.3 so that we have a contradiction.

So it must be that Ig 6= ∅ so that it is a nonempty set of positive integers, and hence has a smallest
element i. So simply set ρ(g) = fn(i). Now, it then follows from the principle of recursive definition
that there is a unique f : Z+ → A such that

f(1) = a0 ,

f(n) = ρ(f � Sn) for n > 1.

We claim that this f is injective.

To see this we first show that f(n) /∈ f(Sn) for all n ∈ Z+. If n = 1 we have that f(n) = f(1) = a0 =
f1(1) and f(Sn) = f(∅) = ∅ so that clearly the result holds. If n > 1 then f(n) = ρ(f � Sn) = fn(i)
for some i ∈ If�Sn since clearly Sn 6= ∅ so that f � Sn 6= ∅. Since i ∈ If�Sn we have that
f(n) = fn(i) /∈ (f � Sn)(Sn) = f(Sn) as desired. This shows that f is injective. For consider any
n,m ∈ Z+ where n 6= m. Without loss of generality we can assume that n < m. Then clearly
f(n) ∈ f(Sm) since n ∈ Sm since n < m. However, by what was just shown, we have f(m) /∈ f(Sm)
so that it has to be that f(n) 6= f(m). This shows f to be injective since n and m were arbitrary.

Lastly, since f : Z+ → A is injective, it follows that f is a bijection from Z+ to f(Z+) ⊂ A. Hence
f(Z+) is infinite since Z+ is, and since it is a subset of A, it has to be that A is infinite as well.

Exercise 9.4

There was a theorem in §7 whose proof involved an infinite number of arbitrary choices. Which one was
it? Rewrite the proof so as to make explicit use of the choice axiom. (Several of the earlier exercises
have used the choice axiom also.)

Solution:

This was the proof of Theorem 7.5, which asserts that a countable union of countable sets is also
countable. The following rewritten proof makes explicit use of the choice axiom and so points out
where it is needed.

Proof. Let {An}n∈J be an indexed family of countable sets, where the index set J is {1, . . . , N}
or Z+. Assume that each set An is nonempty for convenience since this does not change anything.
Now, for each n ∈ J , let Bn be the set of surjective functions from Z+ to An. Since each An is
countable, it follows from Theorem 7.1 that Bn 6= ∅. Then, by the axiom of choice, the collection
{Bn}n∈J has a choice function c such that c(Bn) ∈ Bn for every n ∈ J .
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Now set fn = c(Bn) for every n ∈ J so that fn ∈ Bn and hence is a surjection from Z+ into
An. Since J is countable, there is also a surjection g : Z+ → J by Theorem 7.1. Then define
h : Z+ × Z+ →

⋃
n∈J An by h(k,m) = fg(k)(m) for k,m ∈ Z+.

We now show that h is surjective. So consider any a ∈
⋃
n∈J An so that a ∈ An for some n ∈ J .

Since g : Z+ → J is surjective, there is a k ∈ Z+ where g(k) = n. Also, since fn : Z+ → An is
surjective, there is an m ∈ Z+ where fn(m) = a. We then have by definition that

h(k,m) = fg(k)(m) = fn(m) = a ,

which shows that h is surjective since a was arbitrary.

Lastly, since Z+ ×Z+ is countable by Example 7.2, there is a bijection h′ : Z+ → Z+ ×Z+. It then
follows that h◦h′ is a surjection from Z+ to

⋃
n∈J An, which shows that

⋃
n∈J An is countable again

by Theorem 7.1.

Exercise 9.5

(a) Use the choice axiom to show that if f : A→ B is surjective, then f has a right inverse h : B → A.

(b) Show that if f : A → B is injective and A is not empty, then f has a left inverse. Is the axiom of
choice needed?

Solution:

(a)

Proof. Suppose that f : A → B is surjective. Now, by the choice axiom, the collection A =
P (A)− {∅} is a collection of nonempty sets and thus has a choice function c. Consider any b ∈ B
and the set Ab = {x ∈ A | f(x) = b}. Then Ab 6= ∅ since f is surjective, and hence Ab ∈ A since
clearly also Ab ⊂ A so that Ab ∈ P (A). So set h(b) = c(Ab) ∈ Ab so that h(b) ∈ A since Ab ⊂ A.
Hence h is a function from B to A.

Recall that, by definition, h is a right inverse if and only if f ◦ h = iB , which we show presently. So
consider any b ∈ B and let a = h(b) = c(Ab) ∈ Ab so that f(a) = b. Then clearly

(f ◦ h)(b) = f(h(b)) = f(a) = b ,

which shows that f ◦ h = iB since b was arbitrary. Hence h is a right inverse of f .

(b)

Proof. Suppose that f : A → B is injective and A 6= ∅. Then f is a bijection from A to its image
f(A) ⊂ B and hence its inverse f−1 is a function from f(A) to A. Now, since A is nonempty, there
is an a0 ∈ A. So define h : B → A by

h(b) =

{
f−1(b) b ∈ f(A)

a0 b /∈ f(A)

for any b ∈ B. Recall that h is a left inverse of f if and only if h ◦ f = iA by definition, which we
show now.
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So consider any a ∈ A and let b = f(a) so that clearly b ∈ f(A). Hence by definition h(b) = f−1(b) =
f−1(f(a)) = a. Finally, we have

(h ◦ f)(a) = h(f(a)) = h(b) = a .

This shows that h ◦ f = iA since a was arbitrary. Therefore h is a left inverse of f as desired.

Note that this proof does not require the axiom of choice as we did not need to make a choice for
each b ∈ B in order to define h as we did in part A.

Exercise 9.6

Most of the famous paradoxes of naive set theory are associated in some way or another with the concept
of the “set of all sets.” None of the rules we have given for forming sets allows us to consider such a set.
And for good reason – the concept itself is self-contradictory. For suppose that A denotes the “set of all
sets.”

(a) Show that P (A) ⊂ A; derive a contradiction.

(b) (Russell’s paradox.) Let B be the subset of A consisting of all sets that are not elements of
themselves:

B = {A | A ∈ A and A /∈ A} .

(Of course, there may be no set A such that A ∈ A; If such is the case, then B = A.) Is B an
element of itself or not?

Solution:

(a) We show that P (A) ⊂ A and that a contradiction results.

Proof. Consider any set A ∈ P (A). Since A is a set and A is the set of all sets, clearly A ∈ A
and hence P (A) ⊂ A since A was arbitrary. Therefore the identity function iP(A) is clearly an
injection from P (A) to A. However, this is impossible by Theorem 7.8! Hence we have reached a
contradiction.

(b) We show that the existence of B is a contradiction by showing that supposing either B ∈ B or
B /∈ B results in a contradiction.

Proof. Suppose that B ∈ B so that by definition we have B ∈ A and B /∈ B, the latter of which
clearly contradicts our initial supposition. On the other hand, suppose that B /∈ B. Then, since
clearly also B ∈ A since it is a set, it follows that B ∈ B by definition. This again contradicts the
initial supposition. Since one or the other (B ∈ B or B /∈ B) must be true, we are then guaranteed
to have a contradiction.

Exercise 9.7

Let A and B be two nonempty sets. If there is an injection of B into A, but no injection of A into B,
we say that A has greater cardinality than B.

(a) Conclude from Theorem 9.1 that every uncountable set has greater cardinality than Z+.

(b) Show that if A has greater cardinality than B, and B has greater cardinality than C, then A has
greater cardinality than C.
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(c) Find a sequence A1, A2, . . . of infinite sets, such that for each n ∈ Z+, the set An+1 has greater
cardinality than An.

(d) Find a set that for every n has cardinality greater than An.

Solution:

Lemma 9.7.1. For any set A, P (A) has greater cardinality than A.

Proof. Clearly the function that maps a ∈ A to {a} ∈ P (A) is an injection. However, we know from
Theorem 7.8 that there is no injection from P (A) to A. Together these show that P (A) has greater
cardinality than A as desired.

Main Problem.

(a)

Proof. Suppose that A is any uncountable set. Clearly A is not finite for then it would be countable.
Hence it is infinite and so there is a injection from Z+ to A by Theorem 9.1. There also cannot be
an injection from A to Z+, for if there were then A would be countable by Theorem 7.1. This shows
that A has greater cardinality than Z+ by definition.

(b)

Proof. Since A has greater cardinality than B, there is an injection f : B → A. Likewise, since B
has greater cardinality than C, there is an injection g : C → B. It then follows that f ◦ g is an
injection of C into A. Now suppose that h : A → C is injective. Then g ◦ h would be an injection
of A into B, which we know cannot exist since A has greater cardinality than B. Hence it must be
that no such injection h exists, which shows that A has greater cardinality than C as desired.

(c) We define a sequence of sets recursively:

A1 = Z+ ,

An = P (An−1) for n > 1.

We show that this meets the requirements.

Proof. First we show that each An is infinite by induction. Clearly A1 = Z+ is infinite. Now
assume that An is infinite for n ∈ Z+ so that there is an injection f : Z+ → An by Theorem 9.1.
Then, by Lemma 9.7.1, An+1 = P (An) has greater cardinality than An so that there is an injection
g : An → An+1. Then g ◦ f is an injection from Z+ to An+1 so that An+1 is infinite as well by
Theorem 9.1. This completes the induction.

Finally, for any n ∈ Z+ we have that n + 1 > 1 so that An+1 = P
(
A(n+1)−1

)
= P (An). Then

clearly An+1 has greater cardinality than An by Lemma 9.7.1. This shows the desired result.

(d) Let A =
⋃
n∈Z+

An, which we claim has the required property.

Proof. Consider any n ∈ Z+. Clearly An ⊂ A so that the identity function iAn is an injection of
An into A. Now suppose for the moment that g : A→ An is injective. Since clearly also An+1 ⊂ A,
it follows that g � An+1 is then an injection of An+1 into An. However this contradicts the proven
fact that An+1 has greater cardinality than An. Hence it has to be that no such injection g exists,
which shows that A has greater cardinality than An. Since n was arbitrary, this shows the desired
result.
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Exercise 9.8

Show that P (Z+) and R have the same cardinality. [Hint: You may use the fact that every real number
has a decimal expansion, which is unique if expansions that end in an infinite string of 9’s are forbidden.]

A famous conjecture of set theory, called the continuum hypothesis, asserts that there exists no set having
cardinality greater than Z+ and lesser cardinality than R. The generalized continuum hypothesis asserts
that, given the infinite set A, there is no set having greater cardinality than A and lesser cardinality
than P (A). Surprisingly enough, both of these assertions have been shown to be independent of the
usual axioms of set theory. For a readable expository account, see [Sm].

Solution:

Lemma 9.8.1. If A and B are sets with the same cardinality, then P (A) and P (B) have the same
cardinality.

Proof. Since A and B have the same cardinality there is a bijection f : A→ B. We define a bijection
g : P (A) → P (B). So, for any X ∈ P (A), set g(X) = f(X). Clearly f(X) ⊂ B, since B is the
range of f , so that g(X) = f(X) ∈ P (B) and hence P (B) can be the range of g.

To show that g is injective, consider sets X and Y in P (A) so that X,Y ⊂ A. Also suppose that
X 6= Y so, without loss of generality, we can assume that there is an x ∈ X where x /∈ Y . Clearly
f(x) ∈ f(X) since x ∈ X. Were it the case that f(x) ∈ f(Y ) then there would be a y ∈ Y such that
f(y) = f(x). But then we would have that y = x since f is injective and hence x = y ∈ Y , which we
know not to be the case. Hence f(x) /∈ f(Y ) so that it has to be that g(X) = f(X) 6= f(Y ) = g(Y )
since f(x) ∈ f(X). Since X and Y were arbitrary this shows that g is injective.

To show that g is surjective consider any Y ∈ P (B) so that Y ⊂ B. Let X = f−1(Y ), noting that
f−1 is a bijection from B to A since f is bijective. Clearly X ⊂ A since A is the range of f−1 so
that X ∈ P (A). Now consider any y ∈ f(X) so that there is an x ∈ X where f(x) = y. Then,
since X = f−1(Y ), there is a y′ ∈ Y where x = f−1(y′), and hence y = f(x) = f(f−1(y′)) = y′.
Thus y = y′ ∈ Y so that f(X) ⊂ Y since y was arbitrary. Now consider y ∈ Y and let x = f−1(y)
so that clearly x = f−1(y) ∈ f−1(Y ) = X. Moreover, f(x) = f(f−1(y)) = y so that y ∈ f(X).
Thus Y ⊂ f(X) as well since y was arbitrary. This shows that g(X) = f(X) = Y , from which we
conclude that g is surjective since Y was arbitrary.

Hence g : P (A) → P (B) is a bijection so that P (A) and P (B) have the same cardinality by
definition.

Main Problem.

Proof. We show this using the Cantor-Schroeder-Bernstein (CSB) Theorem, which was proven in
Exercise 7.6 part (b).

First, we construct an injective function f from R to P (Q). For any x ∈ R let Q = {q ∈ Q | q < x}
so that clearly Q ⊂ Q and hence Q ∈ P (Q). Therefore setting f(x) = Q means that f is a function
from R to P (Q). To show that f is injective consider x, y ∈ R where x 6= y. Without loss of
generality we can assume that x < y so that there is a q ∈ Q where x < q < y since the rationals
are order-dense in the reals. Also set Q = f(x) and P = f(y). Since q > x we have that q /∈ Q.
Analogously, since q < y we have that q ∈ P . Thus it has to be that f(x) = Q 6= P = f(y), which
shows that f is injective since x and y were arbitrary.

Now, it was shown in Exercise 7.1 that Q is countably infinite and thus has the same cardinality as
Z+. From Lemma 9.8.1 it then follows that P (Q) has the same cardinality as P (Z+) so that there
is a bijection g : P (Q)→ P (Z+). Clearly then g ◦ f is an injection from R to P (Z+).

Now let X = {0, 1}, and we construct an injection h : Xω → R. For any sequence x = (x1, x2, . . .) ∈
Xω set h(x) to the decimal expansion 0.x1x2x3 . . ., where clearly each xn is the digit 0 or 1. Clearly
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h(x) is a real number so that h is a function from Xω to R. It is easy to see that h is injective since
different sequences will result in different decimal expansions. Since none of the expansions end in
an infinite sequence of 9’s, clearly the corresponding real numbers will be different.

Now, it was shown in Exercise 7.3 that P (Z+) and Xω have the same cardinality so that there is a
bijection i : P (Z+)→ Xω. It then follows that h ◦ i is an injection of P (Z+) into R. Since we have
shown the existence of both injections, the result follows from the CSB Theorem.

§10 Well-Ordered Sets

Exercise 10.1

Show that every well-ordered set has the least upper bound property.

Solution:

Proof. Suppose that A is a set with well-ordering <, and that B is some nonempty subset of A with
upper bound a ∈ A. Let C then be the set of upper bounds of B, which is not empty since clearly
a ∈ C. Then C is a nonempty subset of A and so has a smallest element c since A is well-ordered.
Clearly then c is the least upper bound of B by definition. This shows that A has the least upper
bound property since B was arbitrary.

Exercise 10.2

(a) Show that in a well-ordered set, every element except the largest (if one exists) has an immediate
successor.

(b) Find a set in which every element has an immediate successor that is not well-ordered.

Solution:

(a)

Proof. Suppose that A is well-ordered by < and consider any a ∈ A where a is not the largest
element. It then follows that there is some x ∈ A where a < x since otherwise a would be the largest
element of A. Let X = {y ∈ A | a < y} so that clearly X ⊂ A and x ∈ X. Thus X is a nonempty
subset of A and so has a smallest element b since < well-orders A. We claim that b is the immediate
successor of a. To see this suppose that there is a z ∈ A such that a < z < b, noting that clearly
a < b since b ∈ X. Then we would have that z ∈ X but z < b so that it is not true that b ≤ z, which
contradicts the definition of b as the smallest element of X. So it must be that no such z exists,
which shows that b is indeed the immediate successor of a.

(b) The most natural example of such a set is Z. We show that this has the desired properties.

Proof. First, clearly Z is not well-ordered since, for example, the set of negative integers is a
nonempty subset of Z but has no smallest element. Also, for any n ∈ Z, clearly n + 1 is the
immediate successor of n, which was shown back in Corollary 4.9.3.
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Exercise 10.3

Both {1, 2}×Z+ and Z+×{1, 2} are well-ordered in the dictionary order. Do they have the same order
type?

Solution:

We claim that they do not have the same order type, which we show presently.

Proof. First, clearly (1, 1) is the smallest element of both ordered sets. For brevity let A = {1, 2} ×
Z+, B = Z+ × {1, 2}, and <A and <B be the corresponding dictionary orderings, with < being the
normal ordering of Z+.

So assume that they do have the same order type so that there is an order-preserving bijection
f : A → B. Consider (2, 1) ∈ A, which is clearly not the smallest element since (2, 1) 6= (1, 1). Let
(n, b) = f(2, 1) ∈ B, which cannot be the smallest element of B since f preserves order, so that
(n, b) 6= (1, 1). Clearly b ∈ {1, 2} so that b = 1 or b = 2. In the former cases we must have that
n > 1 so that n− 1 ∈ Z+. So set y = (n− 1, 2). In the latter case set y = (n, 1). It is easy to see,
and trivial to formally show, that y is the immediate predecessor of (n, b) in either case.

Now let x = f−1(y), noting that f−1 is an order-preserving bijection from B to A since f is an
order-preserving bijection. It then follows that x <A (2, 1) since f(x) = y <B (n, b) = f(2, 1). If
x = (m, a) then it has to be that m < 2 so that m = 1 (because m ∈ {1, 2}) since there is no a ∈ Z+

where a < 1. Thus x = (1, a) for some a ∈ Z+. We then have that a + 1 ∈ Z+ so that clearly
x = (1, a) <A (1, a+ 1) <A (2, 1). From this we have, y = f(1, a) <B f(1, a+ 1) <B f(2, 1) = (n, b),
which contradicts the fact that y is the immediate predecessor of (n, b). So it has to be that they
do not have the same order type.

It is worth noting that, in the theory of ordinal numbers, A = {1, 2}×Z+ has order type ω+ω = ω ·2
whereas B = Z+ × {1, 2} has simply order type ω. This also shows that A and B have different
order types since distinct ordinal numbers always have different order types.

Exercise 10.4

(a) Let Z− denote the set of negative integers in the usual order. Show that a simple ordered set A
fails to be well-ordered if and only if it contains a subset having the same order type as Z−.

(b) Show that if A is simply ordered and every countable subset of A is well-ordered, then A is well-
ordered.

Solution:

(a)

Proof. Let A be a set with simple order ≺.

(⇒) Suppose that ≺ is not a well-ordering of A. Then there exists a nonempty subset B of A such
that B has no smallest element. For any b ∈ B define the set Xb = {x ∈ B | x ≺ b}. Clearly Xb ⊂ B
and Xb 6= ∅ for any b ∈ B since otherwise b would be the smallest element of B. Now let c be
a choice function on the collection of nonempty subsets of B, which of course exists by the axiom
of choice. Since B is nonempty there is a b0 ∈ B. It then follows from the principle of recursive
definition that there is a function f : Z+ → B such that

f(1) = b0 ,
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f(n) = c(Xf(n−1)) for n > 1.

It then is easy to show that f(n + 1) ≺ f(n) for all n ∈ Z+, i.e. that the sequence defined by f is
decreasing. If we then simply define g : Z− → Z+ by g(n) = −n for n ∈ Z−, it is clear that f ◦ g
is an order-preserving bijection from Z− to some subset C of B. Clearly also C ⊂ A since B ⊂ A.
Hence the subset C has the same order type as Z−.

(⇐) Now suppose that A has a subset B with the same order type as Z−. Clearly then B is
nonempty and has no smallest element since Z− does not. The existence of this B shows that A
fails to be well-ordered.

(b)

Proof. Suppose that A is a set that is simply ordered by ≺ such that every countable subset is well-
ordered by ≺. Consider any nonempty subset B ⊂ A. Suppose for a moment that the restricted ≺
does not well-order B. Then it follows from part (a) that B has a subset C with the same order
type as Z−. However, clearly C ⊂ A (since B ⊂ A) and C is countable (since Z− is countable) and
thus it should be well-ordered. As this is impossible since C has the same order-type as Z− (which
is clearly not well-ordered), it has to be that the restricted ≺ does in fact well-order B. Hence B
has a ≺-smallest element, which shows that A is well-ordered since B was arbitrary.

Exercise 10.5

Show the well-ordering theorem implies the choice axiom.

Solution:

Proof. Suppose that A is a collection of nonempty sets. Then, by the well-ordering theorem there
is a well-ordering < of

⋃
A. We construct a choice function c : A →

⋃
A. Consider any set A ∈ A.

Since clearly A is then a nonempty subset of
⋃
A, it follows that it has a unique smallest element

a according to < since
⋃
A is well-ordered by <. So simply set c(A) = a so that clearly then

c(A) = a ∈ A. This shows that c is in fact a choice function on A.

Exercise 10.6

Let SΩ be the minimal uncountable well-ordered set.

(a) Show that SΩ has no largest element.

(b) Show that for every α ∈ SΩ, the subset {x | α < x} is uncountable.

(c) Let X0 be the subset of SΩ consisting of all elements x such that x has no immediate predecessor.
Show that X0 is uncountable.

Solution:

Lemma 10.6.1. If A is an uncountable set and B ⊂ A is countable then A−B is uncountable.

Proof. If we let C = A − B, then clearly A = C ∪ B. If C were countable then A = C ∪ B would
be countable by Theorem 7.5 since B is also countable. Since we know that A is uncountable it
therefore must be that C = A−B is uncountable as well.
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Main Problem.

It is assumed in the following that < is the well-order on SΩ.

(a)

Proof. Suppose to the contrary that SΩ does have a largest element α. Then, for any x ∈ SΩ, we
have that x ≤ α. Hence either x ∈ {y ∈ SΩ | y < α} = Sα or x = α. Therefore SΩ = Sα ∪ {α} since
clearly both Sα and {α} are both subsets of SΩ. Now since Sα is a section of SΩ, it is countable.
Since {α} is also clearly countable, it follows from Theorem 7.5 that their union Sα ∪ {α} = SΩ is
countable. But this contradicts the fact that SΩ is uncountable! Hence it has to be that SΩ has no
largest element as desired.

(b)

Proof. Consider any α ∈ SΩ. Let Tα = {x ∈ SΩ | α < x} so that we must show that Tα is uncount-
able. Let S̄α = Sα∪{α} so that clearly we have that S̄α = {x ∈ SΩ | x ≤ α}. It is then easy to show
that Tα = SΩ − S̄α. Now, since Sα is a section of SΩ, it is countable so that clearly S̄α = Sα ∪ {α}
is also countable by Theorem 7.5. Then, since SΩ itself is uncountable, it follows that Tα = SΩ− S̄α
is also uncountable by Lemma 10.6.1.

(c)

Proof. First we show that X0 is not bounded above. Assume the contrary so that α ∈ SΩ is an
upper bound of X0. It then follows that the set Tα = {x ∈ SΩ | α < x} is such that every element
of Tα has an immediate predecessor since otherwise there would be a β ∈ Tα where β ∈ X0 so that
α would not be an upper bound of X0 since then α < β.

Now, we know from part (a) that SΩ has no largest element so that it follows from Exercise 10.2
that every element of SΩ has an immediate successor. Since Tα ⊂ SΩ it follows that each element
x ∈ Tα has an immediate successor y. Moreover we then have that α < x < y so that y ∈ Tα also.
Hence every element of Tα has an immediate successor in Tα.

Now, we know that Tα is uncountable by part (b) so that it has a smallest element β since it is
then a nonempty subset of the well-ordered SΩ. We derive a contradiction by showing that Tα has
the same order type as Z+ and is thus countable. We do this by defining an increasing bijection
f : Z+ → Tα. First, set f(1) = β and then set f(n) to the immediate successor of f(n−1) for n > 1,
which was shown to exist above. Then the function f uniquely exists by the principle of recursive
definition. Clearly we have that f(n + 1) > f(n) for all n ∈ Z+ since f(n + 1) is the immediate
successor of f(n). Hence f is increasing and therefore also injective.

To show that f is surjective suppose the contrary so that the set Tα − f(Z+) is nonempty. Since
clearly this is a subset of the well-ordered SΩ, it has a smallest element y. Now, we know that
f(1) = β so that y 6= β, and in fact β < y since β is the smallest element of Tα. Since y ∈ Tα we
know that it has an immediate predecessor x and that α < β ≤ x so that x ∈ Tα. However, it cannot
be that x ∈ Tα−f(Z+) since x < y and y is the smallest element of Tα−f(Z+). Thus x ∈ f(Z+) so
that there is an n ∈ Z+ where f(n) = x. But then f(n+ 1) = y since y is the immediate successor
of x. As this contradicts the fact that y /∈ f(Z+), it must be that f is in fact surjective!

Therefore we have shown that f is a bijection from Z+ to Tα so that Tα is countable. But we know
from part (b) that Tα is uncountable. As mentioned above, this is a contradiction so that it must
be that indeed X0 is not bounded above. From this it immediately follows from the contrapositive
of Theorem 10.3 that X0 must be uncountable.

It is interesting to note that SΩ corresponds to the ordinal number ω1, which is the first uncountable
ordinal, and the set X0 of part (c) corresponds to the set of limit ordinals in ω1. All of the curious
properties deduced here for SΩ apply to ω1 too, assuming we allow the choice axiom.

Page 111



Exercise 10.7

Let J be a well-ordered set. A subset J0 of J is said to be inductive if for every α ∈ J ,

(Sα ⊂ J0)⇒ α ∈ J0 .

Theorem (The principle of transfinite induction). If J is a well-ordered set and J0 is an inductive subset
of J , then J0 = J .

Solution:

Proof. Suppose that J0 is an inductive subset of the well-ordered set J . Also suppose that J0 6= J .
Since J0 ⊂ J , it follows that there must be an x ∈ J such that x /∈ J0. Thus the set J − J0 is
nonempty. Since clearly this is also a subset of J , it must have a smallest element α since J is
well-ordered. Consider any y ∈ Sα so that y < α. Then it cannot be that y ∈ J −J0 since otherwise
α would not be the smallest element of J − J0. Since clearly y ∈ J (since Sα ⊂ J) it has to be
that y ∈ J0. Since y was arbitrary this shows that Sα ⊂ J0. It then follows that α ∈ J0 since J0

is inductive. However, this contradicts the fact that α ∈ J − J0 so that our initial supposition that
J0 6= J must be incorrect. Hence J0 = J as desired.

Exercise 10.8

(a) Let A1 and A2 be disjoint sets, well-ordered by <1 and <2, respectively. Define an order relation
on A1 ∪ A2 by letting a < b either if a, b ∈ A1 and a <1 b, or if a, b ∈ A2 and a <2 b, or if a ∈ A1

and b ∈ A2. Show that this is a well-ordering.

(b) Generalize (a) to an arbitrary family of disjoint well-ordered sets, indexed by a well-ordered set.

Solution:

(a)

Proof. It is easy but tedious to show that < is actually an order on A1 ∪ A2, so we shall skip that
proof and jump straight to the proof that it is a well-ordering.

So consider any nonempty subset A of A1 ∪A2.

Case: A1∩A 6= ∅. Then clearly A1∩A is a nonempty subset of A1 so that it has a smallest element
a according to <1 since it is a well-ordering. We then claim that a is the smallest element of A
according to <. So consider any x ∈ A so that clearly also x ∈ A1 ∪ A2. Hence x ∈ A1 or x ∈ A2.
If x ∈ A1 then obviously x ∈ A1 ∩A so that a ≤1 x since a is the smallest element of A1 ∩A. Then
also a ≤ x by definition since a and x are both in A1. On the other hand, if x ∈ A2 then we again
have that a < x since a ∈ A1 and x ∈ A2. Therefore a ≤ x no matter what so that a is the smallest
element of A since x was arbitrary.

Case: A1 ∩ A = ∅. Then it has to be that A2 ∩ A 6= ∅ since A is nonempty and A = A1 ∪ A2.
Thus A2 ∩ A is a nonempty subset of A2 so that it has a smallest element a by <2 since it is a
well-ordering. We claim that a is the smallest element of A. So consider any x ∈ A. It has to be
that x ∈ A2 since A1 ∩A is empty and A = A1 ∪A2. Therefore x ∈ A2 ∩A so that a ≤2 x since a is
the smallest element of A2 ∩ A. Then, by definition, a ≤ x since both a and x are elements of A2.
This shows that a is the smallest element of A since x was arbitrary.

In either case we have shown that A has a smallest element so that < is a well-ordering of A1 ∪A2

since A was arbitrary.
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Note that well-ordering a union of two well-ordered sets like this is analogous to the addition of two
ordinal numbers. In particular if A1 has order type α1 and A1 has order type α2 where α1 and α2

are an ordinal numbers, then A1 ∪A2 with the above well-ordering has order type α1 + α2.

(b) Suppose that J is well-ordered by <J and {Aα}α∈J is a collection of well-ordered sets where Aα
is well-ordered by <α for each α ∈ J . Now define an order < on A =

⋃
α∈J Aα as follows. For any x

and y in A there are clearly α and β in J where x ∈ Aα and y ∈ Aβ , noting that α and β are unique
since the collection is mutually disjoint. So set x < y if and only if either α = β and x <α y, or else
α <J β, noting that these are clearly mutually exclusive. We then claim that < is a well-ordering
of A.

Proof. Let B be any nonempty subset of A and I be the set of α ∈ J such that there is an x ∈ B
where x ∈ Aα. Now, since B is nonempty, there is a z ∈ B. Since B ⊂ A =

⋃
α∈J Aα, there is an

γ ∈ J where z ∈ Aγ . Then clearly γ ∈ I so that I is a nonempty subset of J . Then I has a smallest
element α since it is well-ordered by <J . By the definition of I there is a w ∈ B where w ∈ Aα.
Then clearly w ∈ Aα ∩B so that it is a nonempty subset of Aα. It then follows that Aα ∩B has a
smallest element a according to <α since it is a well-ordering on Aα. We claim that a is the smallest
element of B by <.

So consider any x ∈ B so that there is a β ∈ J where x ∈ Aβ since B ⊂ A.

Case: β = α. Then both a and x are in Aα ∩ B = Aβ ∩ B so that a ≤α b since a is the smallest
element of Aα ∩B. It then follows from the definition of < that a ≤ x.

Case: β 6= α. Clearly then β ∈ I so that α ≤J β since α is the smallest element of J . Since we know
that β 6= α it must be that α <J β. From this it follows that a < x by definition.

Hence in either case it is true that a ≤ x, which shows that a is the smallest element of B. Since B
was an arbitrary nonempty subset of A, this shows that A is well-ordered by <.

Exercise 10.9

Consider the subset A of (Z+)ω consisting of all infinite sequences of positive integers x = (x1, x2, . . .)
that end in an infinite string of 1’s. Give A the following order: x < y if xn < yn and xi = yi for i > n.
We call this the “antidictionary order” on A.

(a) Show that for every n, there is a section of A that has the same order type as (Z+)n in the dictionary
order.

(b) Show that A is well-ordered.

Solution:

(a)

Proof. Consider any positive integer n. Define a sequence a = (a1, a2, . . .) in A by

ai =

{
2 i = n+ 1

1 i 6= n+ 1 .

We claim that the section Sa has the same order type as (Z+)n. To show this we construct an
order-preserving mapping f : Sa → (Z+)n. So consider any sequence x = (x1, x2, . . .) in Sa so
that x < a. Now define a finite sequence where yi = xn−i+1 for any i ∈ {1, . . . , n}, and set
f(x) = y = (y1, . . . , yn). Clearly f(x) ∈ (Z+)n since x ∈ A ⊂ (Z+)ω.
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Here we must digress for a moment and show that, for all x = (x1, x2, . . .) ∈ A, x ∈ Sa if and only
if xi = 1 for all i > n.

(⇒) We show the contrapositive. So suppose that there is an i > n where xi 6= 1. Moreover let i
be the greatest such index, which must exist since x must end in an infinite string of 1’s. Clearly
then the fact that xi ∈ Z+ and xi 6= 1 means that xi > 1. Now, if i > n + 1 then we have that
xi > 1 = ai and xj = 1 = aj for all j > i so that clearly x > a. If i = n + 1 and i > 2 clearly
xi > 2 = an+1 = ai and xj = 1 = aj for all j > i so that again x > a. Lastly suppose that i = n+ 1
but that xi = 2 = an+1 = ai. If xj = 1 = aj for all j < i = n+ 1 then clearly x = a. On the other
hand if there is a 1 ≤ j < n + 1 = i where xj 6= 1 then let j be the greatest such index. Then we
clearly have xj > 1 = aj while xk = ak for all k > j so that x > a. Therefore in every one of these
exhaustive cases we have that x ≥ a so that a /∈ Sa.

(⇐) Now suppose that xi = 1 for every i > n. Then we have that xn+1 = 1 < 2 = an+1 while
xj = 1 = aj for all j > n+ 1 > n so that x < a and hence x ∈ Sa.

Now, returning to the main proof, we first show that f as defined above preserves order. To this end
let ≺ denote the dictionary order on (Z+)n. Now consider any x = (x1, x2, . . .) and x′ = (x′1, x

′
2, . . .)

in Sa where x < x′. Also let y = f(x) and y′ = f(x′). Then there is an m ∈ Z+ where xm < x′m
and xi = x′i for all i > m. We also have by what was shown above that xi = 1x′i for all i > n
since x,x′ ∈ Sa. So it has to be that m ≤ n. It then follows from the fact that 1 ≤ m ≤ n that
1 ≤ n−m+ 1 ≤ n as well. Thus we have

yn−m+1 = xn−(n−m+1)+1 = xm < x′m = x′n−(n−m+1)+1 = y′n−m+1 .

For any 1 ≤ j < n−m+ 1 we have that n− j + 1 > m so that

yj = xn−j+1 = x′n−j+1 = y′j .

Thus by definition we have that f(x) = y ≺ y′ = f(x′), which shows that f preserves order since x
and x′ were arbitrary. Note that this also clearly shows that f is injective.

To show that f is also surjective, consider any y = (y1, . . . , yn) ∈ (Z+)n. Now define a sequence

xi =

{
yn−i+1 1 ≤ i ≤ n
1 i > n

so that clearly x = (x1, x2, . . .) ∈ Sa by what was shown above. Now let y′ = (y′1, . . . , y
′
n) = f(x).

Consider any 1 ≤ i ≤ n and let j = n− i+ 1 so that also n− j + 1 = i, noting also that 1 ≤ j ≤ n.
Then we have

yi = yn−j+1 = xj = xn−i+1 = y′i

by the definition of f . Since i was arbitrary this shows that f(x) = y′ = y, which shows that f is
surjective since y was arbitrary.

The existence of f therefore shows that Sa and (Z+)n have the same order type.

(b)

Proof. Consider any nonempty subset B of A. Clearly the sequence (1, 1, . . .) is the smallest element
of A and hence if it is in B then it is also the smallest element of B. So suppose that (1, 1, . . .) /∈ B
so that, for every x ∈ B there is a unique greatest nx ∈ Z+ where xnx > 1 but xi = 1 for all i > nx.
So let I = {nx | x ∈ B}, noting that B 6= ∅ implies that I 6= ∅ as well. Thus I is a nonempty
subset of Z+ and hence has a smallest element n. If we then let Bn be the set of sequences x ∈ B
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where xn > 1 but xi = 1 for all i > n, then the fact that n ∈ I clearly implies that Bn 6= ∅. Also,
if we define the sequence

ai =

{
2 i = n+ 1

1 i 6= n+ 1

as in part (a) then it follows from what was shown there that Bn ⊂ Sa. Moreover it was shown that
Sa has the same order type as the dictionary order of (Z+)n, which we know to be a well-ordering.
Hence Sa must also be a well-ordering so that Bn has a smallest element b = (b1, b2, . . .) since it is
a nonempty subset of Sa. We claim that b is in fact the smallest element of all of B.

So consider any x ∈ B so that nx ∈ I. It then follows that n ≤ nx since it is the smallest element
of I. If n = nx then we have that x ∈ Bn so that b ≤ x since it is the smallest element of Bn.
If n < nx then we have that bnx = 1 < xnx but bi = 1 = xi for every i > nx > n. This shows
that b < x. Thus in all cases b ≤ x, which shows that b is the smallest element of B since x was
arbitrary. Since B was arbitrary, this shows that A is well-ordered as desired.

Note that, in the theory of ordinal numbers, the set (Z+)n (and therefore the corresponding section
of A) has order type ωn. It would seem then that the set A has order type ωω.

Exercise 10.10

Theorem. Let J and C be well-ordered sets; assume that there is no surjective function mapping a
section of J onto C. Then there exists a unique function h : J → C satisfying the equation

(∗) h(x) = smallest[C − h(Sx)]

for each x ∈ J , where Sx is the section of J by x.

Proof.

(a) If h and k map sections of J , or all of J , into C and satisfy (∗) for all x in their respective domains,
show that h(x) = k(x) for all x in both domains.

(b) If there exists a function h : Sα → C satisfying (∗), show that there exists a function k : Sα∪{α} →
C satisfying (∗).

(c) If K ⊂ J and for all α ∈ K there exists a function hα : Sα → C satisfying (∗), show that there
exists a function

k :
⋃
α∈K

Sα → C

satisfying (∗).
(d) Show by transfinite induction that for every β ∈ J , there exists a function hβ : Sβ → C satisfying

(∗). [Hint: If β has an immediate predecessor α, then Sβ = Sα ∪ {α}. If not, Sβ is the union of all
Sα with α < β.]

(e) Prove the theorem.

Solution:

The following lemma is proof by transfinite induction, which is more straightforward than having to
frame everything in terms of inductive sets. Henceforth we use this whenever transfinite induction
is required.
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Lemma 10.10.1. (Proof by transfinite induction) Suppose that J is a well-ordered set and P (x)
is a proposition with parameter x. Suppose also that if P (x) is true for all x ∈ Sα (where Sα is a
section of J), then P (α) is also true. Then P (β) is true for every β ∈ J .

Proof. Let J0 = {x ∈ J | P (x)}. We show that J0 is inductive. So consider any α ∈ J and suppose
that Sα ⊂ J0. Then, for any x ∈ Sα we have that x ∈ J0 so that P (x). It then follows that P (α)
is also true since x was arbitrary, and so α ∈ J0. Since α ∈ J was arbitrary, this shows that J0 is
inductive. It then follows from Exercise 10.7 that J0 = J . So consider any β ∈ J so that also β ∈ J0

and hence P (β) is true. Since β was arbitrary, this shows the desired result.

Main Problem.

(a)

Proof. First suppose that the domains of h and k are sets H and K where each is either a section
of J or J itself. Since this is the case, we can assume without loss of generality that H ⊂ K and so
H is exactly the domain common to both h and k. Now suppose that the hypothesis we are trying
to prove is not true so that there is an x in both domains (i.e. x ∈ H) where h(x) 6= k(x). We can
also assume that x is the smallest such element since H ⊂ J and J is well-ordered. It then clearly
follows that Sx ⊂ H is a section of J and that h(y) = k(y) for all y ∈ Sx. From this we clearly have
that h(Sx) = k(Sx). But then we have

h(x) = smallest[C − h(Sx)] = smallest[C − k(Sx)] = k(x)

since both h and k satisfy (∗) and x is in the domain of both. This contradicts the supposition
that h(x) 6= k(x) so that it must be that no such x exists and hence h and k are the same in their
common domain as desired.

(b)

Proof. Suppose that h : Sα → C is such a function satisfying (∗). Now let S̄α = Sα ∪ {α} and we
define k : S̄α → C as follows. For any x ∈ S̄α set

k(x) =

{
h(x) x ∈ Sα
smallest[C − h(Sα)] x = α .

We note that clearly Sα and {α} are disjoint so that this is unambiguous. We also note that h is
not surjective onto C since Sα is a section of J , and hence C − h(Sα) 6= ∅ and so has a smallest
element since C is well-ordered.

Now we show that k satisfies (∗). First, clearly h(Sx) = k(Sx) for any x ≤ α since k(y) = h(y) by
definition for any y ∈ Sx ⊂ Sα. Now consider any x ∈ S̄α. If x = α then by definition we have

k(x) = smallest[C − h(Sα)] = smallest[C − k(Sα)] = smallest[C − k(Sx)] .

On the other hand, if x ∈ Sα then x < α so that

k(x) = h(x) = smallest[C − h(Sx)] = smallest[C − k(Sx)]

since h satisfies (∗). Therefore, since x was arbitrary, this shows that k also satisfies (∗).

(c)
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Proof. Let

k =
⋃
α∈K

hα ,

which we claim is the function we seek.

First we show that k is actually a function from
⋃
α∈K Sα to C. So consider any x in the domain of

k. Suppose that (x, a) and (x, b) are both in k so that there are α and β in K where (x, a) ∈ hα and
(x, b) ∈ hβ . Since hα and hβ both satisfy (∗), it follows from part (a) that a = hα(x) = hβ(x) = b
since clearly x is in the domain of both. This shows that k is indeed a function since (x, a) and
(x, b) were arbitrary. Also clearly the domain of k is

⋃
α∈K Sα since, for any x ∈

⋃
α∈K Sα, we have

that there is an α ∈ K where x ∈ Sα. Hence x is in the domain of hα and so in the domain of k. In
the other direction, clearly if x is in the domain of k then it is in the domain of hα for some α ∈ K.
Since this domain is Sα, clearly x ∈

⋃
α∈K Sα. Lastly, obviously the range of k can be C since this

is the range of every hα.

Now we show that k satisfies (∗). So consider any x ∈
⋃
α∈K Sα so that x ∈ Sα for some α ∈ K.

Clearly we have that k(y) = hα(y) for every y ∈ Sα since hα ⊂ k. It then immediately follows that
k(x) = h(x) and k(Sx) = hα(Sx) since Sx ⊂ Sα. Then, since hα satisfies (∗), we have

k(x) = hα(x) = smallest[C − hα(Sx)] = smallest[C − k(Sx)] .

Since x was arbitrary, this shows that k satisfies (∗) as desired.

(d)

Proof. Consider any β ∈ J and suppose that, for every x ∈ Sβ , there is a function hx : Sx → C
satisfying (∗). Now, if β has an immediate predecessor α then we claim that Sβ = Sα ∪ {α}. First
if x ∈ Sβ then x < β so that x ≤ α since α is the immediate predecessor of β. If x < α then x ∈ Sα
and if x = α then x ∈ {α}. Hence in either case we have that x ∈ Sα ∪ {α}. Now suppose that
x ∈ Sα ∪ {α}. If x ∈ Sα then x < α < β so that s ∈ Sβ . On the other hand if x ∈ {α} then
x = α < β so that again x ∈ Sβ . Thus we have shown that Sβ ⊂ Sα ∪ {α} and Sα ∪ {α} ⊂ Sβ so
that Sβ = Sα ∪ {α}. Since α ∈ Sβ it follows that there is an hα : Sα → C that satisfies (∗). Then,
by part (b), we have that there is an hβ : Sβ = Sα ∪ {α} → C that also satisfies (∗).
If β does not have an immediate predecessor then we claim that Sβ =

⋃
γ<β Sγ . So consider any

x ∈ Sβ so that x < β. Since x cannot be the immediate predecessor of β, there must be an α where
x < α < β. Then x ∈ Sα so that, since α < β, clearly x ∈

⋃
γ<β Sγ . Now suppose that x ∈

⋃
γ<β Sγ

so that there is an α < β where x ∈ Sα. Then clearly x < α < β so that also x ∈ Sβ . Thus we have
shown that Sβ ⊂

⋃
γ<β Sγ and

⋃
γ<β Sγ ⊂ Sβ so that Sβ =

⋃
γ<β Sγ . Now, clearly Sβ is a subset

of J where there is an hx : Sx → C satisfying (∗) for every x ∈ Sβ . Then it follows from what was
shown in part (c) that there is a function hβ from

⋃
γ<Sβ

Sγ =
⋃
γ<β Sγ = Sβ to C that satisfies

(∗).
Therefore, in either case, we have shown that there is an hβ : Sβ → C that satisfies (∗). The desired
result then follows by transfinite induction.

(e)

Proof. First suppose that J has no largest element. Then we claim that J =
⋃
α∈J Sα. For any

x ∈ J there must be a y ∈ J where x < y since x cannot be the greatest element of J . Hence x ∈ Sy
so that also clearly

⋃
α∈J Sα. Then, for any x ∈

⋃
α∈J Sα, there is an α ∈ J where x ∈ Sα. Clearly

Sα ⊂ J so that x ∈ J also. Hence J ⊂
⋃
α∈J Sα and

⋃
α∈J Sα ⊂ J so that J =

⋃
α∈J Sα. Since we

know from part (d) that there is an hα : Sα → C that satisfies (∗) for every α ∈ J , it follows from
part (c) that there is a function h from

⋃
α∈J Sα = J to C that satisfies (∗).
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If J does have a largest element β then clearly J = Sβ ∪ {β}. Since we know that there is an
hβ : Sβ → C that satisfies (∗) by part (d), it follows from part (b) that there is a function h from
Sβ ∪{β} = J to C that satisfies (∗). Hence the desired function h exists in both cases. part (a) also
clearly shows that this function is unique.

Exercise 10.11

Let A and B be two sets. Using the well-ordering theorem, prove that either they have the same
cardinality, or one has cardinality greater than the other. [Hint: If there is no surjection f : A → B,
apply the preceding exercise.]

Solution:

Lemma 10.11.1. For well-ordered sets A 6= ∅ and B there is an injection from A to B if and only
if there is a surjection from B to A.

Proof. (⇒) Suppose that there is an injection f : A→ B and A 6= ∅. Then there is an a ∈ A. We
then construct a surjection g : B → A as follows. For any y ∈ B if b ∈ f(A) then there is a unique
x ∈ A where y = f(x). It is unique since, if x and x′ are in A where f(x) = y = f(x′), then x = x′

since f is injective. So in this case set g(y) = x. If b /∈ f(A), then set g(y) = a. Clearly g is a
function from B to A. To show that g is surjective, consider any x ∈ A and let y = f(x), which
is clearly an element of B. Then, since obviously y ∈ f(A) and x is the unique x ∈ A such that
y = f(x), we have that g(y) = x by definition. This shows that g is surjective since x was arbitrary.

(⇐) Now suppose that g : B → A is surjective. We then construct an injection f : A→ B as follows.
For any x ∈ A we have that the set Bx = {y ∈ B | g(y) = x} is nonempty since g is surjective. Hence
Bx has a unique smallest element y since it is a nonempty subset of B and B is well-ordered. So
simply set f(x) = y. Clearly f is a function from A to B. To show that f is injective, consider
x, x′ ∈ A where x 6= x′. Then clearly the sets Bx and Bx′ have to be disjoint for otherwise there
would be a y ∈ B where g(y) = x and g(y) = x′, which is impossible if x 6= x′ since g is a function.
Hence, since f(x) and f(x′) are defined to be the smallest elements of Bx and Bx′ , respectively, we
have f(x) 6= f(x′). This shows that f is injective since x and x′ were arbitrary.

Main Problem.

Proof. First suppose that A and B are each well-ordered, which follows from the well-ordering
theorem. Also suppose that A and B do not have the same cardinality so that it suffices to show
that either B has greater cardinality than A or vice versa. If A = ∅ then it cannot be that B = ∅ as
well since then they would have the same cardinality (∅ would be a trivial bijection between them).
Hence B 6= ∅ so that clearly B has greater cardinality than A. Thus in what follows assume that
A 6= ∅.

Suppose that there is an injection from A to B. Then there cannot be an injection from B to A since,
if there were, then A and B would have the same cardinality by the Cantor-Schroeder-Bernstein
Theorem (shown in Exercise 7.6 part (b)). Thus B has greater cardinality than A by definition.

On the other hand, if there is no injection from A to B then there is no surjection from B to A by
Lemma 10.11.1 since they are both well-ordered and A 6= ∅. It then clearly follows that no section
of B can be a surjection onto A since then any extension of such a function to all of B would also be
a surjection onto A. From this we have by Exercise 10.10 that there is a unique function h : B → A
with the property that

h(x) = smallest[A− h(Sx)] ,
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where of course Sx is the section of B by x.

We claim that h is injective. So consider any y and y′ in B where y 6= y′. Without loss of generality
we can assume that y < y′ (by the well-ordering on B). It then follows that y ∈ Sy′ so that clearly
h(y) ∈ h(Sy′). However, we have that h(y′) is the smallest element of A− h(Sy′) so that obviously
h(y′) /∈ h(Sy′). Hence it must be that h(y) 6= h(y′), which shows that h is injective since y and y′

were arbitrary.

Therefore there is an injection from B to A but none from A to B so that A has greater cardinality
than B by definition. This shows the desired result since these cases are exhaustive.

§11 The Maximum Principle

Exercise 11.1

If a and b are real numbers, define a ≺ b if b − a is positive and rational. Show this is a strict partial
order on R. What are the maximal simply ordered subsets?

Solution:

Lemma 11.1.1. If B is a maximal simply ordered subset of a nonempty partially ordered set A,
then B is nonempty.

Proof. Since A is nonempty, there is an a ∈ A. Clearly ∅ is vacuously simply ordered. However,
it cannot be maximal since clearly the set {a} properly contains ∅ as a subset but is also clearly
vacuously simply ordered by ≺. Hence, since B is maximal it must be that B 6= ∅ as desired.

Main Problem.

First we show that ≺ is a strict partial order.

Proof. First consider any a ∈ R so that a−a = 0, which is not positive and hence it is not true that
a ≺ a. Therefore ≺ is nonreflexive. Now consider a, b, c ∈ R where a ≺ b and b ≺ c. Then we have
that x = b− a and y = c− b are positive and rational. It then clearly follows that

c− a = (c− b) + (b− a) = y + x

is also rational and positive since both x and y are. Thus a ≺ c, which shows that ≺ is transitive.
Since ≺ was shown to be nonreflexive and transitive, this shows that it is a strict partial order as
desired.

For any element x ∈ R, define the set Ax = {y ∈ R | x− y ∈ Q}. We then claim that the collection
A = {Ax}x∈R is exactly the set of all maximal simply ordered subsets.

Proof. Suppose that B is the set of maximally simply ordered subsets of R. Then we show that
A = B.

To show that A ⊂ B consider any X ∈ A so that X = Ax for some x ∈ R. Now consider any distinct
y and z in X = Ax so that by definition x−y and x−z are both rational so that z−x = −(x−z) is
also rational. Then clearly z− y = (z−x) + (x− y) is rational as is y− z = −(z− y). Since y and z
are distinct, we have that z− y and y− z are nonzero and that either y < z or z < y. In the former
case we have that z− y is a positive rational number and in the latter y− z is. Thus either y ≺ z or
z ≺ y, which shows that X = Ax is simply ordered since y and z were arbitrary. Now consider any
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y ∈ Ax and z /∈ Ax so that x− y is rational but x− z is irrational so that z − x = −(x− z) is also
irrational. Since a rational added to an irrational is also irrational (which is trivially easy to prove),
it follows that z− y = (z− x) + (x− y) is irrational as is y− z = −(z− y). Hence it cannot be that
either y ≺ z or z ≺ y. Since y ∈ X and z /∈ X were arbitrary, this show that X is a maximal simply
ordered set so that X ∈ B. This shows that A ⊂ B since X was arbitrary.

Now suppose that X ∈ B so that X is a maximal simply ordered set. It follows from Lemma 11.1.1
that X is nonempty so that there is an x ∈ X, and we claim that in fact X = Ax. So consider any
y ∈ X. Clearly if y = x then x− y = x− x = 0 ∈ Q so that y ∈ Ax. If y 6= x than either x ≺ y or
y ≺ x since X is simply ordered by ≺. In the former case we have that y−x is positive and rational
so that x − y = −(y − x) is negative and rational, and hence y ∈ Ax. In the latter case we have
that x − y is positive and rational so that clearly again y ∈ Ax. Since y was arbitrary this shows
that X ⊂ Ax. Now consider any y ∈ Ax so that x − y ∈ Q. If y = x then clearly y ∈ X. If y 6= x
then either y − x or x− y is positive, and also clearly rational since x− y is rational. Hence either
x ≺ y or y ≺ x. It then follows from the fact that X is maximally simply ordered that y must be in
X since otherwise y would not be comparable with x. Since again y was arbitrary this shows that
Ax ⊂ X. Hence X = Ax so that clearly X ∈ {Ax}x∈R = A. Since X was arbitrary this shows that
B ⊂ A.

Therefore we have shown that A = B, which shows that A is exactly the complete set of maximally
simply ordered subsets.

As an example of a particular maximally well-ordered set we have Q = A0 itself.

Exercise 11.2

(a) Let ≺ be a strict partial order on the set A. Define a relation on A by letting a � b if either a ≺ b
or a = b. Show that this relation has the following properties, which are called the partial order
axioms:

(i) a � a for all a ∈ A.

(ii) a � b and b � a ⇒ a = b.

(iii) a � b and b � c ⇒ a � c.
(b) Let P be a relation on A that satisfies properties (i)-(iii). Define a relation S on A by letting aSb

if aPb and a 6= b. Show that S is a strict partial order on A.

Solution:

(a)

Proof. We show that � satisfies the three partial order axioms:

(i) Consider any a ∈ A. Since obviously a = a we have by definition that a � a.

(ii) Suppose that a � b and b � a. Then either a ≺ b or a = b, and either b ≺ a or b = a. So suppose
that a 6= b so that it must be that a ≺ b and b ≺ a. Since ≺ is a strict partial order, it is transitive
so that a ≺ a since a ≺ b and b ≺ a. But this contradicts the nonreflexivity of ≺. Hence it must be
that a = b as desired.

(iii) Suppose that a � b and b � c. Hence either a ≺ b or a = b, and either b ≺ c or b = c.

Case: a ≺ b. If b ≺ c then clearly a ≺ c since ≺ is transitive (since it is a strict partial order). If
b = c then we have that a ≺ b = c.
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Case: a = b. If b ≺ c then we have that a = b ≺ c. If b = c then we have that a = b = c.

Hence in all cases and sub-cases we have that a ≺ c or a = c, and thus a � c by definition.

(b)

Proof. We show that S satisfies the two strict partial order axioms:

Nonreflexivity. Consider any a ∈ A. Since a = a it follows that it is not true that a 6= a and hence
not true that aSa. Thus S is nonreflexive since a was arbitrary.

Transitivity. Suppose that aSb and bSc. Hence by definition aPb and a 6= b, and bPc and b 6= c.
Then, by the transitivity property of the partial order axioms, which is property (iii), we have that
aPc. Suppose for a moment that a = c. Then we would have aPb and bPa (since bPc and c = a).
Then by partial order axiom (ii) we have that a = b, which contradicts the fact that a 6= b. So it
must be that a 6= c. Thus aPc and a 6= c so that aSc, which shows that S is transitive.

Exercise 11.3

Let A be a set with a strict partial order ≺; let x ∈ A. Suppose that we wish to find a maximal simply
ordered subset B of A that contains x. One plausible way of attempting to define B is to let B equal
the set of all those elements of A that a comparable with x:

B = {y | y ∈ A and either x ≺ y or y ≺ x} .

But this will not always work. In which of Examples 1 and 2 will this procedure succeed and in which
will it not?

Solution:

First, it seems that, as defined above, B does not actually contain x itself! This is because it is not
true that x ≺ x by the nonreflexivity of the partial order ≺. We assume that this was an oversight,
which is easily remedied by defining

B′ = {y ∈ A | either x ≺ y or y ≺ x}

and B = B′ ∪ {x}.
For Example 1, a circular region in R2 is clearly

Cx0,r =
{
x ∈ R2 | |x− x0| < r

}
,

where the point x0 ∈ R2 is the center of the circle, r ∈ R+ is the radius, and |(x, y)| =
√
x2 + y2 is

the standard vector magnitude. Then the collection A is the set of all circular regions:

A =
{
Cx0,r | x0 ∈ R2 and r ∈ R+

}
.

Then let C =
{
C(0,0),r | r ∈ R+

}
be the set of circles centered at the origin, which is a maximal

simply ordered subset according to the example (and this is not difficult to show). Arbitrarily
choose X = C(0,0),1, that is the circular region of radius 1 centered at the origin, so that clearly
X ∈ C. Since the partial order in this is example is “is a proper subset of”, define

B′ = {Y ∈ A | Y ( X or X ( Y }

and B = B′ ∪ {X}. The question is then whether B = C. We claim that, for this example, this is
not the case.
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Proof. Consider the set C(1,0),2 and any x ∈ X = C(0,0),1 so that |x− (0, 0)| < 1. Then we have

|x− (1, 0)| ≤ |x− (0, 0)|+ |(0, 0)− (1, 0)| < 1 + |(−1, 0)| = 1 + 1 = 2 ,

where we have utilized the ever-useful triangle inequality. Therefore x ∈ C(1,0),2 so that X ⊂ C(1,0),2

since x was arbitrary. However, clearly the point (1, 0) ∈ C(1,0),2 but we have that (1, 0) /∈ C(0,0),1 =
X since |(1, 0)− (0, 0)| = |(1, 0)| = 1 ≥ 1. This shows that X ( C(1,0),2 so that by definition
C(1,0),2 ∈ B′ and therefore C(1,0),2 ∈ B = B′ ∪ {X}. But clearly C(1,0),2 /∈ C since it is not centered
at the origin. This shows that B 6= C as desired.

Hence it would seem that this method of attempting to define a maximal simply ordered subset
containing X has failed in this example. It is easy to come up with an analogous counterexample
that shows the same result of the other example of a maximal simply ordered subset of circles
tangent to the y-axis at the origin.

Regarding Example 2, recall that the order ≺ is defined by

(x0, y0) ≺ (x1, y1)

if y0 = y1 and x0 < x1 for (x0, y0) and (x1, y1) in R2. It is then claimed (which is again easy to
show) that maximal simply ordered subsets are horizontal lines in the plane, that is sets

Ly0 =
{

(x, y) ∈ R2 | y = y0

}
for some y0 ∈ R. So consider any such y0 ∈ R and let x = (0, y0). Now define

B′ =
{
y ∈ R2 | x ≺ y or y ≺ x

}
and B = B′ ∪ {x}. In contrast to Example 1, we here claim that B = Ly0 , which is to say that B
does define the maximal simply ordered subset.

Proof. Consider any (x, y) ∈ B = B′ ∪ {x} so that either (x, y) ∈ B′ or (x, y) = x. Clearly if
(x, y) = x = (0, y0) then (x, y) ∈ Ly0 since y = y0. On the other hand, if (x, y) ∈ B′ then (x, y) ≺ x
or x ≺ (x, y). In the former case we have that (x, y) ≺ x = (0, y0) so that, by definition y = y0

and x < 0. Clearly then (x, y) = (x, y0) ∈ Ly0 by definition. In the latter case we also have y = y0

(though this time 0 < x) so that again (x, y) ∈ Ly0 . Since (x, y) was arbitrary, this shows that
B ⊂ Ly0 .

Now consider any (x, y) ∈ Ly0 so that y = y0. If x = 0 then (x, y) = (0, y0) = x so that obviously
(x, y) ∈ {x}. If 0 < x then (x, y) = (x, y0) ≺ (0, y0) = x so that (x, y) ∈ B′. Similarly, if x < 0,
then x = (0, y0) ≺ (x, y0) = (x, y) so that again (x, y) ∈ B′. Hence in all cases either (x, y) ∈ B′
or (x, y) ∈ {x} so that (x, y) ∈ B′ ∪ {x} = B. This shows that Ly0 ⊂ B since again (x, y) was
arbitrary.

Thus we have shown that B = Ly0 as desired.

So it would seem that, in this example, this naive technique does work!

Exercise 11.4

Given two points (x0, y0) and (x1, y1) of R2, define

(x0, y0) ≺ (x1, y1)

if x0 < x1 and y0 ≤ y1. Show that the curves y = x3 and y = 2 are maximal simply ordered subsets of
R2, and the curve y = x2 is not. Find all maximal simply ordered subsets.
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Solution:

First define

A =
{

(x, y) ∈ R2 | y = x3
}
.

We show that it is a maximal simply ordered subset of R2.

Proof. First we show that A is simply ordered by ≺. Consider distinct (x0, y0) and (x1, y1) in A so
that y0 = x3

0 and y1 = x3
1. Since they are distinct, it has to be that x0 6= x1 or y0 6= y1. The latter

case actually implies the former since the function f(x) = x3 is a well-defined function. Hence we
can assume that x0 6= x1, from which we can also assume without loss of generality that x0 < x1.
Since f(x) = x3 is also a monotonically increasing function (which is easy to show), it then follows
that y0 = x3

0 < x3
1 = y1. Thus we have that x0 < x1 and y0 ≤ y1 so that (x0, y0) ≺ (x1, y1) by

definition. Since (x0, y0) and (x1, y1) were arbitrary, this shows that ≺ is a simple order on A.

To show that it is maximal suppose that B is any proper superset of A so that there is an (x, y) ∈ B
where (x, y) /∈ A. Therefore clearly y 6= x3 by definition. Now let z = x3 so that y 6= x3 = z
but (x, z) ∈ A. Clearly it is not true that x < x so that it can neither be that (x, y) ≺ (x, z) nor
(x, z) ≺ (z, y). Hence (x, y) and (x, z) are incomparable in ≺. This shows that B is not simply
ordered and thus that A is maximal since B was an arbitrary superset.

Now redefine

A =
{

(x, y) ∈ R2 | y = 2
}
,

which we also show is a maximal simply ordered subset of R2.

Proof. To show that A is simply ordered consider distinct (x0, y0) and (x1, y1) in A so that y0 =
y1 = 2. Since these points are distinct and y0 = y2 is must be that x0 6= x1, from which we can
assume that x0 < x1 without loss of generality. But then clearly it is true that x0 < x1 and y0 ≤ y1

so that (x0, y0) ≺ (x1, y1). Since these points were arbitrary this shows that A is simply ordered by
≺.

To show that it is maximal suppose that B is any proper superset of A so that there is an (x, y) ∈ B
where (x, y) /∈ A. It then follows that y 6= 2 so that the point (x, 2) ∈ A but (x, 2) 6= (x, y). Clearly
it can be that neither (x, 2) ≺ (x, y) nor (x, y) ≺ (x, 2) since it is not true that x < x. Hence (x, y)
and (x, 2) are incomparable in ≺. This shows that B is not simply ordered by ≺. Since B was an
arbitrary superset this shows that A is maximal.

Now let

A =
{

(x, y) ∈ R2 | y = x2
}
.

We claim that this subset is not simply ordered by ≺ and therefore cannot be a maximal simply
ordered subset.

Proof. Consider the clearly distinct points (−1, 1) and (0, 0). Clearly since 0 = 02 and 1 = (−1)2

these are both in A. However, since 1 > 0 it is not true that −1 < 0 and 1 ≤ 0, and therefore it
is not true that (−1, 1) ≺ (0, 0). Similarly since 0 ≥ −1 it is not true that 0 < −1 and 0 ≤ 1, and
therefore it is not true that (0, 0) ≺ (−1, 1). Hence the two distinct points are both in A but are
not comparable. This suffices to show that A is not simply ordered by ≺.
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We now claim that the maximal simply ordered subsets of R2 as ordered by ≺ are exactly the
collection of sets of the form

Af =
{

(x, y) ∈ R2 | y = f(x)
}

for some function f : (a, b) → R, where (a, b) is an open interval of R, noting that it could be that
a = −∞ and/or b =∞. The function f must also satisfy the following properties:

(i) It is non-decreasing. Recall that this means that x < y implies that f(x) ≤ f(y) for any
x, y ∈ (a, b).

(ii) If b <∞ then its image is unbounded above.

(iii) If a > −∞ then its image is unbounded below.

Now, let A be the collection of all these subsets and let B denote the set of all maximal simply
ordered subsets. We show that A = B.

Proof. (⊂) First consider any Af ∈ A so that f : (a, b) → R with the properties above for some
open interval (a, b). To show that Af is simply ordered by ≺ consider any distinct (x, y) and
(x′, y′) in Af so that y = f(x) and y′ = f(x′). Since these are distinct it follows that x 6= x′ or
f(x) = y 6= y′ = f(x′). In the latter case it also follows that x 6= x′ as well for otherwise f would
not be a function. Hence we can, without loss of generality, assume that x < x′. Since f is non-
decreasing it follows that also y = f(x) ≤ f(x′) = y′, and therefore by definition (x, y) ≺ (x′, y′).
Since these elements of Af were arbitrary, it follows that Af is simply ordered by ≺.

To show that Af is maximal consider any proper superset A of Af so that there is an (x, y) ∈ A
where (x, y) /∈ Af . There are a few possible ways in which (x, y) can fail to be an element of Af .

Case: x ∈ (a, b). Then it must be that y 6= f(x) since (x, y) /∈ Af . Since it is not true that
x < x, it has to be that neither (x, y) ≺ (x, f(x)) nor (x, f(x)), (x, y). Hence (x, y) and (x, f(x))
are incomparable elements of A (noting that clearly (x, (f(x)) ∈ Af ⊂ A) so that A is not simply
ordered by ≺.

Case: x ≥ b. Note that this is only possible if b <∞ so that b ∈ R. Thus in this case we have that
the image of f is unbounded above by property (ii). Hence there is a yu ∈ reals where y′ > y and
y′ is in the image of f . Thus there is also an x′ ∈ (a, b) where y = f(x′) so that (x′, y′) ∈ Af ⊂ A.
Now, we have x′ < b ≤ x but y′ > y so that it is not true that y′ ≤ y, and hence it cannot be that
(x′, y′) ≺ (x, y). Similarly is it is clearly not true that x < x′ so that it cannot be that (x, y) ≺ (x′, y′)
either. This shows that (x, y) and (x′, y′) are incomparable elements of A so that A is not simply
ordered.

Case: x ≤ a. An argument analogous to the previous case shows that a > −∞ so that the image of
f is unbounded below. From this it follows again that A is not simply ordered.

Thus in all cases A is not simply ordered so that Af is a maximal simply ordered subset of R2 since
A was an arbitrary proper superset. This shows that Af ∈ B so that A ⊂ B since Af was arbitrary.

(⊃) Now consider any B ∈ B so that B is a maximal simply ordered set by ≺. Define

X = {x ∈ R | (x, y) ∈ B for some y ∈ R} .

We prove that B has the following properties:

(1) If (x0, y0) and (x1, y1) are in B and x0 < x1 then y0 ≤ y1.

(2) For every x ∈ X there is a unique y ∈ R where (x, y) ∈ B.
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To show show (1) consider (x0, y0) and (x1, y1) in B and suppose that x0 < x1. Since B is simply
ordered, it must be that either (x0, y0) ≺ (x1, y1) or (x1, y1) ≺ (x0, y0). Since x0 < x1 it clearly
must be that (x0, y0) ≺ (x1, y1) and hence also y0 ≤ y1.

To show (2) consider any x ∈ X. Clearly there is a y ∈ R where (x, y) ∈ B by the definition of X.
To show that this y is unique, suppose that (x, y0) and (x, y1) are both in B but that y0 6= y1 so
that (x, y0) and (x, y1) are distinct. Since B is simply ordered they must be comparable in ≺ but
they clearly cannot be since it is not true that x < x. As this is a contradiction, it must be that
y0 = y1.

With that out of the way, let b be the least upper bound of X if it is bounded above and b = ∞
otherwise. Similarly let a be the greatest lower bound if X is bounded below and a = −∞ otherwise.
Now we claim that X is equal to the open interval (a, b).

So consider any x ∈ X so that then clearly a ≤ x ≤ b since a and b are lower and upper bounds
of X, respectively. Clearly if b = ∞ then it cannot be that x = b (since x ∈ R) so assume that
b ∈ R and x = b. Then b = x ∈ X so that by property (2) there is a unique y ∈ R where (b, y) ∈ B.
Clearly then (b+1, y) /∈ B, since b+1 /∈ X, so that the set B′ = B∪{(b+ 1, y)} is a proper superset
of B. Now consider any (x′, y′) ∈ B so that clearly x′ ∈ X and hence x′ ≤ b < b + 1. By property
(1) above it also follows that y′ ≤ y, and so we have that (x′, y′) ≺ (b + 1, y). Since (x′, y′) was
arbitrary, this shows that (b + 1, y) is comparable to every element of B and hence B′ is simply
ordered by ≺. But this is not possible since B is maximal and B′ is a proper superset. Hence it
must be that x 6= b. An analogous argument shows that x 6= a as well and hence a < x < b. Since
x was arbitrary this shows that X ⊂ (a, b).

Now consider any x ∈ (a, b) so that a < x < b. Since b is the least upper bound of X, it has to
be that x is not an upper of X so that there is an xg ∈ X where x < xg < b (clearly the existence
of xg also follows when b = ∞ since then X is unbounded above). Clearly then there is also a
yg ∈ R where (xg, yg) ∈ B. It then follows that the set Yg = {y ∈ R | (z, y) ∈ B for some x < z < b}
is nonempty. By an analogous argument there is an (xl, yl) ∈ B where a < xl < x so that the
set Yl = {y ∈ R | (z, y) ∈ B for some a < z < x} is nonempty. Now, for any y ∈ Yg, we have that
(z, y) ∈ B for some x < z < b. Therefore xl < x < z and by property (1) of B we have that yl ≤ y.
Since y was arbitrary this shows that yl is a lower bound of Yg and hence it has a greatest lower
bound yv. So suppose that x /∈ X so that there is not a y ∈ R where (x, y) ∈ B. Then we have that
the set B ∪ {(x, yv)} is a proper superset of B. However, consider any (x′, y′) ∈ B so that x′ ∈ X
but x′ 6= x.

Case: x′ < x. Then it has to be that a < x′ < x so that y′ ∈ Yl. Then, for any y ∈ Yg we again
have that (z, y) ∈ B for some x < z < b. Hence x′ < x < z so that y′ ≤ y by property (1) since
(x′, y′) ∈ B and (z, y) ∈ B. Since y was arbitrary, this shows that y′ is a lower bound of Yg. Since
yv is the greatest lower bound of Yg, we have that y′ ≤ yv. Then clearly (x′, y′) ≺ (x, yv) since also
x′ < x.

Case: x′ > x. Then it has to be that x < x′ < b so that y′ ∈ Yg. It then follows that yv ≤ y′ since
yv is the greatest lower bound of Yg. Hence we have that (x, yv) ≺ (x′, y′) since x < x′ as well.

Therefore in all cases we have that (x, yv) and (x′, y′) are comparable in ≺. Since (x′, y′) was
arbitrary, this clearly shows that B∪{(x, yv)} is simply ordered. But this cannot be possible since it
is a proper superset and B is maximal! So it has to be that in fact there is a y ∈ R where (x, y) ∈ B,
and hence x ∈ X. Since x ∈ (a, b) was arbitrary, this shows that (a, b) ⊂ X. This completes the
rather long proof that X = (a, b).

Now, by property (2) there is a unique y ∈ R for every x ∈ X = (a, b) where (x, y) ∈ B. So we
define a function f : (a, b)→ R by simply setting f(x) = y. Clearly based on the way this function
is defined and the fact that (a, b) = X we have that B = Af . We must now show that f has the
properties (i) through (iii) above.

Page 125



Property (i) follows almost immediately from property (1) of B. To see this, consider any x, y ∈ (a, b)
where x < y. Then (x, f(x)) and (y, f(y)) are in B and hence f(x) ≤ f(y) by property (1). For
property (ii) suppose that b <∞ but that the image of f is bounded above. Hence it image has an
upper bound, say yu ∈ R, so that clearly B ∪ {(b+ 1, yu)} is a proper superset of B. So consider
any (x, y) ∈ B so that y = f(x) for some x ∈ (a, b). Then clearly f(x) is in the image of f so that
y = f(x) ≤ yu since yu is an upper bound of the image. Since also we must have x < b < b + 1, it
follows that (x, y) ≺ (b+ 1, yu). Since (x, y) ∈ B was arbitrary, this shows that B ∪ {(b+ 1, yu)} is
simply ordered, which cannot be possible since it is a proper superset and B is maximal. So it has
to be that in fact the image of f is unbounded above when b < ∞, which shows property (ii). An
analogous argument shows property (iii).

Since f has all of the required properties and B = Af , this shows that B ∈ A. Clearly then B ⊂ A
since B was arbitrary. This shows that A = B as desired.

Lastly, note that the example curves y = x3 and y = 2 are clearly in A = B since they are non-
decreasing functions on R, (R being the same as the open interval (−∞,∞)), while the curve y = x2

is not since it is decreasing when x < 0.

Exercise 11.5

Show that Zorn’s Lemma implies the following:

Lemma (Kuratowski). Let A be a collection of sets. Suppose that for every subcollection B of A that is
simply ordered by proper inclusion, the union of the elements of B belongs to A. Then A has an element
that is properly contained in no other element of A.

Solution:

Proof. First, we know that ( is a strict partial order on A, which is trivial to show. So consider
any simply ordered subset B of A and let A =

⋃
B so that we know that A ∈ A. Clearly for any set

B ∈ B we have that B ⊂
⋃
B = A so that, since B was arbitrary, A is an upper bound of B in the

strict partial order (. Since B was arbitrary, this shows the hypothesis of Zorn’s Lemma so that A
has a maximal element A. Then clearly A is not properly contained in any other element of A.

Exercise 11.6

A collection A of subsets of a set X is said to be of finite type provided that a subset B of X belongs
to A if and only if every finite subset of B belongs to A. Show that the Kuratowski lemma implies the
following:

Lemma (Tukey, 1940). Let A be a collection of sets. If A is of finite type, then A has an element
properly contained in no other element of A.

Solution:

Proof. Suppose that A is a collection of sets of finite type. Let B be a subcollection of A that is
simply ordered by (. Consider next any finite subset B of

⋃
B. Then, for every b ∈ B, b ∈

⋃
B so

that we can choose a set Bb ∈ B such that b ∈ Bb. Note that this does not require the choice axiom
since we need to make only a finite number of choices. Then the set B′ = {Bb | b ∈ B} is clearly a
finite set of elements of B. Since B is simply ordered by (, it follows that B′ is as well and so has a
largest element C since it is finite.
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Hence, for any b ∈ B, we have that b ∈ Bb ⊂ C so that b ∈ C, and so B is a finite subset of C.
Since C ∈ B and B ⊂ A, clearly C ∈ A. Since A is of finite type and B is a finite subset of C, it
follows that B ∈ A also. Since B was an arbitrary finite subset of

⋃
B, it then follows that

⋃
B is

also in A since it is of finite type. It then follows from the Kuratowski lemma (Exercise 11.5) that
A has an element that is properly contained in no other element of A as desired.

Exercise 11.7

Show that the Tukey lemma implies the Hausdorff maximum principle. [Hint: If ≺ is a strict partial
order on A, let A be the collection of all subsets of A that are simply ordered by ≺. Show that A is of
finite type.]

Solution:

Proof. Following the hint, suppose that the set A has strict partial order ≺ and letA be the collection
of all subsets of A that are simply ordered by ≺. We show that A has finite type, i.e. that a subset
B ⊂ A is in A if and only if every finite subset of B is.

(⇒) Suppose that B ⊂ A is in A so that it is simply ordered by ≺. Clearly any finite subset of B
is also simply ordered by ≺ so that it is also in A, which shows the result.

(⇐) Now suppose that B ⊂ A and that every finite subset of B is in A. Now consider two distinct
element x and y of B. Clearly then the set {x, y} is a finite subset of B and hence is in A. Then
this means that {x, y} is simply ordered by ≺ so that clearly x and y are comparable. Since x and
y were arbitrary this shows that B is simply ordered by ≺ and hence B ∈ A.

We have thus shown that A is of finite type so that it has a set C such that is properly contained in
no other element of A. Since C ∈ A, it is simply ordered by ≺. It is also maximal since, if D is any
proper superset of C then it cannot be that D is simply ordered for then we would have D ∈ A and
C ( D, which would contradict the definition of C. Hence C is the maximal simply ordered subset
of A that shows the maximum principle.

Exercise 11.8

A typical use of Zorn’s lemma in algebra is the proof that every vector space has a basis. Recall that if
A is a subset of the vector space V , we say a vector belongs to that span of A if it equals a finite linear
combination of elements of A. The set A is independent if the only finite linear combination of elements
of A that equals the zero vector is the trivial one having all coefficients zero. If A is independent and if
every vector in V belongs to the span of A, then A is a basis for V .

(a) If A is independent and v ∈ V does not belong to the span of A, show A ∪ {v} is independent.

(b) Show the collection of all independent sets in V has a maximal element.

(c) Show that V has a basis.

Solution:

(a)

Proof. We show this by contradiction. Suppose that A is independent and v ∈ V does not belong
to the span of A. Also let B = A ∪ {v} and suppose that B is not independent. Then

n∑
i=1

βibi = 0
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for some nonzero coefficients βi, where each bi is in B. Now, it must be that one of the bi vectors is
v and the rest in A since otherwise they would all be in A and then A would not be independent.
Hence this can be expressed as

n−1∑
i=1

αiai + γv = 0

for nonzero coefficients αi and γ and vectors ai ∈ A. However clearly then we would have

v = − 1

γ

n−1∑
i=1

α1ai =

n−1∑
i=1

(
−αi
γ

)
ai

so that v is a linear combination of vectors in A and hence is in the span of A. This is a contradiction
so that it must be that in fact B = A ∪ {v} is independent as desired.

(b)

Proof. Let A be the collection of all independent sets in V . We know that ( is a strict partial order
on A. Now let B be any subset of A that is simply ordered by (. We claim that

⋃
B is an upper

bound of B that is in A. So first consider any B ∈ B and any b ∈ B so that clearly then b ∈
⋃
B.

Hence B ⊂
⋃
B since b was arbitrary. Since B ∈ B was arbitrary, this shows that

⋃
B is an upper

bound of B by (.

Next we show that
⋃
B is also in A. To this end consider any finite set B of elements of

⋃
B so

that B is a set of vectors in V . Now, for each b ∈ B we have that b ∈
⋃
B so that we can choose

any set Bb ∈ B where b ∈ Bb. Note that this does not require the axiom of choice since B is finite.
Then, since each Bb is in B, which is simply ordered by ( and {Bb | b ∈ B} is finite, it follows that
it has a largest element C so that Bb ⊂ C for any b ∈ B. Hence B ⊂ C since each b ∈ Bb and
Bb ⊂ C. Also C ∈ A since C ∈ B and B ⊂ A so that C is independent. Hence the only linear
combination of the vectors in B that is the zero vector must have all zero coefficients since they are
all in the independent set C. Since B was an arbitrary set of vectors in

⋃
B, this shows that

⋃
B is

independent and therefore in A.

Since B was an arbitrary simply ordered subset of A, it follows that every such subset has an upper
bound in A. Thus by Zorn’s Lemma A has a maximal element as desired.

(c)

Proof. Again let A be the collection of all independent sets in V , which we know has a maximal
element A from part (b). We claim that A is a basis for V . Suppose to the contrary that it is not
so that, since we know that A is independent (since it is in A), there must be a vector v ∈ V that
is not in the span of A. Then by part (a) we have that A ∪ {v} is also independent and so in A.
We also have that v /∈ A since otherwise it would clearly be in the span of A. Hence A ( A ∪ {v}.
However, this contradicts the fact that A is a maximal element of A, so that it must be that in fact
A is a basis for V as desired.

§WO Supplementary Exercises: Well-Ordering

Exercise WO.1

Theorem (General principle of recursive definition). Let J be a well-ordered set; let C be a set. Let F
be the set of all functions mapping sections of J into C. Given a function ρ : F → C, there is a unique
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h : J → C such that h(α) = ρ(h � Sα) for each α ∈ J . [Hint: Follow the pattern outlined in Exercise 10
of §10.]

Solution:

Following the hint, we follow the pattern of Exercise 10.10. In what follows denote by (∗) the
property

h(α) = ρ(h � Sα)

for a function h from J or a section of J to C.

Lemma WO.1.1. If h and k map sections of J , or all of J , into C and satisfy (∗) for all x in
their respective domains, then h(x) = k(x) for all x in both domains.

Proof. First suppose that the domains of h and k are sets H and K where each is either a section
of J or J itself. Since this is the case, we can assume without loss of generality that H ⊂ K and so
H is exactly the domain common to both h and k. Now suppose that the hypothesis we are trying
to prove is not true so that there is an x in both domains (i.e. x ∈ H) where h(x) 6= k(x). We can
also assume that x is the smallest such element since H ⊂ J and J is well-ordered. It then clearly
follows that Sx ⊂ H is a section of J and that h(y) = k(y) for all y ∈ Sx. From this we clearly have
that h � Sx = k � Sx so that

h(x) = ρ(h � Sx) = ρ(k � Sx) = k(x)

since both h and k satisfy (∗) and x is in the domain of both. This contradicts the supposition
that h(x) 6= k(x) so that it must be that no such x exists and hence h and k are the same in their
common domain as desired.

Lemma WO.1.2. If there exists a function h : Sα → C satisfying (∗), then there exists a function
k : Sα ∪ {α} → C satisfying (∗).

Proof. Suppose that h : Sα → C is such a function satisfying (∗). Now let S̄α = Sα ∪ {α} and we
define k : S̄α → C as follows. For any x ∈ S̄α set

k(x) =

{
h(x) x ∈ Sα
ρ(h) x = α .

We note that clearly Sα and {α} are disjoint so that this is unambiguous. We also note that h is a
function from a section of J to C so that h ∈ F and ρ(h) ∈ C is therefore defined.

Now we show that k satisfies (∗). First, clearly h � Sx = k � Sx for any x ≤ α since k(y) = h(y) by
definition for any y ∈ Sx ⊂ Sα. Now consider any x ∈ S̄α. If x = α then by definition we have

k(x) = ρ(h) = ρ(h � Sα) = ρ(k � Sα) = ρ(k � Sx)

since clearly h = h � Sα since Sα is the domain of h. On the other hand, if x ∈ Sα then x < α so
that

k(x) = h(x) = ρ(h � Sx) = ρ(k � Sx)

since h satisfies (∗). Therefore, since x was arbitrary, this shows that k also satisfies (∗).

Lemma WO.1.3. If K ⊂ J and for all α ∈ K there exists a function hα : Sα → C satisfying (∗),
then there exists a function

k :
⋃
α∈K

Sα → C

satisfying (∗).
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Proof. Let

k =
⋃
α∈K

hα ,

which we claim is the function we seek.

First we show that k is actually a function from
⋃
α∈K Sα to C. So consider any x in the domain

of k. Suppose that (x, a) and (x, b) are both in k so that there are α and β in K where (x, a) ∈ hα
and (x, b) ∈ hβ . Since hα and hβ both satisfy (∗), it follows from Lemma WO.1.1 that a = hα(x) =
hβ(x) = b since clearly x is in the domain of both. This shows that k is indeed a function since (x, a)
and (x, b) were arbitrary. Also clearly the domain of k is

⋃
α∈K Sα since, for any x ∈

⋃
α∈K Sα, we

have that there is an α ∈ K where x ∈ Sα. Hence x is in the domain of hα and so in the domain of
k. In the other direction, clearly if x is in the domain of k then it is in the domain of hα for some
α ∈ K. Since this domain is Sα, clearly x ∈

⋃
α∈K Sα. Lastly, obviously the range of k can be C

since this is the range of every hα.

Now we show that k satisfies (∗). So consider any x ∈
⋃
α∈K Sα so that x ∈ Sα for some α ∈ K.

Clearly we have that k(y) = hα(y) for every y ∈ Sα since hα ⊂ k. It then immediately follows that
k(x) = h(x) and k � Sx = hα � Sx since Sx ⊂ Sα. Then, since hα satisfies (∗), we have

k(x) = hα(x) = ρ(hα � Sx) = ρ(k � Sx) .

Since x was arbitrary, this shows that k satisfies (∗) as desired.

Lemma WO.1.4. For every β ∈ J , there exists a function hβ : Sβ → C satisfying (∗).

Proof. We show this by transfinite induction. So consider any β ∈ J and suppose that, for every
x ∈ Sβ , there is a function hx : Sx → C satisfying (∗). Now, if β has an immediate predecessor
α then we claim that Sβ = Sα ∪ {α}. First if x ∈ Sβ then x < β so that x ≤ α since α is the
immediate predecessor of β. If x < α then x ∈ Sα and if x = α then x ∈ {α}. Hence in either
case we have that x ∈ Sα ∪ {α}. Now suppose that x ∈ Sα ∪ {α}. If x ∈ Sα then x < α < β so
that s ∈ Sβ . On the other hand if x ∈ {α} then x = α < β so that again x ∈ Sβ . Thus we have
shown that Sβ ⊂ Sα ∪ {α} and Sα ∪ {α} ⊂ Sβ so that Sβ = Sα ∪ {α}. Since α ∈ Sβ it follows
that there is an hα : Sα → C that satisfies (∗). Then, by Lemma WO.1.2, we have that there is an
hβ : Sβ = Sα ∪ {α} → C that also satisfies (∗).
If β does not have an immediate predecessor then we claim that Sβ =

⋃
γ<β Sγ . So consider any

x ∈ Sβ so that x < β. Since x cannot be the immediate predecessor of β, there must be an α where
x < α < β. Then x ∈ Sα so that, since α < β, clearly x ∈

⋃
γ<β Sγ . Now suppose that x ∈

⋃
γ<β Sγ

so that there is an α < β where x ∈ Sα. Then clearly x < α < β so that also x ∈ Sβ . Thus we
have shown that Sβ ⊂

⋃
γ<β Sγ and

⋃
γ<β Sγ ⊂ Sβ so that Sβ =

⋃
γ<β Sγ . Now, clearly Sβ is a

subset of J where there is an hx : Sx → C satisfying (∗) for every x ∈ Sβ . Then it follows from
Lemma WO.1.3 that there is a function hβ from

⋃
γ<Sβ

Sγ =
⋃
γ<β Sγ = Sβ to C that satisfies (∗).

Therefore, in either case, we have shown that there is an hβ : Sβ → C that satisfies (∗). The desired
result then follows by transfinite induction.

Main Problem.

Proof. First suppose that J has no largest element. Then we claim that J =
⋃
α∈J Sα. For any

x ∈ J there must be a y ∈ J where x < y since x cannot be the largest element of J . Hence x ∈ Sy
so that also clearly

⋃
α∈J Sα. Then, for any x ∈

⋃
α∈J Sα, there is an α ∈ J where x ∈ Sα. Clearly

Sα ⊂ J so that x ∈ J also. Hence J ⊂
⋃
α∈J Sα and

⋃
α∈J Sα ⊂ J so that J =

⋃
α∈J Sα. Since we

know from Lemma WO.1.4 that there is an hα : Sα → C that satisfies (∗) for every α ∈ J , it follows
from Lemma WO.1.3 that there is a function h from

⋃
α∈J Sα = J to C that satisfies (∗).
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If J does have a largest element β then clearly J = Sβ ∪ {β}. Since we know that there is an
hβ : Sβ → C that satisfies (∗) by Lemma WO.1.4, it follows from Lemma WO.1.2 that there is a
function h from Sβ ∪ {β} = J to C that satisfies (∗). Hence the desired function h exists in both
cases. Lemma WO.1.1 also clearly shows that this function is unique.

Exercise WO.2

(a) Let J and E be well-ordered sets; let h : J → E. Show that the following statements are equivalent:

(i) h is order preserving and its image is E or a section of E.

(ii) h(α) = smallest [E − h(Sα)] for all α.

[Hint: Show that each of these conditions implies that h(Sα) is a section of E; conclude that it
must be the section by h(α).]

(b) If E is a well-ordered set, show that no section of E has the order type of E, nor do two different
sections of E have the same order type. [Hint: Given J , there is a most one order preserving map
of J into E whose image is E or a section of E.]

Solution:

(a)

Proof. First, for any α ∈ J and β ∈ E, let Sα denote the section of J by α, and Tβ denote the section
of E by β. To avoid ambiguity, also suppose that < is the well-order on J and ≺ is the well-order
on E. We show that each of these conditions are equivalent to the condition that h(Sα) = Th(α) for
every α ∈ J . Call this condition (iii). This of course also shows that the conditions are equivalent
to each other.

First we show that (i) implies (iii). So suppose that h is order preserving and its image is E or a
section of E. Consider any α ∈ J and any y ∈ h(Sα) so that there is an x ∈ Sα where y = h(x).
Then x < α and y = h(x) ≺ h(α) since h preserves order. Therefore y ∈ Th(α) so that h(Sα) ⊂ Th(α)

since y was arbitrary. Now consider y ∈ Th(α) so that y ≺ h(α). Since also clearly y ∈ E (since
Th(α) ⊂ E), y is in the image of h if its image is all of E. If the image of h is some section of E, say
Tβ , then clearly h(α) ∈ Tβ since h(α) is obviously in the image of h. Hence we have y ≺ h(α) ≺ β
so that y ∈ Tβ and hence in the image of h. Since y is in the image of h in either case, there is an
x ∈ J such that y = h(x). Then h(x) = y ≺ h(α) so that x < α since h preserves order. Hence
x ∈ Sα so that y ∈ h(Sα) since y = h(x). This shows that Th(α) ⊂ h(Sα) since y was arbitrary.
Therefore h(Sα) = Th(α) so that condition (iii) is true since α was arbitrary.

Next we show that (iii) implies (i). So suppose that h(Sα) = Th(α) for all α ∈ J . First, it is easy to
see that h preserves order since, if x, y ∈ J where x < y, then we have that x ∈ Sy so that clearly
h(x) ∈ h(Sy) = Th(y), and hence h(x) < h(y). To show that the image of h, i.e. h(J), is either E or
a section of E, consider the set E − h(J).

Case: E − h(J) = ∅. Then clearly for any y ∈ E we must have that y ∈ h(J) since otherwise it
would be that y ∈ E − h(J). Thus E ⊂ h(J) since y was arbitrary. Also clearly h(J) ⊂ E since E
is the range of h. This shows that h(J) = E.

Case: E − h(J) 6= ∅. Then clearly E − h(J) is a nonempty subset of E so that it has a smallest
element β since E is well-ordered, noting that clearly β /∈ h(J). We claim that h(J) = Tβ . So
consider any y ∈ h(J) so that there is an x ∈ J where y = h(x). Suppose for a moment that
β � y. Now it cannot be that β = y since y ∈ h(J) but β /∈ h(J), and so β ≺ y. But then
β ∈ Ty = Th(x) = h(Sx) since x ∈ J . Then β is in the image of h since clearly h(Sx) ⊂ h(J). As this
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contradicts the fact that β /∈ h(J), it must be that y ≺ β so that y ∈ Tβ . This shows that h(J) ⊂ Tβ
since y was arbitrary. Suppose now that y ∈ Tβ so that y ≺ β. Since β is the smallest element of
E−h(J), it follows that y /∈ E−h(J). Since clearly y ∈ E (since Tβ ⊂ E), it must be that y ∈ h(J).
This shows that Tβ ⊂ h(J) since y was arbitrary. Hence we have shown that h(J) = Tβ .

Therefore in every case either the image of h is E or a section of E as desired. This completes the
proof of (i).

Now we show that (ii) implies (iii). So suppose that h(α) is the smallest element of E − h(Sα) for
every α ∈ J . First we show that h is injective. So consider any x, y ∈ J where x 6= y. We can
assume without loss of generality that x < y so that x ∈ Sy and hence h(x) ∈ h(Sy). However since
we have that h(y) is the smallest element of E − h(Sy), clearly h(y) /∈ h(Sy). Therefore we have
that h(x) 6= h(y) so that h is injective.

Now consider any α ∈ J so that clearly h(α) is the smallest element of E − h(Sα). Suppose that
y ∈ h(Sα) so that there is an x ∈ Sα where y = h(x), and therefore x < α. Consider the possibility
that h(α) 4 h(x) = y. It cannot be that h(α) = h(x) = y since x 6= α and h is injective, so it
must be that h(α) ≺ h(x). It then follows that h(α) /∈ E − h(Sx) since h(x) is the smallest element
of E − h(Sx). Thus h(α) ∈ h(Sx) since clearly h(α) ∈ E. It then follows from the fact that h is
injective that α ∈ Sx so that we have α < x < α, which is clearly a contradiction. So it must be
that y = h(x) ≺ h(α) so that y ∈ Th(α). This shows that h(Sα) ⊂ Th(α) since y was arbitrary.

Now suppose that y ∈ Th(α) so that y ≺ h(α). Since h(α) is the smallest element of E − h(Sα),
it follows that y /∈ E − h(Sα). Since clearly y ∈ E, it must be that y ∈ h(Sα). This shows
that Th(α) ⊂ h(Sα) since y was arbitrary, and hence h(Sα) = Th(α), which shows (iii) since α was
arbitrary.

Lastly, we show that (iii) implies (ii). So suppose that h(Sα) = Th(α) for every α ∈ J and consider
any such α. Clearly we have that h(α) ∈ E but h(α) /∈ Th(α) = h(Sα) so that h(α) ∈ E − h(Sα).
Suppose for the moment that h(α) is not the smallest element of E − h(Sα) so that there is a
β ∈ E − h(Sα) where β ≺ h(α). Then β ∈ Th(α) so that it must be that β /∈ E − Th(α) = E − h(Sα)
since h(Sα) = Th(α). Clearly this is a contradiction so that it must be that h(α) really is the smallest
element of E − h(Sα), which shows (ii) since α was arbitrary.

Exercise WO.3

Let J and E be well-ordered sets; suppose there is an order preserving map k : J → E. Using Exercises 1
and 2, show that J has the order type of E or a section of E. [Hint: Choose e0 ∈ E. Define h : J → E
by the recursion formula

h(α) = smallest [E − h(Sα)] if h(Sα) 6= E ,

and h(α) = e0 otherwise. Show that h(α) ≤ k(α) for all α; conclude that h(Sα) 6= E for all α.]

Solution:

Proof. First, if E = ∅ then it must be that J = ∅ as well so that they vacuously have the same
order type. Otherwise, following the hint, choose e0 ∈ E and define h : J → E by

h(α) = smallest [E − h(Sα)] if h(Sα) 6= E ,

and h(α) = e0 otherwise, noting that this function is uniquely defined by the general principle of
recursive definition (Exercise WO.1). We show that h(α) ≤ k(α) for all α ∈ J using transfinite
induction (see Lemma 10.10.1). So consider α ∈ J and assume that h(x) ≤ k(x) for all x ∈ Sα.
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Since k preserves order we have that h(x) ≤ k(x) < k(α) when x < α. In particular, this means
that h(x) 6= k(α) for all x ∈ Sα so that k(α) ∈ E − h(Sα). Hence E − h(Sα) is not empty
so that h(Sα) 6= E. Thus h(α) is the smallest element of E − h(Sα) and so h(α) ≤ k(α) since
k(α) ∈ E − h(Sα). This completes the induction.

Therefore, for any α ∈ J and any x < α we have h(x) ≤ k(x) < k(α) since k preserves order so
that h(x) 6= k(α). As in the induction step above, it follows that h(Sα) 6= E. Hence, since α was
arbitrary,

h(α) = smallest [E − h(Sα)]

for all α ∈ J . It then follows from Exercise WO.2 part (a) that h is order preserving and maps J
onto E or a section of E. This clearly shows that J has the order type of E or a section of E as
desired.

Exercise WO.4

Use Exercises 1-3 to prove the following:

(a) If A and B are well-ordered sets, then exactly one of the following three conditions holds: A and
B have the same order type, or A has the order type of a section of B, or B has the order type of
a section of A. [Hint: Form a well-ordered set containing both A and B, as in Exercise 8 of §10;
then apply the preceding exercise.]

(b) Suppose that A and B are well-ordered sets that are uncountable, such that every section of A and
B is countable. Show that A and B have the same order type.

Solution:

(a)

Proof. First, we can assume that A and B are disjoint since, if not, we can form A′ = {(x, 1) | x ∈ A}
and B′ = {(x, 2) | x ∈ B}, which clearly are disjoint and have the same order types as A and B if
ordered in the same way. So let ≺ be the order on A ∪ B as in Exercise 10.8 with all the elements
of A before the elements of B. From the exercise, we know that A ∪ B is well-ordered by ≺. Now,
clearly the identity function iB with A ∪ B as the range is an order-preserving function from B to
A ∪B so that B is the same order type as A ∪B or a section of A ∪B by Exercise WO.3.

If B has the same order type as A∪B, then there is a an order preserving bijection g : A∪B → B.
Let b be the smallest element of B so that y = g(b) ∈ B. Since b is the smallest element of B, clearly
the section Sb = {x ∈ A ∪B | x ≺ b} = A. Also clearly g(A) = g(Sb) = Sy = {x ∈ B | x < y} so
that A has the same order type as a section of B since g preserves order.

If B has the same order type as a section of A ∪ B then there is an order preserving bijection
f : B → Sα for some α ∈ A ∪B. If α ∈ A then clearly Sα lies entirely in A and is a section of A so
that B has the same order type as a section of A. So now suppose that α ∈ B. If α is the smallest
element of B then again it has to be that Sα lies in A and is in fact the entirety of A so that B and
A have the same order type. If α is not the smallest element of B then Sα contains elements of both
A and B. So let b be the smallest element of B so that b ∈ Sα, and let y ∈ B be such that f(y) = b,
which exists since f is surjective. We also have that Sb = A since b is the smallest element of B. It
then follows that f(Sy) = Sb = A since f(y) = b so that A has the same order type as the section
Sy of B since f preserves order.

Hence in all cases one of the desired results always follows. To show that exactly one of these is the
case, note that if A and B have the same order type then clearly it cannot be that A has the same
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order type as a section of B since then B would also have the same order type is its own section,
which would violate Exercise WO.2 part (b). Similarly B cannot have the same order type as a
section of A since then A would have the same order type as its own section. Now suppose that A
has the same order type as a section Sb of B. Then A and B cannot have the same order type since
then B would have the same order type as its section Sb. Also B cannot have the same order type
as a section Sa of A since then the section Sb, and therefore A, would have the same order type as
a smaller section of A. An analogous argument shows the result when B has the same order type
as a section of A.

(b)

Proof. Suppose that A has the same order type as a section of B. Then there would be a bijection
from A, an uncountable set, to a section of B, which is countable. A similar contradiction arises if
B were to have the same order type as a section of A. By part (a), the only remaining possibility
is that A and B have the same order type as desired.

Exercise WO.5

Let X be a set; let A be the collection of all pairs (A,<), where A is a subset of X and < is a well-ordering
of A. Define

(A,<) ≺ (A′, <′)

if (A,<) equals a section of (A′, <′).

(a) Show that ≺ is a strict partial order on A.

(b) Let B be a subcollection of A that is simply ordered by ≺. Define B′ to be the union of the sets
B, for all (B,<) ∈ B; and define <′ to be the union of the relations <, for all (B,<) ∈ B. Show
that (B′, <′) is a well-ordered set.

Solution:

(a)

Proof. For any (A,<) ∈ A we have that it is not equal to a section of itself since then it would then
clearly have the same order type as its own section, which would violate Exercise WO.2 part (b).
Hence it is not true that (A,<) ≺ (A,<) by definition, which shows that ≺ is nonreflexive.

Now consider (A,<), (A′, <′), and (A′′, <′′) in A where (A,<) ≺ (A′, <′) and (A′, <′) ≺ (A′′, <′′).
Then (A,<) is a section of (A′, <′). Also (A′, <′) is a section of (A′′, <′′) so that clearly any section
of (A′, <′) is also a section of (A′′, <′′). Since (A,<) is such a section we have that (A,<) is a
section of (A′′, <′′) so that (A,<) ≺ (A′′, <′′). This shows that ≺ is transitive.

This completes the proof that ≺ is a strict partial order.

(b)

Proof. First we must show that B′ is simply ordered by <′.

First consider any (x, y) ∈<′ so that there is a (B,<) ∈ B where (x, y) ∈< and x, y ∈ B. Clearly
then x and y are in the union B′ so that (x, y) ∈ B′ ×B′. This shows that <′⊂ B′ ×B′ so that <′

is a relation on B′.

Next consider any x and y in B′ where x 6= y. Then there are well-ordered sets (B1, <1) and (B2, <2)
in B where x ∈ B1 and y ∈ B2. Since B is simply ordered by ≺ we have that (B1, <1) ≺ (B2, <2)
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or (B2, <2) ≺ (B1, <1). Without loss of generality we can assume the former case (since otherwise
we can just swap the roles of x and y). Then (B1 <1) is a section of (B2, <2) and is thus also a
subset so that x, y ∈ B2, It then follows that x and y are comparable by <2 since x 6= y and <2 is
a well-order and therefore a simple order. Thus (x, y) or (y, x) are in <2. Since <′ is the union of
all relations < where (B,<) ∈ B, clearly we have that (x, y) or (y, x) are in <′ since <2 is such a
relation. Thus shows that <′ has the comparability property.

Now consider any x ∈ B′ so that there is a (B,<) ∈ B where x ∈ B. Consider also any (B′′, <′′) ∈ B.
Then, since B is simply ordered, it follows that (B,<) and (B′′, <′′) are comparable in ≺. If
(B,<) ≺ (B′′, <′′) then (B,<) is a section of (B′′, <′′) so that x ∈ B′′ as well. Then it cannot be
that x <′′ x since <′′ is a simple order. If (B′′, <′′) ≺ (B,<) then (B′′, <′′) is a section of (B,<). If
x ∈ B′′ then again it cannot be that x <′′ x since <′′ is a simple order. If x /∈ B′′ then (x, x) /∈<′′
since it is a relation on B′′. Thus in all cases and sub-cases it is not true that x <′′ x so that x <′ x
does not hold since <′′ was arbitrary and <′ is their union. This shows that <′ is nonreflexive.

Lastly, suppose that x <′ y and y <′ z. Then it has to be that there is a (B1, <1) and (B2, <2) in
B where z <1 y and y <2 z. Then (B1, <1) and (B2, <2) are comparable in ≺ since B is simply
ordered. Hence one is a section of the other so that, in either case, it follows that x < y and y < z
where either <=<1 or <=<2. Then clearly x < z since both <1 and <2 are transitive since they
are simple orders. Thus x <′ z since <′ is the union of all the orders in B and < is such an order.
This shows that <′ is transitive.

This completes the proof that <′ is a simple order on B′. To show that it is a well-order, consider
any nonempty subset A ⊂ B′. Then there is an x ∈ A so that x ∈ B′ as well. It then follows that
there is a (B,<) ∈ B where x ∈ B. Then clearly B ∩A is a nonempty subset of B since x ∈ B and
x ∈ A. Let b be the <-smallest element in B ∩A, and we claim that this is the smallest element of
A by <′. First, obviously b ∈ A since b ∈ B ∩ A. Next consider any y ∈ A so that y ∈ B′ as well.
Then there is a (B′′, <′′) ∈ B where y ∈ B′′. Since B is simply ordered by ≺ we have that (B,<)
and (B′′, <′′) are comparable. Hence (B,<) is a section of (B′′, <′′) or vice-versa.

In the first case we have that both b and y are in B′′. If y ∈ B then also y ∈ B ∩ A so that b ≤ y
since it is the smallest element of B ∩ A by <. If y /∈ B then b <′′ y since B is a section of B′′,
and therefore b ≤′′ y is true. In the second case in which (B′′, <′′) is a section of (B,<) we have
that both b and y are in B and hence in B ∩ A. Then, again b ≤ y since b is the smallest element
of B ∩ A by <. Hence in all cases either b ≤ y or b ≤′′ y. Either way it follows that b ≤′ y as well
since <′ is the union. This shows that b is the smallest element of A by <′ as desired. Since A was
an arbitrary nonempty subset, this shows that B′ is well-ordered by <′.

Exercise WO.6

Use Exercises 1 and 5 to prove the following:

Theorem. The maximum principle is equivalent to the well-ordering theorem.

Solution:

Proof. First suppose that the maximum principle is true and let X be any set. Then let A be the
collection of all pairs (A,<), where A ⊂ X and < is a well-ordering of A as in Exercise WO.5. Define
the relation ≺ on A also as in Exercise WO.5, i.e (A,<) ≺ (A′, <′) if (A,<) is a section of (A′, <′).
It was then shown in that exercise that ≺ is a strict partial order on A so that, by the maximum
principle, there is a maximal simply ordered subset B ⊂ A. Now let (B′, <′) be the unions of the
corresponding elements of B so that we know that <′ well-orders B′ by part (b) of Exercise WO.5.

We claim that B′ = X. Suppose that this is not the case so that there is a x ∈ X where x /∈ B′ (since
we know that B′ ⊂ X). Then define B′′ = B′ ∪ {x} and the relation <′′=<′ ∪{(b′, x) | b′ ∈ B′}. It
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is then easy to see (and trivial but tedious to show) that B′′ is well-ordered by <′′. Also, clearly
B′ is the section of B′′ by x so that, for any B ∈ B, we have B � B′ ≺ B′′. Since B was arbitrary,
this shows that the set B ∪ {B′′} is simply ordered by ≺ and is a subset of A. Since x /∈ B′ we have
that x /∈ B for any B ∈ B (since B′ is their union) so that B′′ 6= B since x ∈ B. It follows that
B ( B∪{B′′}, but this contradicts the maximality of B! So it has to be that in fact B′ = X itself so
that <′ is a well-ordering of X. Since X was an arbitrary set, this shows the well-ordering theorem.

Now suppose the well-ordering theorem and that A is a set with strict partial ordering ≺. Then we
know that A has a well-ordering, say <. Now, for any function f from a section Sx (by <) to P (A),
define

ρ(f) =

{⋃
f(Sx) ∪ {x} if ≺ is a simple order on

⋃
f(Sx) ∪ {x}⋃

f(Sx) otherwise .

Then by the general principle of recursive defamation (Exercise WO.1) there is a unique function
h : A→ P (A) such that h(α) = ρ(h � Sα) for all α ∈ A.

First we show that, for α, β ∈ A where α < β, we have h(α) ⊂ h(β). So consider any x ∈ h(α) =
ρ(h � Sα), and hence either x ∈

⋃
h(Sα) ∪ {α} or x ∈

⋃
h(Sα). Either way obviously x ∈

⋃
h(Sα)

so that there is a set X ∈ h(Sα) where x ∈ X. Then there is a γ ∈ Sα where X = h(γ). Since we
have α < β, clearly also γ ∈ Sβ and hence X ∈ h(Sβ). Then also clearly both x ∈

⋃
h(Sβ) ∪ {β}

and x ∈
⋃
h(Sβ) so that for sure x ∈ ρ(h � Sβ) = h(β). Since x was arbitrary this shows that

h(α) ⊂ h(β) as desired.

Next we show by transfinite induction that h(α) is simply ordered by ≺ for every α ∈ A. So consider
α ∈ A and suppose that h(β) is simply ordered by ≺ for every β < α. If

⋃
h(Sα) ∪ {α} is simply

ordered by ≺ then clearly h(α) is since then h(α) = ρ(h � Sα) =
⋃
h(Sα) ∪ {α}. So suppose that

this is not the case so that h(α) = ρ(h � Sα) =
⋃
h(Sα). Consider then any x, y ∈ h(α) =

⋃
h(Sα)

where x 6= y so that there are X and Y in h(Sα) where x ∈ X and y ∈ Y . Then there is a β and
γ in Sα where X = h(β) and Y = h(γ). If β = γ then x and y are both in X = h(β) = h(γ) = Y ,
which is simply ordered by the induction hypothesis so that x and y are comparable in ≺. If β < γ
then by what was shown above we have that x ∈ X = h(β) ⊂ h(γ) so that x and y are both in
h(γ), which is simply ordered by the induction hypothesis so that again x and y are comparable. A
similar argument shows that x and y are both in h(β) and thus are comparable when β > γ. This
completes the induction since x and y are comparable in all cases so that h(α) is always simply
ordered.

We then claim that the set B =
⋃
α∈A h(α) is a maximal simply ordered (by ≺) subset of A, which

of course shows the maximum principle. First, it is obviously a subset of A since each h(α) ∈ P (A)
so and so is a subset of A. To show that that B is simply ordered by ≺, consider x and y in B where
x 6= y so that there is an α and β in A where x ∈ h(α) and y ∈ h(β). Without loss of generality
we can assume that α < β so that h(α) ⊂ h(β) by what was shown below. Then both x and y are
in h(β), which is simply ordered by what was shown above. Hence x and y are comparable in ≺ so
that B is simply ordered.

To show that B is maximal, suppose that B ( Z and Z ⊂ A is simply ordered by ≺. Then there
is a z ∈ Z where z /∈ B. Now let x ∈

⋃
h(Sz) so that there is an X ∈ h(Sz) where x ∈ X. Then

there is an α ∈ Sz where x ∈ X = h(α). Hence clearly x ∈ B so that also x ∈ Z and so x and
z are comparable in ≺ since Z is simply ordered. Since x was arbitrary this shows that the set⋃
h(Sz) ∪ {z} is simply ordered so that h(z) = ρ(h � Sz) =

⋃
h(Sz) ∪ {z}. However, then we have

that z ∈ h(z) so that z ∈ B, which is a contradiction. So it must be that there is no such set Z and
hence B is maximal.

Exercise WO.7
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Use Exercises 1-5 to prove the following:

Theorem. The choice axiom is equivalent to the well-ordering theorem.

Proof. Let X be a set; let c be a fixed choice function for the nonempty subsets of X. If T is a subset
of X and < is a relation on T , we say that (T,<) is a tower in X if < is a well-ordering of T and if for
each x ∈ T ,

x = c(X − Sx(T )) ,

where Sx(T ) is the section of T by x.

(a) Let (T1, <1) and (T2, <2) be two towers in X. Show that either these two ordered sets are the
same, or one equals a section of the other. [Hint: Switching indices if necessary, we can assume
that h : T1 → T2 is order preserving and h(T1) equals either T2 or a section of T2. Use Exercise 2
to show that h(x) = x for all x.]

(b) If (T,<) is a tower in X and T 6= X, show that there is a tower in X of which (T,<) is a section.

(c) Let {(Tk, <k) | k ∈ K} be the collection of all towers in X. Let

T =
⋃
k∈K

Tk and <=
⋃
k∈K

(<k) .

Show that (T,<) is a tower in X. Conclude that T = X.

Solution:

(a)

Proof. Since (T1, <1) and (T2, <2) are both well-ordered sets, it follows from Exercise WO.4 part (a)
that either they have the same order type, T1 has the same order type as a section of T2, or vice-
versa. We can assume that either they have the same order type of T1 has the same order type as
a section of T2 since, in the third case, we can just swap the roles of T1 and T2. Thus there is an
order preserving function h : T1 → T2 whose image is either all of T2 or a section of T2. Given this,
it was shown in the proof of Exercise WO.2 part (a) that h(Sx(T1)) = Sh(x)(T2) for all x ∈ T1.

We show that h(x) = x for all x ∈ T1 by transfinite induction. So suppose that h(y) = y for all
y < x, i.e. for all y ∈ Sx(T1) so that clearly h(Sx(T1)) = Sx(T1). Then, since both T1 and T2 are
towers in X and h(x) ∈ T2, we have

h(x) = c(X − Sh(x)(T2)) = c(X − h(Sx(T1))) = c(X − Sx(T1)) = x .

This completes the induction. Since h(x) = x for all x ∈ T1 and h preserves order, it follows that
T1 is equal to T2 or a section of T2 as desired.

(b)

Proof. Since T 6= X, it follows that X − T is nonempty. So let a = c(X − T ), T ′ = T ∪ {a}, and
<′=< ∪{(x, a) | x ∈ T}. Then clearly a is the largest element of T ′ and an upper bound of T so
that T = Sa(T ′), and hence a = c(X − T ) = c(X − Sa(T ′)). Since T is a tower, it then follows that
T ′ is also a tower in X and that T is a section of T ′ as desired.

(c)
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Proof. First we need to show that < is even a well-ordering of T as this is not obvious. To show
that it is a simple order, consider x, y ∈ T where x 6= y. It follows that x ∈ Tk and y ∈ Tl for some
k, l ∈ K by the definition of T . Since Tk and Tl are both towers in X, it follows from part (a) that
they are equal or one is a section of the other. So, without loss of generality, we can assume that
Tk ⊂ Tl and also <k⊂<l. It then follows that both x and y are in Tl so that either x <l y or y <l x
since x 6= y and <l is a simple order. Then clearly x < y or y < x from the definition of <. This
shows that < has the comparability property.

Now suppose that there is an x ∈ T where x < x. Then there is a k ∈ K where x <k x, which
violates the fact that <k is a simple order. Hence it must be that < is nonreflexive.

Lastly consider x, y, z ∈ T where x < y and y < z. Then there k, l ∈ K where x <k y and y <l z
and it must then be that x, y ∈ Tk and y, z ∈ Tl. Again, since these are both towers, they are
either equal or one is a section of the other by part (a). So we can assume that Tk ⊂ Tl and <k⊂<l
without loss of generality so that we have x, y, z ∈ Tl and x <l y <l z. From this clearly x <l z
since it is a simple order and therefore transitive. Hence we have x < y, which of course shows that
< is transitive as well. This all shows that < is indeed a simple order by definition.

To show that < is a well-ordering, consider any nonempty subset Y of T . Then there is a b ∈ Y
so that also b ∈ T . It follows that there is a k ∈ K such that b ∈ Tk, and also that Y ∩ Tk is a
nonempty subset of Tk. It then follows that Y ∩Tk has a smallest element a since Tk is well-ordered
by <k. We claim that in fact a is the smallest element of all of Y . To see this, consider any other
x ∈ Y so that also x ∈ T . Hence there is an l ∈ K where x ∈ Tl. Now, since both Tk and Tl are
towers in X, it follows from part (a) that they are equal or one is a section of the other.

Case: Tk and Tl are equal. Then both a and x are in Tk and so both in Y ∩ Tk. Then a ≤k x since
a is the smallest element of Y ∩ Tk.

Case: Tk is a section of Tl. Then, if a ∈ Tk then the argument in the previous case shows that
a ≤k x. On the other hand, if a /∈ Tk, then it has to be that that x <l a since x ∈ Tk and Tk is a
section of Tl.

Case: Tl is a section of Tk. Then Tl ⊂ Tk so that both a and x are in Tk and thus in Y ∩ Tk. Hence
again a ≤k x since a is the smallest element of Y ∩ Tk.

In all cases a ≤m x for some m ∈ K and hence a ≤ x. Since x was an arbitrary element of Y , this
shows that a is in fact the smallest element of Y . Since Y was an arbitrary nonempty subset of T ,
this shows that T is well-ordered by <.

Next we digress for a moment to show, for any k ∈ K and x ∈ Tk, that Sx(Tk) = Sx(T ). So consider
such k and x and suppose that y ∈ Sx(Tk) so that y <k x. Then clearly also y < x by the definition
of < and hence y ∈ Sx(T ). This shows that Sx(Tk) ⊂ Sx(T ) since y was arbitrary. Now suppose
y ∈ Sx(T ) so that y < x. Then there is an l ∈ K where y <l x. Hence x, y ∈ Tl, and by part (a)
either Tl and Tk are equal, or one is a section of the other. If they are equal or Tl is a section of Tk
then clearly we have <l⊂<k so that y <k x. If Tk is a section of Tl then, since y <l x and x ∈ Tk,
it has to be that also y ∈ Tk since Tk is a section of Tl. Hence it must be that y <k x. Since this is
true in all cases it follows that y ∈ Sx(Tk), which shows that Sx(T ) ⊂ Sx(Tk). This completes the
proof that Sx(Tk) = Sx(T ).

With this having been shown, we can easily show that T is a tower in X. For any x ∈ T there is a
k ∈ K where x ∈ Tk. Since Tk is a tower in X we have

x = c(X − Sx(Tk)) = c(X − Sx(T ))

by what was just shown. Thus suffices to show that T is a tower in X.

Lastly, we claim that T = X. To see this, suppose that it is not the case so that by part (b) there
is a tower S in X such that T is a section of S. From this we have that T = Sa(S) for some a ∈ S
and that of course a /∈ T . However, since S is a tower and {(Tk, <k) | k ∈ K} is the collection of all
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towers in X, it follows that there must be a k ∈ K such that S = Tk. Then we have that a ∈ S = Tk
so that of course a ∈ T by definition, which is a contradiction. So it must be that in fact T = X as
desired.

This of course shows that < is a well-ordering of X = T so that the choice axiom implies the
well-ordering theorem since X is an arbitrary set. In contrast to the previous proof, it is easy to
prove that the well-ordering theorem implies the choice axiom. For a collection of nonempty sets B
define X =

⋃
B. Then X can be well-ordered by the well-ordering theorem. Then we simply define

a choice function c on B in the following way: any B ∈ B is clearly a nonempty subset of X and so
has a smallest element a since X is well ordered. So simply set c(B) = a, from which it is clear that
c(B) ∈ B and so c is a valid choice function.

Exercise WO.8

Using Exercises 1-4, construct an uncountable well-ordered set, as follows. Let A be the collection of all
pairs (A,<), where A is a subset of Z+ and < is a well-ordering of A. (We allow A to be empty.) Define
(A,<) ∼ (A′, <′) if (A,<) and (A′, <′) have the same order type. It is trivial to show that this is an
equivalence relation. Let [(A,<)] denote the equivalence class of (A,<); let E denote the collection of
these equivalence classes. Define

[(A,<)]� [(A′, <′)]

if (A,<) has the order type of a section of (A′, <′).

(a) Show that the relation � is well defined and is a simple order on E. Note that the equivalence
class [(∅,∅)] is the smallest element of E.

(b) Show that if α = [(A,<)] is an element of E, then (A,<) has the same order type as the section
Sα(E) of E by α. [Hint: Define a map f : A → E by setting f(x) = [(Sx(A), restriction <)] for
each x ∈ A.]

(c) Conclude that E is well-ordered by �.

(d) Show that E is uncountable. [Hint: If h : E → Z+ is a bijection, then h gives rise to a well-ordering
of Z+.]

Solution:

(a)

Proof. First, to show that � is well defined, suppose that [(A,<)] � [(A′, <′)] and that (B,≺) ∈
[(A,<)] and (B′,≺′) ∈ [(A′, <′)]. Then (A,<) has the same order type as a section of (A′, <′)
so that there is an order-preserving map h from A onto a section of A′. We also then have that
(B,≺) has the same order type as (A,<) since they are in the same equivalence class. Thus there
is an order-preserving bijection f : B → A. Likewise there is an order-preserving bijection from
g : B′ → A′. It is then trivial to show that g−1 ◦ h ◦ f is bijection from B onto a section of B′ that
preserves order. Hence (B,≺) has the same order type as a section of (B′,≺′). Since (B,≺) and
(B′,≺′) were arbitrary elements in their respective equivalence classes, this shows that � is well
defined such that it does not matter which representatives we use from the equivalence classes.

Now consider any equivalence class [(A,<)] in E. Then clearly it cannot be that [(A,<)]� [(A,<)],
since this would mean that A has the same order type as a section of itself, which would contradict
what was shown in Exercise WO.2 part (b). Thus � is nonreflexive.

Next consider two distinct equivalence classes [(A,<)] and [(A′, <′)]. Then it cannot be that (A,<)
and (A′, <′) have the same order type, for then they would be the same equivalence class. Then,
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by Exercise WO.4 part (a), it must be that either (A,<) has the same order type as a section of
(A′, <′) or vice-versa. Clearly then, in the former case [(A,<)] � [(A′, <′)], and in the latter case
[(A′, <′)]� [(A,<)]. This shows that � has the comparability property.

Lastly, suppose that [(A,<)] � [(A′, <′)] and [(A′, <′)] � [(A′′, <′′)]. Then (A,<) has the same
order type as section of (A′, <′) so that there is an order-preserving bijection f from A onto a section
of A′ Likewise there is an order-preserving bijection g from A′ onto a section of A′′. It is then trivial
to show that f ◦g is an order-preserving bijection from A onto a section of A′′. It then clearly follows
that [(A,<)]� [(A′′, <′′)], which shows that � is transitive.

Hence we have shown that � satisfies all the requirements of a simple order.

(b)

Proof. Following the hint, define the map f : A→ E by setting

f(x) = [(Sx(A), restriction <)]

for any x ∈ A, noting that clearly Sx(A) is well-ordered by the restricted < so that the equivalence
class is valid and in E.

Consider any x and y in A where x < y. Then clearly x ∈ Sy(A) but x /∈ Sx(A) (since it is not true
that x < x) so that Sx(A) and Sy(A) are distinct sets. We also clearly have that Sx(A) = Sx(Sy(A))
so that Sx(A) has the same order type (the identity function is the required order-preserving map)
as a section of Sy(A). Hence

f(x) = [(Sx(A), restriction <)]� [(Sy(A), restriction <)] = f(y)

so that f preserves order since x and y were arbitrary.

Now we show that f is onto Sα(E). So consider any equivalence class [(B,≺)] in Sα(E) and hence

[(B,≺)]� α = [(A,<)]

so that by definition (B,≺) has the same order type as some section Sx(A). Hence [(B,≺)] and
[(Sx(A), restriction <)] are the same equivalence class! Therefore

f(x) = [(Sx(A), restriction <)] = [(B,≺)] ,

which of course shows the desired property since [(B,≺)] was arbitrary.

This shows that f is an order-preserving map from A onto Sα(E) so that they have the same order
type.

(c)

Proof. Consider any nonempty subset D ⊂ E. Thus there is an α = [(A,<)] ∈ D. If α is the
smallest element of D then we are done, so assume that this is not the case so that there is a β ∈ D
where β � α. Now, it was shown in part (b) that (A,<) has the same order type as the section
Sα(E) so that this section must be well-ordered since A is. Also we have that β ∈ Sα(E) since
β � α. Thus β ∈ D ∩ Sα(E) so that D ∩ Sα(E) is a nonempty subset of Sα(E) so has a smallest
element γ since Sα(E) is well-ordered. In particular, we of course have that γ≪ β, where we use
≪ to denote � or equal to.

We claim that γ must be the smallest element of D. If not, then there is a δ ∈ D where δ � γ. Of
course we also then have that δ � γ≪ β � α and hence δ ∈ Sα(E). Therefore δ ∈ D∩Sα(E), but
since δ � γ this contradicts the definition of γ as the smallest element of D ∩ Sα(E). So it must be
that in fact γ is the smallest element of D, which shows that E is well-ordered by � since D was
an arbitrary subset.
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(d)

Proof. Following the hint, suppose that E is countable so that there is a bijection h : E → Z+. This
of course gives rise to a well-ordering < of h(E) = Z+ by simply ordering its elements according to
its bijection with E, which was shown to be well-ordered in part (c). Then we have that (Z+, <) is
an element of A since Z+ is a subset of itself. Thus the equivalence class α = [(Z+, <)] is an element
of E. But we know from part (b) that (Z+, <) then has the same order type as the section Sα(E).
Since we also know that (Z+, <) has the same order type as E itself, it follows that E has the same
order type as its section Sα(E). This was shown not to be possible in Exercise WO.2 part (b) so
that a contradiction has been reached. So it must be that in fact E is uncountable as desired!

Chapter 2 Topological Spaces and Continuous Functions

§13 Basis for a Topology

Exercise 13.1

Let X be a topological space; let A be a subset of X. Suppose that for each x ∈ A there is an open set
U containing x such that U ⊂ A. Show that A is open in X.

Solution:

Proof. For each x ∈ A we can choose an open set Ux containing x such that Ux ⊂ A. We then
claim that

⋃
x∈A Ux = A. So first consider any y ∈

⋃
x∈A Ux so that there is an x ∈ A such that

y ∈ Ux. Then clearly also y ∈ A since Ux ⊂ A. Hence
⋃
x∈A Ux ⊂ A since y was arbitrary. Now

consider y ∈ A so that clearly y ∈ Uy. Then obviously y ∈
⋃
x∈A Ux so that A ⊂

⋃
x∈A Ux since y

was arbitrary. Thus we have shown that
⋃
x∈A Ux = A, and since each Ux is open, it follows from

the definition of a topology that the union
⋃
x∈A Ux = A is open as well.

Exercise 13.2

Consider the nine topologies on the set X = {a, b, c} indicated in Example 1 of §12. Compare them;
that is, for each pair of topologies, determine whether they are comparable, and if so, which is finer.

Solution:

We label each of the topologies in Figure 12.1 with an ordered pair (i, j) where 1 ≤ i, j ≤ 3, i is the
row, j is the column, and (1, 1) is the upper left corner. The following matrix lists which of each
pair is finer, or “Inc” if they are incomparable.

(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)
(1, 1) = (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)
(1, 2) = Inc Inc Inc Inc (1, 2) (3, 2) (3, 3)
(1, 3) = (1, 3) Inc (2, 3) (1, 3) Inc (3, 3)
(2, 1) = Inc (2, 3) Inc (3, 2) (3, 3)
(2, 2) = Inc Inc Inc (3, 3)
(2, 3) = (2, 3) Inc (3, 3)
(3, 1) = (3, 2) (3, 3)
(3, 2) = (3, 3)
(3, 3) =
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We know that ( forms a strict partial order on these topologies. So we can also list all the maximal
simply ordered subsets, each in order:

(1, 1) ( (2, 2) ( (3, 3)

(1, 1) ( (3, 1) ( (1, 2) ( (3, 2) ( (3, 3)

(1, 1) ( (3, 1) ( (1, 3) ( (2, 3) ( (3, 3)

(1, 1) ( (2, 1) ( (1, 3) ( (2, 3) ( (3, 3)

(1, 1) ( (2, 1) ( (3, 2) ( (3, 3)

Exercise 13.3

Show that the collection Tα given in Example 4 of §12 is a topology on X. Is the collection

T∞ = {U | X − U is infinite or empty or all of X}

a topology on X?

Solution:

Recall that Tα from Example 12.4 is the set of all subsets U of X such that X−U either is countable
or is all of X. First we show that Tα is a topology on X.

Proof. First, clearly ∅ ∈ Tα since X − ∅ = X is all of X. Also X ∈ Tα since X − X = ∅ is
countable. Now suppose that A is a subcollection of Tα so that X −U is countable (or all of X) for
every U ∈ A. Then we have that

X −
⋃
A = X −

⋃
A∈A

A =
⋂
A∈A

(X −A)

is countable (or all of X) since every X − A is countable (or all of X). Therefore
⋃
A ∈ Tα by

definition.

Now suppose that U1, . . . , Un are nonempty elements of Tα so that X − Ui is a countable subset of
X or X itself for each i ∈ {1, . . . , n}. Then we have

X −
n⋂
i=1

Ui =

n⋃
i=1

(X − Ui)

is a finite union of sets that are either countable subsets of X, or X itself. It then follows that the
union is countable or X itself so that

⋂n
i=1 Ui ∈ Tα by definition. This completes the proof that Tα

is a topology on X.

Now we claim that the collection T∞ as defined above is not always a topology on X.

Proof. As a counterexample, let X = Z+ and suppose that T∞ is a topology on X. Clearly if U is
a finite subset of X, then X − U is infinite since X is infinite so that U is open. Now consider the
subcollection

A = {{i} | i ∈ Z+ and i > 1} = {{2} , {3} , . . .} .

Then clearly we have that
⋃
A = {2, 3, . . .} so that X −

⋃
A = {1} is neither infinite, empty, nor

all of X. Therefore
⋃
A cannot be open, which violates property (2) of a topology. So it must be

that T∞ is not a topology, which of course contradicts our supposition that it is!
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Exercise 13.4

(a) If {Tα} is a family of topologies on X, show that
⋂
Tα is a topology on X. Is

⋃
Tα a topology on

X?

(b) Let {Tα} be family of topologies on X. Show that there is a unique smallest topology on X
containing all the collections Tα, and a unique largest topology contained in all Tα.

(c) If X = {a, b, c}, let

T1 = {∅, X, {a} , {a, b}} and T2 = {∅, X, {a} , {b, c}} .

Find the smallest topology containing T1 and T2, and the largest topology contained in T1 and T2.

Solution:

(a) First we show that
⋂
Tα is a topology on X.

Proof. First, clearly since ∅ and X are in every Tα since they are topologies, they are both in
⋂
Tα

so that property (1). Now suppose that A is a subcollection of
⋂
Tα. Consider any Tβ and any

A ∈ A. Then A is also in
⋂
Tα since A ⊂

⋂
Tα. It then follows that A is in our specific Tβ .

Since A was arbitrary it follows that A is a subcollection of Tβ so that
⋃
A ∈ Tβ also since Tβ is a

topology. Since Tβ was also arbitrary it follows that
⋃
A ∈

⋂
Tα. Lastly, since the subcollection A

was arbitrary, this shows property (2) for
⋂
Tα.

Finally, suppose that U1, . . . , Un are sets in
⋂
Tα. Consider any Tβ so that clearly then Ui ∈ Tβ

for every i ∈ {1, . . . , n}. It then follows that
⋂n
i=1 Ui ∈ Tβ since Tβ is a topology. Since Tβ was

arbitrary, this shows that
⋂n
i=1 Ui ∈

⋂
Tα, which shows property (3) for

⋂
Tα. This completes the

proof that
⋂
Tα is a topology on X since all three properties have been shown.

Now we claim that
⋃
Tα is not generally a topology.

Proof. As a counterexample consider the set X = {a, b, c}, the topologies T1 = {∅, X, {a}} and
T2 = {∅, X, {b}}, and the collection of topologies C = {T1, T2}. Then we clearly have that

⋃
C =

T1 ∪ T2 = {∅, X, {a} , {b}}, which is not a topology since A = {{a} , {b}} is a subcollection of
⋃
C

but
⋃
A = {a, b} is not in

⋃
C.

(b) First we show that there is a unique smallest topology that contains each Tα.

Proof. It was proven in part (a) that
⋃
Tα is not necessarily a topology. However, it is clearly always

a subbasis for a topology since clearly X ∈
⋃
Tα since it is in each Tα since they are topologies.

Hence obviously then
⋃

(
⋃
Tα) = X so that

⋃
Tα is a subbasis by definition. Then let Ts be the

topology generated by the subbasis
⋃
Tα. We claim that Ts is then the smallest topology that

contains all the Tα as subsets.

First, from the proof following the definition of a subbasis, we know that the set B of finite inter-
sections of elements of

⋃
Tα is a basis for the topology Ts, and that Ts is the set of all unions of

subcollections of B.

We first show that every Tα is indeed contained as a subset of Ts. So consider any specific Tβ and
any U ∈ Tβ . Then clearly U ∈

⋃
Tα so that U ∈ B since U =

⋂
{U} is a finite intersection of

elements of
⋃
Tα. It then follows that U ∈ Ts since U =

⋃
{U} is the union of a subcollection of B.

Since U was arbitrary, this shows that Tβ ⊂ Ts, which shows the result since Tβ was arbitrary.

Now we show that Ts is the smallest such topology as ordered by (. So suppose that T is a topology
that contains every Tα as a subset. Consider any U ∈ Ts so that U =

⋃
C for some subcollection
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C ⊂ B. Now consider any Y ∈ C so that also Y ∈ B. Then Y =
⋂n
i=1 Yi where each Yi ∈

⋃
Tα.

Then each Yi is in some Tβ ⊂ T so that also Yi ∈ T . Since T is a topology, it follows that the finite
intersection

⋂n
i=1 Yi = Y is also in T . Since Y was arbitrary, this shows that C ⊂ T so that C is a

subcollection of T . It then follows that
⋃
C = U is also in T since T is a topology. Since U was

arbitrary, we have that Ts ⊂ T , which shows that Ts is the smallest topology since T was arbitrary.

It is easy to see that Ts is unique since, if both T1 and Ts are the smallest topologies that contain
each Tα as subsets, then we would have that both T1 ⊂ T2 and T2 ⊂ T1 so that T1 = T2. Really this
follows from the more general fact that smallest elements in any order are always unique.

Next we show that there is a unique largest topology that is contained in each Tα.

Proof. It was shown in part (a) that Tl =
⋂
Tα is a topology on X. We claim that in fact this is the

unique largest topology contained in all Tα. First, clearly Tl =
⋂
Tα is contained in each Tα since

the intersection of a collection of sets is always a subset of every set in the collection. Now suppose
that T is a topology that is contained in every Tα, i.e. T ⊂ Tα for every Tα. Then clearly for any
U ∈ T we have that U ∈ Tα for every Tα so that U ∈

⋂
Tα = Tl. Thus T ⊂ Tl since U was arbitrary.

This shows that Tl is the largest such topology since T was arbitrary.

Clearly also Tl is unique since, if T1 and T2 are two such largest topologies that are contained in
every Tα. Then we would have T1 ⊂ T2 and T2 ⊂ T1 so that T1 = T2. This also follows from the fact
that the largest element in any ordered set (or collection of sets in this case) is unique.

(c) Note that the proofs in part (b) are constructive so that we can construct these topologies as
done in the proof. For the smallest topology containing T1 and T2 we have that⋃

{T1, T2} = T1 ∪ T2 = {∅, X, {a} , {a, b} , {b, c}}

is a subbasis for the smallest topology Ts. Then the collection of all finite intersections of elements
of this set is a basis for Ts:

B = {∅, X, {a} , {b} , {a, b} , {b, c}} .

Then the topology Ts is the set of all unions of subcollections of B:

Ts = {∅, X, {a} , {b} , {a, b} , {b, c}} = B

so that evidently the basis and the topology are the same set here!

For the largest topology contained in T1 and T2 we have simply

Tl =
⋂
{T1, T2} = T1 ∩ T2 = {∅, X, {a}} .

Exercise 13.5

Show that if A is a basis for a topology on X, then the topology generated by A equals the intersection
of all topologies on X that contain A. Prove the same if A is a subbasis.

Solution:

Suppose that T is the topology generated by basis A, and C is the collection of topologies on X
that contain A as a subset.

First we show that T =
⋂
C.
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Proof. Consider U ∈ T and any Tc ∈ C so that A ⊂ Tc. Then, since A generates T , it follows from
Lemma 13.1 that U is the union of elements of A. Clearly then each of these elements of A is in
Tc since A ⊂ Tc so that their union is as well since Tc is a topology. Hence U ∈ Tc so that T ⊂ Tc
since U was arbitrary. Hence T is contained in all elements of C so that T ⊂

⋂
C. Also, clearly T is

a topology that contains A so that T ∈ C. Clearly then
⋂
C ⊂ T so that T =

⋂
C as desired.

Next we show the same thing but when A is a subbasis.

Proof. Let B be the set of all finite intersections of elements of A, which we know is a basis for T
by the proof after the definition of a subbasis. We show that B ⊂ Tc for all Tc ∈ C. So consider any
set B ∈ B so that B is the finite intersection of elements of A. Also consider any Tc ∈ C so that
each of these elements is in Tc since A ⊂ Tc. Since Tc is a topology, clearly the finite intersection of
these elements, i.e. B, is in Tc. Hence B ⊂ Tc since B was arbitrary.

It then follows from what was shown before that T =
⋂
C since T is the topology generated by the

basis B and B is contained in each topology in C.

Exercise 13.6

Show that the topologies of Rl and RK are not comparable.

Solution:

Proof. Let Tl and TK be the topologies of Rl and RK , respectively. Also let Bl and BK be the
corresponding bases.

Consider x = 0 ∈ R and Bl = [0, 1), which clearly contains 0 and is a basis element of Bl. Let BK
be any basis element of BK that contains 0. Then BK is either (a, b) or (a, b)−K for some a < b. In
either case it must be that a < 0 < b so that clearly a < a/2 < 0 < b. Also a/2 /∈ K since a/2 < 0
so that we have a/2 ∈ (a, b) and a/2 ∈ (a, b)−K. Clearly also a/2 /∈ [0, 1) so that it cannot be that
BK ⊂ Bl. We have therefore shown that

∃x ∈ R∃Bl ∈ Bl [x ∈ Bl ∧ ∀BK ∈ BK (x ∈ BK ⇒ BK 6⊂ Bl)]
∃x ∈ R∃Bl ∈ Bl [x ∈ Bl ∧ ∀BK ∈ BK (x /∈ BK ∨BK 6⊂ Bl)]
∃x ∈ R∃Bl ∈ Bl [x ∈ Bl ∧ ¬∃BK ∈ BK (x ∈ BK ∧BK ⊂ Bl)]
∃x ∈ R∃Bl ∈ Bl¬ [x /∈ Bl ∨ ∃BK ∈ BK (x ∈ BK ∧BK ⊂ Bl)]
∃x ∈ R∃Bl ∈ Bl¬ [x ∈ Bl ⇒ ∃BK ∈ BK (x ∈ BK ∧BK ⊂ Bl)]
¬∀x ∈ R∀Bl ∈ Bl [x ∈ Bl ⇒ ∃BK ∈ BK (x ∈ BK ∧BK ⊂ Bl)]
¬∀x ∈ R∀Bl ∈ Bl [x ∈ Bl ⇒ ∃BK ∈ BK (x ∈ BK ⊂ Bl)]

This shows by the negation of Lemma 13.3 that TK is not finer than Tl.
Now consider again x = 0 ∈ R and BK = (−1, 1)−K, which clearly contains 0 and is a basis element
of BK . Let Bl be any basis element of Bl that contains 0 so that Bl = [a, b) where a ≤ 0 < b. Clearly
we have that 1/b > 0 and there is an n ∈ Z+ where n > 1/b since the positive integers have no
upper bound. We then have

0 < 1/b < n

0 < 1 < bn (since b > 0)

0 < 1/n < b (since n > 1/b > 0)
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so that 1/n ∈ [0, b) = Bl. However, clearly 1/n ∈ K so that 1/n /∈ (−1, 1) − K = BK . Hence it
must be that Bl 6⊂ BK . This shows that Tl is not finer than TK by the negation of Lemma 13.3 as
before.

This completes the proof that TK and Tl are not comparable.

Exercise 13.7

Consider the following topologies on R:

T1 = the standard topology,

T2 = the topology of RK ,

T3 = the finite compliment topology,

T4 = the upper limit topology, having all sets (a, b] as basis,

T5 = the topology having all sets (−∞, a) = {x | x < a} as basis.

Determine, for each of these topologies, which of the others it contains.

Solution:

We claim that T3 ( T1 ( T2 ( T4 and T5 ( T1 ( T2 ( T4 but that T3 and T5 are incomparable.

Let B1, B2, B4, and B5 be the given bases corresponding to the above topologies, noting that T3 is
defined directly rather than generated from a basis.

First we show that T3 ( T1.

Proof. Consider any U ∈ T3 so that R−U is finite or U = R. Clearly in the latter case U ∈ T1 since
it is a topology. In the former case R− U is a finite set of real numbers so that its elements can be
enumerated as {x1, x2, . . . , xn} for some n ∈ Z+ where x1 < x2 < · · · < xn. Then clearly we have
that

U = (−∞, x1) ∪

[
n−1⋃
k=1

(xk, xk+1)

]
∪ (xn,∞) .

Each of these sets is an interval (a, b) or the union of such intervals. For example, the set (−∞, x1)
can be covered by the countable union of intervals

∞⋃
k=1

(x1 − k − 1, x1 − k + 1)

and similarly for the interval (xn,∞). Hence the union U is an element of T1 by Lemma 13.1. Since
U was arbitrary, this shows that T3 ⊂ T1.

Now, clearly the interval (−1, 1) is in T1 since it is a basis element. However, we also have that
R− (−1, 1) = (−∞,−1] ∪ [1,∞) is neither finite nor all of R. Hence (−1, 1) /∈ T3. This shows that
T1 cannot be a subset of T3 so that T3 ( T1 as desired.

Next we show that T5 ( T1 also.

Proof. Consider any x ∈ R and any basis element B5 ∈ B5 containing x. Then B5 = (−∞, a) where
x < a. Let B1 = (x − 1, a), which is a basis element in B1. Also clearly B1 contains x and is a
subset of B5. This proves that T5 ⊂ T1 by Lemma 13.3.
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Now consider x = −1 and basis element B1 = (−2, 0) in B1, noting that obviously x ∈ B1, and
hence −2 < x < 0. Let B5 be any element of B5 containing x so that B5 = (−∞, a) where x < a.
Clearly then −3 < −2 < x < a so that −3 ∈ B5. However, since −3 /∈ (−2, 0) = B1, this shows that
B5 6⊂ B1. This suffices to show that T1 6⊂ T5 by the negation of Lemma 13.3. Therefore T5 ( T1 as
desired.

Now we show that T3 and T5 are not comparable.

Proof. First consider the set U = R − {0} so that U ∈ T3 since R − U = {0} is obviously finite.
Now suppose that U ∈ T5 as well. Then, since clearly 1 ∈ U , there must be a basis element B5 ∈ B5

where 1 ∈ B5 and B5 ⊂ U by the definition of a topological basis. Then B5 = (−∞, a) where 1 < a.
However, since 0 < 1 < a as well, it must be that 0 ∈ B5, and hence 0 ∈ U since B5 ⊂ U . As this
clearly contradicts the definition of U , it has to be that U is not in fact in T5 so that T3 6⊂ T5.

Now consider the set U = (−∞, 0), which is clearly in T5 since it is a basis element. However, since
R−U = [0,∞) is clearly neither all of R nor finite, it follows that U /∈ T3. This shows that T5 6⊂ T3,
which completes the proof that the two are incomparable.

Now, the fact that T1 ( T2 was shown in Lemma 13.4. All that remains to be shown is that T2 ( T4

since the rest of the relations follow from the transitivity of proper inclusion.

Proof. First consider any basis element B2 ∈ B2 and any x ∈ B2. Either B2 is (a, b) or (a, b) −K
for a < b so that a < x < b with x /∈ K. In the former case clearly the set B4 = (a, x] is in B4,
x ∈ B4, and B4 ⊂ B2. In the latter case we have the following:

Case: x ≤ 0. Then here again B4 = (a, x] is in B4, x ∈ B4, and B4 ⊂ B2 since y /∈ K for any y ∈ B4

since then a < y ≤ x ≤ 0.

Case: x > 0. Then let n be the smallest positive integer where n > 1/x, which exists since Z+ has
no upper bound and is well-ordered. It then follows that 0 < 1/n < x and there are no integers m
such that 1/n < 1/m ≤ x. So let a′ = max(a, 1/n) and set B4 = (a′, x] so that, for any y ∈ B4,
both a ≤ a′ < y ≤ x < b and 1/n ≤ a′ < y < x, and hence y ∈ (a, b) and y /∈ K. Therefore
y ∈ (a, b)−K = B2. Since y was arbitrary, this shows that B4 ⊂ B2, noting that also clearly x ∈ B4

and B4 ∈ B4.

Hence in any case it follows that T2 ⊂ T4 from Lemma 3.13.

Now let x = −1 and B4 = (−2,−1] so that clearly x ∈ B4 and B4 ∈ B4. Then let B2 be any basis
element in B2 that contains x. Then we have that B2 is either (a, b) or (a, b)−K where a < x < b
and x /∈ K.

Case: 0 < b. Then a < x = −1 < 0 ≤ b so that 0 is in both (a, b) and (a, b)−K since clearly 0 /∈ K,
and thus 0 ∈ B2. However, clearly 0 /∈ (−2,−1] = B4.

Case: 0 ≥ b. Then a < x < (x + b)/2 < b ≤ 0 so that (x + b)/2 ∈ B2 since (x + b)/2 is not in K.
Clearly also though (x+ b)/2 /∈ (−2, x] = B4 since x < (x+ b)/2.

Thus in either case we have that B2 6⊂ B4. This shows the negation of Lemma 13.3 so that T4 6⊂ T2.
Hence T2 ( T4 as desired.

It is perhaps a rather surprising fact that, though it has been shown that the K and lower limit topol-
ogy are incomparable (Exercise 13.6), the K topology and the upper limit topology are comparable
as was just shown.

Exercise 13.8
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(a) Apply Lemma 13.2 to show that the countable collection

B = {(a, b) | a < b, a and b rational}

is a basis that generates the standard topology on R.

(b) Show that the collection

C = {[a, b) | a < b, a and b rational}

is a basis that generates a topology different from the lower limit topology on R.

Solution:

(a)

Proof. Let T be the standard topology on R. First, clearly B is a collection of open sets of T since
each element is a basis element in the standard basis (i.e. an open interval). Now consider any
U ∈ T and any x ∈ U . Then there is a standard basis element B′ = (a′, b′) such that x ∈ B′ and
B′ ⊂ U since T is generated by the standard basis. Then a′ < x < b′ so that, since the rationals
are order-dense in the reals (shown in Exercise 4.9 part (d)), there are rational a and b such that
a′ < a < x < b < b′. Let B = (a, b) so that clearly x ∈ B, B ⊂ B′ ⊂ U , and B ∈ B. This shows
that B is a basis for T by Lemma 13.2 since U and x ∈ U were arbitrary.

(b)

Proof. First we must show that C is a basis at all. Clearly, for any x ∈ R we have that there is an
element in C containing x, for example [x, x+ 1). Now suppose that C1 = [a1, b1) and C2 = [a2, b2)
are two elements of C and that x ∈ C1 ∩ C2. Then obviously a1 ≤ x < b1 and a2 ≤ x < b2. Let
a = max(a1, a2) and b = min(b1, b2) and C = [a, b) so that clearly C ∈ C. Also clearly a ≤ x < b
since both a1 ≤ x < b1 and a2 ≤ x < b2, a is a1 or a2, and b is b1 or b2. Therefore C contains x.
Now consider any y ∈ C so that a1 ≤ a ≤ y < b ≤ b1 and a2 ≤ a ≤ y < b ≤ b2 and hence y ∈ C1

and y ∈ C2. This shows that C ⊂ C1 ∩ C2 since y was arbitrary. By definition this suffices to show
that C is a basis for a topology.

So let T be the topology generated by C and Tl be the lower limit topology. Now consider U =
[x, x + 1) where x is any irrational number, for example x = π. Let C be any basis element in C
containing x so that C = [a, b) where a and b are rational. It must be that a 6= x since a is rational
but x is not. Also, since C contains x it has to be that a ≤ x. So it has to be that a < x, but then
a ∈ C but a /∈ [x, x+ 1) = U . This shows that C is not a subset of U . Hence we have shown

∃x ∈ U∀C ∈ C (x ∈ C ⇒ C 6⊂ U)

∃x ∈ U∀C ∈ C (x /∈ C ∨ C 6⊂ U)

¬∀x ∈ U∃C ∈ C (x ∈ C ∧ C ⊂ U) .

This shows that U /∈ T by the definition of a generated topology. However, clearly we have that
U ∈ Tl since it is a lower limit basis element. This suffices to show that T and Tl are different
topologies.

§16 The Subspace Topology

Exercise 16.1

Show that if Y is a subspace of X and A is a subspace of Y , then the topology A inherits as a subspace
of Y is the same as the topology it inherits as a subspace of X.
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Solution:

Proof. Let T be the topology on X and TY be the subspace topology that Y inherits from X. Also
let TA and T ′A be the topologies that A inherits as a subspace of Y and X, respectively. Therefore
we must show that TA = T ′A. Now, by definition of subspace topologies we have that,

TY = {Y ∩ U | U ∈ T } TA = {A ∩ U | U ∈ TY } T ′A = {A ∩ U | U ∈ T } .

Now suppose that W ∈ TA so that W = A∩ V for some V ∈ TY . Then we have that V = Y ∩U for
some U ∈ T , and hence

W = A ∩ V = A ∩ (Y ∩ U) = (A ∩ Y ) ∩ U = A ∩ U

since we have that A ∩ Y = A since A ⊂ Y . Since U ∈ T this clearly shows that W ∈ T ′A so that
TA ⊂ T ′A since W was arbitrary.

Then, for any W ∈ T ′A, we have that W = A ∩ U for some U ∈ T . Let V = Y ∩ U so that clearly
V ∈ TY . Then as before we have that A = A ∩ Y since A ⊂ Y so that

W = A ∩ U = (A ∩ Y ) ∩ U = A ∩ (Y ∩ U) = A ∩ V ,

and thus W ∈ TA since V ∈ TY . Since W was arbitrary this shows that T ′A ⊂ TA, which completes
the proof that TA = T ′A.

Exercise 16.2

If T and T ′ are topologies on X and T ′ is strictly finer than T , what can you say about the corresponding
subspace topologies on the subset Y of X?

Solution:

Let TY and T ′Y be the subspace topologies on Y corresponding to T and T ′, respectively. We claim
that TY is finer than TY but not necessarily strictly finer.

Proof. First, we have that

TY = {Y ∩ U | U ∈ T } T ′Y = {Y ∩ U | U ∈ T ′}

by the definition of subspace topologies. So for any V ∈ TY we have that V = Y ∩ U where U ∈ T .
Then also U ∈ T ′ since T ′ is finer than T . This shows that V ∈ T ′Y since V = Y ∩U where U ∈ T ′.
Hence T ′Y is finer than TY since V was arbitrary.

To show that it is not necessarily strictly finer, consider the sets X = {a, b, c} and Y = {a, b} so
that clearly Y ⊂ X. Consider also the topologies

T = {∅, X, {a, b}} T ′ = {∅, X, {a, b} , {c}}

on X so that clearly T ′ is strictly finer than T . This results in the subspace topologies

TY = {∅, Y } T ′Y = {∅, Y } ,

which are clearly the same so that T ′Y is not strictly finer than T ′Y , noting that it is technically still
finer. However, if we instead have the topologies

T = {∅, X, {a, b}} T ′ = {∅, X, {a, b} , {b}}
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then

TY = {∅, Y } T ′Y = {∅, Y, {b}}

so that T ′Y is strictly finer than TY . Thus we can say nothing about the strictness of relation of the
subspace topologies.

Exercise 16.3

Consider the set Y = [−1, 1] as a subspace of R. Which of the following sets are open in Y ? Which are
open in R?

A =
{
x | 1

2 < |x| < 1
}
,

B =
{
x | 1

2 < |x| ≤ 1
}
,

C =
{
x | 1

2 ≤ |x| < 1
}
,

D =
{
x | 1

2 ≤ |x| ≤ 1
}
,

E = {x | 0 < |x| < 1 and 1/x /∈ Z+} .

Solution:

Lemma 16.3.1. If a, b ∈ R such that 0 ≤ a < b then the following are true:

{x ∈ R | a < |x| < b} = (−b,−a) ∪ (a, b) {x ∈ R | a ≤ |x| ≤ b} = [−b,−a] ∪ [a, b]

{x ∈ R | a ≤ |x| < b} = (−b,−a] ∪ [a, b) {x ∈ R | a < |x| ≤ b} = [−b,−a) ∪ (a, b] .

Proof. We prove only the first of these as the rest follow from nearly identical arguments. Let
A = {x ∈ R | a < |x| < b} and B = (−b,−a) ∪ (a, b) so that we must show that A = B.

So consider x ∈ A so that a < |x| < b. If x ≥ 0 then |x| = x so that a < x < b and hence x ∈ (a, b).
If x < 0 then |x| = −x so that a < −x < b, and thus −a > x > −b so that x ∈ (−b,−a). Thus in
either case x ∈ B so that A ⊂ B.

Now let x ∈ B so that either x ∈ (−b,−a) or x ∈ (a, b). In the former case we have that x < −a ≤ 0
since a ≥ 0 so that |x| = −x and therefore

x ∈ (−b,−a)⇒ −b < x < −a⇒ b > −x = |x| > a⇒ x ∈ A .

In the latter case we have that x > a ≥ 0 so that |x| = x and therefore

x ∈ (a, b)⇒ a < x = |x| < b⇒ x ∈ A .

This shows that B ⊂ A since x was arbitrary, and thus A = B as desired.

Lemma 16.3.2. Suppose that X is a topological space and Y ⊂ X with the subspace topology. Then,
if a set U ⊂ Y is open in X, then it is also open in Y .

Proof. So suppose that U ⊂ Y is open in X. Then we have that Y ∩ U = U is also open in Y by
the definition of the subspace topology.

Main Problem.

First we claim that A is open in both R and Y .
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Proof. We have from Lemma 16.3.1 that A = (−1,− 1
2 ) ∪ ( 1

2 , 1) which is clearly the union of basis
elements so that A is open in R. We also have that A ⊂ Y so that A is open in Y by Lemma 16.3.2
since it is open in R.

Next we claim that B is open in Y but not in R.

Proof. By Lemmma 16.3.1 we have that B = [−1,− 1
2 ) ∪ ( 1

2 , 1]. First, consider the sets (−2,− 1
2 )

and ( 1
2 , 2), which are clearly both basis elements and therefore open in R. We then have that

(−2,− 1
2 ) ∩ Y = [−1,− 1

2 ) and ( 1
2 , 2) ∩ Y = ( 1

2 , 1] so that these sets are open in Y by the definition
of the subspace topology. Clearly then their union B = [−1,− 1

2 ) ∪ ( 1
2 , 1] is then also open in Y .

It is also easy to see that B is not open in R. For example, −1 ∈ B but for any basis element
B′ = (a, b) containing −1 we have that a < −1 < b so that a < (a − 1)/2 < −1 < b and hence
(a− 1)/2 ∈ B′. Clearly though (a− 1)/2 /∈ B so that B′ cannot be a subset of B. Thus suffices to
show that B is not open by the definition of the topology of R generated by its basis.

We claim that C is open neither in R nor Y .

Proof. By Lemmma 16.3.1 we have that C = (−1,− 1
2 ] ∪ [ 1

2 , 1). If B is the standard basis on R,
then, by Lemma 16.1, the set BY = {B ∩ Y | B ∈ B} is a basis for the subspace Y . So consider the
point x = 1

2 and any basis element BY ∈ BY containing x. Then we have that BY = Y ∩ BX for
some basis element BX = (a, b) in B, and thus a < x < b since x ∈ BX . Let a′ = max(a,− 1

2 ) and
set y = (a′ + x)/2 so that

a ≤ a′ < (a′ + x)/2 = y < x < b ,

and hence y ∈ (a, b) = BX . Also we have

−1 < − 1
2 ≤ a

′ < (a′ + x)/2 = y < x = 1
2 < 1

so that y ∈ [−1, 1] = Y . Therefore y ∈ Y ∩ BX = BY . However, since − 1
2 < y < 1

2 , clearly y /∈ C
so that BY cannot be a subset of C. Since the basis element BY ∈ BY was arbitrary, this suffices
to show that C cannot be open in Y since BY is a basis. Since also clearly C ⊂ Y , it follows from
the contrapositive of Lemma 16.3.2 that C is not open in R either.

Next we claim that D is also not open in R or Y .

Proof. This follows from basically the same argument as the previous proof, again using the point
x = 1

2 to show that any basis element of Y that contains x cannot be a subset of D.

Lastly, we claim that E is open in both R and Y .

Proof. First, it is trivial to show that

E = {x ∈ R | 0 < |x| < 1} −K = [(−1, 0) ∪ (0, 1)]−K ,

where we have used Lemma 16.3.1. Now consider any x ∈ E so that x ∈ (−1, 0) ∪ (0, 1) and
x /∈ K. If x ∈ (−1, 0) then clearly the basis element (−1, 0) contains x and is a subset of E since
(−1, 0) ∩K = ∅.

On the other hand, if x ∈ (0, 1) then x /∈ K so that 1/x /∈ Z+. From this it follows from Exercise 4.9
part (b) that there is exactly one positive integer n such that n < 1/x < n+ 1. We then have that
1/(n+ 1) < x < 1/n. So let B = (1/(n+ 1), 1/n) so that clearly x ∈ B, B∩K = ∅, and B is a basis
element of the standard topology on R. Since B ∩K = ∅ and clearly 0 < 1/(n + 1) < 1/n ≤ 1, it
also follows that B ⊂ E.

Hence in either case there is a basis element of R that contains x and is a subset of E. This suffices
to show that E is open in R. Since clearly E ⊂ Y , we also clearly have that E is open in Y by
Lemma 16.3.2.
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Exercise 16.4

A map f : X → Y is said to be an open map if for every open set U of X, the set f(U) is open in Y .
Show that π1 : X × Y → X and π2 : X × Y → Y are open maps.

Solution:

Proof. Suppose that U is an open subset of X×Y . Consider any x ∈ π1(U) so that there is a y ∈ Y
such that (x, y) ∈ U . Then there is a basis element A×B of the product topology on X × Y where
(x, y) ∈ A× B ⊂ U . Then A and B are open sets of X and Y , respectively, since A× B is a basis
element of the product topology. Clearly we have that x ∈ A since (x, y) ∈ A × B. Now, for any
x′ ∈ A, we have that (x′, y) ∈ A × B so that (x′, y) ∈ U . Hence x′ = π1(x′, y) ∈ π1(U), which
shows that A ⊂ π1(U) since x′ was arbitrary. Then, since A is an open subset of X, there is a basis
element A′ where x ∈ A′ ⊂ A ⊂ π1(U). This suffices to show that π1(U) is an open subset of X
since x was arbitrary. An analogous argument shows that π2 is also an open map.

Exercise 16.5

Let X and X ′ denote a single set in the topologies T and T ′, respectively; let Y and Y ′ denote a single
set in the topologies U and U ′, respectively. Assume these sets are nonempty.

(a) Show that if T ′ ⊃ T and U ′ ⊃ U , then the product topology on X ′ × Y ′ is finer than the product
topology on X × Y .

(b) Does the converse of (a) hold? Justify your answer.

Solution:

In what follows let T ′p and Tp denote the product topologies on X ′ × Y ′ and X × Y , respectively.

(a)

Proof. Consider any W ∈ Tp and any (x, y) ∈ W , noting that obviously W ⊂ X × Y . Then there
is a basis element U × V of Tp such that (x, y) ∈ U × V and U × V ⊂ W . By the definition of the
product topology, we have that U and V are open sets in T and U , respectively. Then we also have
that U ∈ T ′ and V ∈ U ′ since T ⊂ T ′ and U ⊂ U ′. Hence U ×V is also a basis element of T ′p . Since
we know that (x, y) ∈ U × V , U × V ⊂W , and (x, y) ∈W was arbitrary, this suffices to show that
W is an open subset of X ′ × Y ′ and hence W ∈ T ′p . This in turn shows that Tp ⊂ T ′p since W was
arbitrary.

(b) We claim that the converse does not always hold.

Proof. As a counterexample consider A = {a, b, c, d} so that clearly

T ′ = {∅, A, {a, b} , {c, d}}
T = {∅, A, {a, b} , {c, d} , {c} , {d} , {a, b, c} , {a, b, d}}

are topologies on A. Clearly also T ′ is not finer than T . Similarly let B = {1, 2, 3, 4} so that

U ′ = {∅, B, {1, 2} , {3, 4}}
U = {∅, B, {1, 2} , {3, 4} , {3} , {4} , {1, 2, 3} , {1, 2, 4}}

are topologies on B, also noting that clearly U ′ is not finer that U . Now let X = X ′ = {a, b} and
Y = Y ′ = {1, 2} so that clearly X and X ′ are in topologies T and T ′, respectively, and Y and Y ′

are in U and U ′, respectively.

Page 152



Then the bases for the product topologies Tp on X × Y and T ′p on X ′ × Y ′ are then

B = {∅, X × Y } B′ = {∅, X ′ × Y ′} = {∅, X × Y } = B ,

respectively, since there are no subsets of X in T or T ′ other than ∅ and X itself, and similarly no
subsets of Y in U or U ′ other than ∅ and Y . Since their bases are the same, clearly Tp = T ′p so that
it is true that T ′p is finer than Tp (though not strictly so).

Exercise 16.6

Show that the countable collection

{(a, b)× (c, d) | a < b and c < d and a, b, c, d are rational}

is a basis for R2.

Solution:

Proof. It was proven in Exercise 13.8 part (a) that the set

B = {(a, b) | a < b, a and b rational}

is a basis for the standard topology on R. It then follows that

D = {B × C | B,C ∈ B}

is a basis for the standard topology on R2 by Theorem 15.1. Clearly we have

D = {(a, b)× (c, d) | a < b and c < d and a, b, c, d are rational} ,

which shows the desired result.

Exercise 16.7

Let X be an ordered set. If Y is a proper subset of X that is convex in X, does it follow that Y is an
interval or a ray in X?

Solution:

We claim that Y is not always an interval or a ray in X.

Proof. As a counterexample consider X = Q and the proper subset Y =
{
x ∈ Q | x2 < 2

}
. We

claim that Y is convex but not an interval or a ray.

First, consider a, b ∈ Y where a < b, thus a2, b2 < 2. Also consider x ∈ (a, b) so that a < x < b. If
x ≥ 0 then 0 ≤ x < b so that x2 < b2 < 2. If x < 0 then a < x < 0 so that 2 > a2 > x2. Thus
in either case x2 < 2 so that x ∈ Y . Since x was arbitrary, this shows that (a, b) ⊂ Y so that Y is
convex since a and b were arbitrary.

Now, clearly Y cannot be a ray with no lower bound since then there would be an x in the ray where
x < −2 so that x2 > 4 > 2 and hence x /∈ Y . Similarly Y cannot be a ray with no upper bound
since then the ray would contain an x > 2 so that x2 > 4 > 2 and thus x /∈ Y . So suppose that
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Y = [a, b] for some a, b ∈ X = Q where a ≤ b. Now, it cannot be that b2 = 2 since then b =
√

2,
which is not rational. Similarly it cannot be that a2 = 2 for the same reason.

Case: b2 < 2. Then there is a rational p where b < p <
√

2 since the rationals are order-dense in
the reals. Let x = max(0, p) so that b < p ≤ x and hence x /∈ [a, b]. However, if 0 < p then x = p so
that x2 = p2 < 2, and if 0 ≥ p then x = 0 so that x2 = 0 < 2. Thus either way x ∈ Y and x /∈ [a, b],
which shows that Y cannot be [a, b].

Case: b2 > 2. Then
√

2 < b since 0 < 2 < b2. If
√

2 < a then clearly for any x ∈ [a, b] we have that
0 <
√

2 < a ≤ x so that 2 < x2 and hence x /∈ Y . If a <
√

2 then there is a rational p such that
a <
√

2 < p < b since the rationals are order-dense in the reals. Hence 2 < p2 so that p /∈ Y . Either
way there is an x ∈ [a, b] where x /∈ Y so that Y cannot be [a, b].

Similar arguments show that neither Y = (a, b), Y = [a, b), nor Y = (a, b] for a, b ∈ X = Q and
a < b. Hence Y cannot be an interval. Thus Y is convex but neither an interval nor a ray in X.
This shows the desired result.

Exercise 16.8

If L is a straight line in the plane, describe the topology L inherits as a subspace of R` × R and as a
subspace of R` × R`. In each case it is a familiar topology.

Solution:

First, let Rudenote the reals with the upper limit topology, with a basis containing all intervals (a, b]
for a < b. Also let Rddenote the reals with the discrete topology, which can clearly be generated by
a basis containing intervals [a, b] for a ≤ b. This is easy to see as [a, a] = {a} is a basis element so
that any subset of R can be considered a union of such basis elements. It is then easy to show that
R`and Ruare both strictly finer than the standard topology on R (this was shown in Lemma 13.4
for R`), but that R`and Ruare incomparable. Clearly Rdis strictly finer than both of these since it
is the finest possible topology on R.

Now, regarding the main problem, we do not yet have the tools show formally show how topologies
on a line L compare to topologies on R, so we will have to discuss this informally. We can see that,
in some sense, a line L in the plane is like a copy of the real line so that we can discuss topologies
on L is being in some sense the same as topologies on R.

The product topology R` × R is the topology is generated by the basis containing sets of the form
[a, b)×(c, d) where a < b and c < d by Theorem 15.1. Then, for a line L in the plane, it can intersect
such a basis element in a variety of ways, which are illustrated below:

(a) (b) (c)
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(d) (e) (f)

Clearly the intersection of L and these basis elements results in some kind of interval on L. Such
intervals then form the basis for the subspace topology on L by Lemma 16.1 since they are the
intersection of L and a basis element in the superspace. Another point is that the orientation of the
line L with regard to the way in which it is a copy of R is important. For example, in Figure (a)
above, if L is oriented in the natural way with the negative reals on the left and the positive reals
on the right, then the resulting intervals are of the form [a, b), which would result in a topology like
R`. The opposite orientation results in intervals of the form (a, b] as basis elements, generating a
topology like Ru.

Now, for a line L such as that illustrated in Figure (a), every possible basis element of R` × R
that intersects L results the half-open intervals as described above depending on the orientation
of L. This is not the case for all lines, however, and is dependent on its slope in the plane. For
example, lines with positive slope can intersect basis elements as in Figure (c), which result in half
open intervals [a, b) (or (a, b] depending on orientation), or they can intersect them as in Figure (d),
which result in open intervals (a, b). However, since the topologies R`and Ruare strictly finer than
the standard topology, the subspace topology formed on L would be like these (which depends on
orientation) rather than like the standard topology. Lastly, we note that, for any appropriate interval
on the line L, we can clearly always find a basis element B in R`×R such that the intersection of B
with L is the interval. For this reason, these intervals form the basis elements of the topology on L.

With all these considerations in mind, we list the topologies on R that the subspace topologies on
L are like based on line directions and orientations for product topologies R` × R and R` × R`:

L R` × R R` × R`
→ R` R`
↗ R` R`
↑ R R`
↖ Ru Rd
← Ru Ru
↙ Ru Ru
↓ R Ru
↘ R` Rd

We note that R simply denotes the standard topology.

Exercise 16.9

Show that the dictionary order topology on the set R×R is the same as the product topology on Rd×R,
where Rd denotes R in the discrete topology. Compare this topology with the standard topology on R2.

Solution:

In what follows let Td denote the dictionary order topology on R×R, and let Tp denote the product
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topology on Rd×R. Also let ≺ denote the dictionary ordering of R×R. First we show that Td = Tp.

Proof. First we note that clearly the dictionary order on R× R has no largest or smallest elements
so that, by definition, Td has as basis elements intervals ((x, y), (x′, y′)), that is the set of all points
z ∈ R × R where (x, y) ≺ z ≺ (x′, y′). Clearly the set {{x} | x ∈ R} is a basis for Rd. Hence, by
Theorem 15.1, the set Bp = {{x} × (a, b) | x ∈ R and a < b} is a basis for the product topology Tp.
So consider any (x, y) ∈ R×R and any basis element Bd = ((a, b), (a′, b′)) of Td that contains (x, y).
Hence (a, b) ≺ (x, y) ≺ (a′, b′).

Case: a = x: Then since (a, b) ≺ (x, y), it has to be that b < y.

Case: a = x = a′. Then it also has to be that y < b′ since (x, y) ≺ (a′, b′). Then the set
Bp = {x} × (b, b′) is a basis element of Tp that contains (x, y) and is a subset of Bd.

Case: a = x < a′. Then it is easy to show that the set Bp = {x}× (b, y+ 1) is a basis element
of Tp that contains (x, y) and is a subset of Bd.

Case: a < x:

Case: x = a′. Then it has to be that y < b′ since (x, y) ≺ (a′, b′). Then it is easy to show
that the set Bp = {x}× (y− 1, b′) is a basis element of Tp that contains (x, y) and is a subset
of Bd.

Case: a = x < a′. Then it is easy to show that the set Bp = {x} × (y − 1, y + 1) is a basis
element of Tp that contains (x, y) and is a subset of Bd.

In every case and sub-case it follows from Lemma 13.3 that Td ⊂ Tp.
Now suppose (x, y) ∈ R×R and Bp = {x}× (a, b) is a basis element of Tp containing (x, y). Also let
Bd be the interval in the dictionary order ((x, a), (x, b)), which is clearly a basis element of Td. It is
then trivial to show that Bp = Bd so that x ∈ Bd ⊂ Bp, which shows that Tp ⊂ Td by Lemma 13.3.
This suffices to show that Td = Tp as desired.

We now claim that this topology Td = Tp is strictly finer than the standard topology on R×R. We
denote the latter by simply T .

Proof. Since it was just shown that Td = Tp, it suffices to show that either one is strictly finer than
the standard topology. It shall be most convenient to use the product topology Tp. So first consider
any (x, y) ∈ R2 and any basis element B = (a, b) × (c, d) of T containing (x, y). Hence a < x < b
and c < y < d. It is then trivial to show that the set {x} × (c, d), which is clearly a basis element
of Tp, contains (x, y) and is a subset of B. This shows that Tp is finer than T by Lemma 13.3.

To show that it is strictly finer, consider the point (0, 0) and the set Bp = {0}×(−1, 1), which clearly
contains (0, 0) and is a basis element of Tp. Now consider any basis element B = (a, b) × (c, d) of
T that also contains (0, 0). It then follows that a < 0 < b and c < 0 < d. Consider then the point
x = (a+ 0)/2 = a/2 so that clearly a < x < 0 < b and hence x ∈ (a, b). Thus the point (x, 0) ∈ B,
but also (x, 0) /∈ Bp since x < 0 so that x 6= 0. This shows that B cannot be a subset of Bp. Since
B was an arbitrary basis element of T , this shows that T is not finer than Tp by the negation of
Lemma 13.3.

This suffices to show that Tp is strictly finer than T as desired.

Exercise 16.10

Let I = [0, 1]. Compare the product topology on I × I, the dictionary order topology on I × I, and the
topology I × I inherits as a subspace of R× R in the dictionary order topology.
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Solution:

First, we assume that the product topology on I × I is the product of I with the order topology as
this seems to be the standard when no topology is explicitly specified. Denote this product topology
by Tp. Let Td denote the dictionary order topology on I×I, and let Ts denote the subspace topology
on I × I inherited as a subspace of R×R in the dictionary order topology. Lastly, let ≺ denote the
dictionary order on I × I and R× R. To avoid ambiguity we also use the notation x× y to denote
the ordered pair (x, y) and reserve parentheses for open intervals.

First we claim that Tp and Td are incomparable.

Proof. First, consider the point 0× 1 ∈ I × I and Bp = [0, 1/2)× (1/2, 1], which is a basis element
of Tp that clearly contains 0 × 1. Note that Bp is a basis element because [0, 1/2) and (1/2, 1] are
both basis elements in the order topology on I since 0 and 1 are the smallest and largest elements
of I, respectively. Now consider any interval Bd = (a × b, a′ × b′) in the dictionary order on I × I
that contains 0× 1, which is of course a basis element of Td. Then we have that a× b and a′× b′ are
in I × I with a× b ≺ 0× 1 ≺ a′ × b′. Hence 0 < a′ or 0 = a′ and 1 < b′. As 1 is the largest element
of I, the latter case is not possible so that it must be that 0 < a′. Let x = (0 + a′)/2 = a′/2 so that
clearly 0 < x < a′. Then we have that a × b′ ≺ x × 0 ≺ a′ × b′ so that the point x × 0 is in Bd.
However, clearly 0 /∈ (1/2, 1] so that x× 0 /∈ Bp. This shows that Bd cannot be a subset of Bp.

Here we note that, in the dictionary order on I × I, the smallest element is 0× 0 while the largest
is 1 × 1. With this in mind, the above argument for an open interval also applies to the half-open
intervals [0 × 0, a × b) and (a × b, 1 × 1], which are of course also basis elements of Td. This then
shows that Td is not finer than Tp by the negation of Lemma 13.3.

Now consider the point 0×1/2 and the interval Bd = (0×0, 0×1) in the dictionary ordering, which
is therefore a basis element of Td, and clearly also contains 0× 1/2. Consider also any basis element
Bp = A × B of Tp that contains 0 × 1/2. Since 0 ∈ A and A must be a basis element of the order
topology on I, it has to be that A = [0, a) for some 0 < a ≤ 1. Then let x = (0 + a)/2 = a/2
so that 0 < x < a, and thus x ∈ A. Then, since 1/2 ∈ B (since 0 × 1/2 ∈ A × B), we have that
x × 1/2 ∈ A × B = Bp as well. However, we also clearly have that 0 × 1 ≺ x × 1/2 since 0 < x so
that x × 1/2 /∈ (0 × 0, 0 × 1) = Bd. This shows that Bp cannot be a subset of Bd. As Bp was an
arbitrary basis element of Tp, this shows by the negation of Lemma 13.3 that Tp is not finer than
Td.
This suffices to show that Td and Tp are incomparable.

Next we claim that Ts is strictly finer than Tp.

Proof. Consider any x×y ∈ I×I and suppose that Bp = A×B is a basis element of Tp that contains
x × y. First suppose that A = (a, b) and B = (c, d) so that of course a, b, c, d ∈ I, a < x < b, and
c < y < d. It is then trivial to show that the interval Bs = (x× c, x× d) in the dictionary order also
contains x× y, is a basis element of Ts (since Bs ⊂ I × I so that Bs ∩ (I × I) = Bs), and is a subset
of Bp. A similar argument can be made if A is an interval of the form [0, a) or (a, 1]. If B = (c, 1]
and A is still (a, b), then let X be the interval (x× c, x× 2) in the dictionary order so that we have
Bs = X ∩ (I × I) = {x} × (c, 1] is a basis element of Ts that contains x × y and is a subset of Bp.
A similar argument applies if B = [0, d) and/or when the interval A is half-open. This shows that
Ts is finer than Tp by Lemma 13.3.

The argument above that shows that Tp is not finer than Td using the negation of Lemma 13.3
applies equally well to show that Tp is not finer than Ts. This of course suffices to show the desired
result that Ts is strictly finer than Tp.

Lastly, we claim that Ts is also strictly finer than Td.
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Proof. First consider any point x×y in I× I and let Bd be a basis element of Td that contains x×y
so that it is some kind of interval with endpoints a× b and a′× b′ in I × I. We note here that, since
R×R has no smallest or largest elements, basis elements of the dictionary order topology there can
only be open intervals. Now, if Bd is an open interval in I × I then clearly then the same interval
B = (a × b, a′ × b′) is a basis element in the dictionary order topology of R × R, though though
the two intervals can in general be different sets. For example the interval (0 × 0, 1 × 1) in R × R
contains the point 0× 100 whereas the same interval in I × I does not since 0× 100 /∈ I × I. It is,
however, trivial to show that B ∩ (I × I) = Bd so that Bd is basis element of Ts.
If we have that Bd is the half-open interval [0 × 0, a′ × b′) then let B = (0 × −1, a′ × b′), which
is clearly a basis element of the dictionary order topology on R × R. It is then easy to see that
B∩ (I×I) = Bd again so that it is a basis element of Ts. If Bd is the half-open interval (a× b, 1×1],
then the open interval (a × b, 1 × 2) is a basis element of the dictionary order topology on R × R
and has the same result. Hence in all cases Bd is also a basis element of Ts, and that it trivially is
a subset of itself, and it contains x× y. This shows that Ts is finer than Td by Lemma 13.3.

To show that it is strictly finer, consider the point 0 × 1 and the open interval B = (0 × 0, 0 × 2),
which is clearly a basis element of the dictionary order topology in R× R. It is then easy to prove
that Bs = B ∩ (I × I) = {0} × (0, 1] = (0 × 0, 0 × 1] so that Bs is a basis element of Ts. Now
consider any basis element Bd of Td that contains 0× 1 so that Bd is some type of dictionary-order
interval with endpoints a × b and a′ × b′, both in I × I. The only way the interval can be closed
above is if a′ × b′ = 1 × 1, in which case clearly 1 × 1 ∈ Bd but 1 × 1 /∈ Bs. So assume that it is
open above so that 0 × 1 ≺ a′ × b′, and hence either 0 < a′ or 0 = a′ and 1 < b′. The latter case
cannot be since 1 is the largest element of I and b′ ∈ I. Therefore it has to be that 0 < a′. So let
x = (0 + a′)/2 = a′/2 so that 0 < x < a′ and thus 0× 1 ≺ x× 0 ≺ a′ × b′. From this it follows that
x× 0 is in Bd. However, clearly x× 0 /∈ Bs since 0× 1 ≺ x× 0.

Hence in any case we have shown that, while they both contain 0× 1, Bd cannot be a subset of Bs.
Since Bd was an arbitrary basis element, this shows that Td is not finer than Ts by the negation of
Lemma 13.3. This shows the desired result that Ts is strictly finer than Td.

§17 Closed Sets and Limit Points

Exercise 17.1

Let C be a collection of subsets of the set X. Suppose that ∅ and X are in C, and that finite unions
and arbitrary intersections of elements of C are in C. Show that the collection

T = {X − C | C ∈ C}

is a topology on X.

Solution:

Proof. First, clearly ∅ and X are in T since ∅ = X −X and X = X −∅ and both X and ∅ are in
C. This shows the first defining property of a topology.

Now consider an arbitrary sub-collection A of T . Then, for each A ∈ A, we have that A = X − B
for some B ∈ C since also A ∈ T . So let B = {B ∈ C | X −B ∈ A}. Then we have that⋃

A =
⋃
A∈A

A =
⋃
B∈B

(X −B) = X −
⋂
B∈B

B = X −
⋂
B
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by DeMorgan’s law. By the definition of C we have that
⋂
B ∈ C since it is an arbitrary intersection

of elements of C. It then follows that
⋃
A = X −

⋂
B is in T by definition. This shows the second

defining property of a topology.

Lastly, suppose that A is a nonempty finite sub-collection of T , which of course can be expressed as
A = {Ak | k ∈ {1, . . . , n}} for some positive integer n. Then, again we have that that Ak = X −Bk
for some Bk ∈ C for all k ∈ {1, . . . , n} since Ak ∈ T . Then we have

⋂
A =

n⋂
k=1

Ak =

n⋂
k=1

(X −Bk) = X −
n⋃
k=1

Bk

by DeMorgan’s law. Then clearly
⋃n
k=1Bk is in C by definition since it is a finite union of elements

of C. It then follows that
⋂
A = X −

⋃n
k=1Bk is in T by definition. Since A was an arbitrary

finite sub-collection, this shows the third defining property of a topology. Hence T is a topology by
definition.

Exercise 17.2

Show that if A is closed in Y and Y is closed in X, then A is closed in X.

Solution:

Proof. Since A is closed in Y , it follows from Theorem 17.2 that A = B ∩ Y where B is some closed
set in X. Hence by definition X−B is open in X. Also, since Y is closed in X, we have that X−Y
is open in X by definition. We then have

X −A = X − (B ∩ Y ) = (X −B) ∪ (X − Y )

by DeMorgan’s law. Since both X −B and X − Y are open in X, clearly their union must also be
open since we are in a topological space. Hence X − A is open in X so that A is closed in X by
definition.

Exercise 17.3

Show that if A is closed in X and B is closed in Y , then A×B is closed in X × Y .

Solution:

Lemma 17.3.1. If X, Y , A, and B are sets then X × Y −A×B = (X −A)× Y ∪X × (Y −B).

Proof. We show this via logical equivalences:

(x, y) ∈ X × Y −A×B ⇔ (x, y) ∈ X × Y ∧ (x, y) /∈ A×B
⇔ (x ∈ X ∧ y ∈ Y ) ∧ ¬(x ∈ A ∧ y ∈ B)

⇔ (x ∈ X ∧ y ∈ Y ) ∧ (x /∈ A ∨ y /∈ B)

⇔ (x ∈ X ∧ y ∈ Y ∧ x /∈ A) ∨ (x ∈ X ∧ y ∈ Y ∧ y /∈ B)

⇔ (x ∈ X −A ∧ y ∈ Y ) ∨ (x ∈ X ∧ y ∈ Y −B)

⇔ (x, y) ∈ (X −A)× Y ∨ (x, y) ∈ X × (Y −B)

⇔ (x, y) ∈ (X −A)× Y ∪X × (Y −B)

as desired.
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Main Problem.

Proof. Since A is closed we have that X −A is open in X. Since also Y itself is open in Y , we have
that (X−A)×Y is a basis element in the product topology by definition, and is therefore obviously
open. An analogous argument shows that X × (Y − B) is also open in the product topology since
B is closed in Y . Hence their union is also open in the product topology, but by Lemma 17.3.1 we
have

(X −A)× Y ∪X × (Y −B) = X × Y −A×B

so that X×Y −A×B is also open in the product topology. It then follows by definition that A×B
is closed as desired.

Exercise 17.4

Show that if U is open in X and A is closed in X, then U −A is open in X, and A− U is closed in X.

Solution:

Lemma 17.4.1. If A, B, and C are sets then A− (B − C) = (A−B) ∪ (A ∩ C).

Proof. We show this by a sequence of logical equivalences:

x ∈ A− (B − C)⇔ x ∈ A ∧ x /∈ B − C
⇔ x ∈ A ∧ ¬(x ∈ B ∧ x /∈ C)

⇔ x ∈ A ∧ (x /∈ B ∨ x ∈ C)

⇔ (x ∈ A ∧ x /∈ B) ∨ (x ∈ A ∧ x ∈ C)

⇔ x ∈ A−B ∨ x ∈ A ∩ C
⇔ x ∈ (A−B) ∪ (A ∩ C)

as desired.

Corollary 17.4.2. If A ⊂ X and B = X −A, then A = X −B.

Proof. By Lemma 17.4.1, we have that

X −B = X − (X −A) = (X −X) ∪ (X ∩A) = ∅ ∪ (X ∩A) = X ∩A = A

since A ⊂ X.

Main Problem.

Proof. First, since A is closed in X, we have that B = X − A is open in X, and it follows from
Corollary 17.4.2 that A = X −B. Then we have that

U −A = U − (X −B) = (U −X) ∪ (U ∩B)

by Lemma 17.4.1. Since U ⊂ X, it follows that U −X = ∅, and hence

U −A = ∅ ∪ (U ∩B) = U ∩B .

Then, since both U and B are open, their intersection is as well and therefore U −A is open.
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Next, we have by Lemma 17.4.1

X − (A− U) = (X −A) ∪ (X ∩ U) = B ∪ (X ∩ U) = B ∪ U.

since U ⊂ X so that X ∩ U = U . Since both B and U are open, clearly their union is as well and
hence X − (A− U) is open. This of course means that A− U is closed by definition.

Exercise 17.5

Let X be an ordered set in the order topology. Show that (a, b) ⊂ [a, b]. Under what conditions does
equality hold?

Solution:

Proof. First, the closed interval [a, b] is closed (hence why it is called such!) because clearly its
compliment is

X − [a, b] = (−∞, a) ∪ (b,∞)

and we know that open rays are always open so that their union is as well. Clearly also [a, b] contains
(a, b). Hence [a, b] is a closed set containing (a, b). Since (a, b) is defined as the intersection of closed
sets that contain (a, b) clearly we have that (a, b) ⊂ [a, b] as desired.

The conditions required for equality are such that [a, b] is also a subset of (a, b) and, in particular
both a and b must be in (a, b). Since clearly a, b /∈ (a, b), it has to be that they are both limit points
of (a, b). This is equivalent to the condition that a has no immediate successor and b no immediate
predecessor. We show only the first of these since the second is analogous.

Proof. (⇒) We show the contrapositive of this. So suppose that a does have an immediate successor
c. Then the open ray (−∞, c) is an open set that contains a but does not intersect (a, b). This is
easy to see, because if they did intersect, there would be an x ∈ (a, b) where also x ∈ (−∞, c). From
these it follows that a < x < c, which contradicts the fact that c is the immediate successor of a.
Hence by definition a is not a limit point of (a, b).

(⇐) Suppose that a is not a limit point of (a, b). Then there is an open set U containing a that
does not intersect (a, b). From this it follows that there is a basis element B containing a such that
B ⊂ U , and thus B also cannot intersect (a, b) (as, if it did, then so would U). Suppose that B is
the open interval (c, d) so that c < a < d. It also must be that d < b for otherwise, for any element
of x of (a, b), we would have c < a < x < b ≤ d so that x ∈ (c, d) = B and B and (a, b) would not be
disjoint. We claim that d is the immediate successor of a. If this is not the case then there would be
an x such that c < a < x < d and hence x ∈ (c, d) = B. Also a < x < d < b so that also x ∈ (a, b).
Therefore B and (a, b) would not be disjoint. Similar arguments can be made if B are other types
of basis element in the order topology. (Actually B cannot be of the form (e, f ] for largest element
f of X since then any element of (a, b) would also be in B and they would not be disjoint.)

It is also worth noting that the Hausdorff axiom (and therefore also the T1 axiom since it is implied
by the Hausdorff axiom) is not sufficient for general equivalence of [a, b] and (a, b). For example the
order topology on Z results in the discrete topology so that every subset is both open and closed.
Thus for any pair x1, x2 in Z, the sets {x1} and {x2} are neighborhoods of x1 and x2, respectively,
that are disjoint. This shows that this topology is a Hausdorff space. However, the fact that a has
an immediate successor in Z+ is sufficient to show that [a, b] 6= (a, b) per what was just shown above.
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Exercise 17.6

Let A, B, and Aα denote subsets of a space X. Prove the following:

(a) If A ⊂ B, then A ⊂ B.

(b) A ∪B = A ∪B.

(c)
⋃
Aa ⊃

⋃
Aα; give an example where equality fails.

Solution:

(a)

Proof. Suppose that A ⊂ B and consider any x ∈ A. Consider any neighborhood U of x so that U
intersects A by Theorem 17.5 part (a). Hence there is a point y ∈ U ∩ A so that y ∈ U and y ∈ A.
But then clearly y ∈ B also since A ⊂ B. Therefore y ∈ U ∩B so that U intersects B. Since U was
an arbitrary neighborhood of x, this shows that x ∈ B, again by Theorem 17.5 part (a). This of
course shows that A ⊂ B as desired since x was arbitrary.

(b)

Proof. (⊂) We show this by contrapositive. So suppose that x /∈ A ∪ B. Then clearly x /∈ A and
x /∈ B. Thus, by Theorem 17.5 part (a), there is an open set UA such that UA does not intersect A,
and likewise an open UB that does not intersect B. Let U = UA ∩ UB , which is clearly open since
UA and UB are. We also note that U contains x since both UA and UB do. Then it must be that
U does not intersect A since, if it did, then UA would also intersect A since U ⊂ UA. Similarly, U
cannot intersect B. Thus, for all y ∈ U , y /∈ A and y /∈ B. This is logically equivalent to saying
that there is no y ∈ U where y ∈ A or y ∈ B, therefore there is no y ∈ U where y ∈ A ∪ B. Hence
U and A ∪ B do not intersect. Since U is open and contains x, this shows that x /∈ A ∪B, again
by Theorem 17.5 part (a). Therefore, by contrapositive, x ∈ A ∪B implies that x ∈ A ∪ B so that
A ∪B ⊂ A ∪B.

(⊃) Consider any x ∈ A ∪ B and any neighborhood U of x. If x ∈ A then U intersects A by
Theorem 17.5 part (a). Hence there is a y ∈ U ∩A so that y ∈ U and y ∈ A. Then clearly y ∈ A∪B
so that y is also in U ∩ (A∪B). Hence U intersects A∪B. An analogous argument shows that this
is also true if x ∈ B instead. Since U was an arbitrary neighborhood, this shows that x ∈ A ∪B by
Theorem 17.5 part (a). Hence A ∪B ⊂ A ∪B since x was arbitrary.

(c)

Proof. Consider any x ∈
⋃
Aα so that there is a particular β where x ∈ Aβ . Suppose that U is

any open set containing x so that U intersects Aβ by Theorem 17.5 part (a) since x ∈ Aβ . Then
clearly U also intersects

⋃
Aα since Aβ ⊂

⋃
Aα. Since U was an arbitrary open set containing x,

this shows that x ∈
⋃
Aα by Theorem 17.5 part (a). This shows that

⋃
Aα ⊂

⋃
Aα since x was

arbitrary, which is of course the desired result.

As an example where equality fails, consider the standard topology on R and the sets An = (1/n, 2]
for n ∈ Z+. It is then trivial to show that

⋃
An = (0, 2] so that clearly 0 is a limit point of

⋃
An,

and hence 0 ∈
⋃
An. However, for any n ∈ Z+, the open interval (−1, 1/n) is clearly an open set

containing 0 that is disjoint from (1/n, 2] = An. This shows that 0 /∈ An for every n ∈ Z+ by
Theorem 17.5 part (a), from which it follows that 0 /∈

⋃
An. Hence

⋃
An is not a subset of

⋃
An

and thus
⋃
An 6=

⋃
An.

Exercise 17.7
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Criticize the following “proof” that
⋃
Aα ⊂

⋃
Aα: if {Aα} is a collection of sets in X and if x ∈

⋃
Aα,

then every neighborhood U of x intersects
⋃
Aα. Thus U must intersect some Aα, so that x must belong

to the closure of some Aα. Therefore, x ∈
⋃
Aα.

Solution:

The problem with this “proof” is that, just because every neighborhood U intersects some Aα, it
does not mean that every U intersects a single Aα, which is what is required for x to be in Aα.
This is illustrated in the counterexample above at the end of Exercise 17.6 part (c). There, every
neighborhood of 0 clearly intersects some set An = (1/n, 2], but, for any given n ∈ Z+, not every
neighborhood of 0 intersects An, for example the neighborhood (−1, 1/n) does not.

Exercise 17.8

Let A, B, and Aα denote subsets of a space X. Determine whether the following equations hold; if an
equality fails, determine whether one of the inclusions ⊃ or ⊂ holds.

(a) A ∩B = A ∩B.

(b)
⋂
Aα =

⋂
Aα.

(c) A−B = A−B.

Solution:

(a) We claim that A ∩B ⊂ A ∩B but equality is not always true.

Proof. Consider any x ∈ A ∩B and any open set U containing x. Then by, Theorem 17.5 part (a),
U intersects A ∩ B, from which it immediately follows that U intersects both A and B. However,
since U was an arbitrary neighborhood of x, it follows from Theorem 17.5 part (a) again that x is
in both A and B. Hence x ∈ A ∩B, which shows that A ∩B ⊂ A ∩B since x was arbitrary.

Now consider the standard topology on R with A = [−1, 0) and B = (0, 1]. As these are clearly
disjoint, we have that A ∩B = ∅ so that A ∩B = ∅ also. However, since we also clearly have that
A = [−1, 0] and B = [0, 1], it follows that A ∩B = {0}. Thus clearly A ∩B = ∅ 6= {0} = A−B as
desired.

(b) We again claim that
⋂
Aα ⊂

⋂
Aα but that equality is not generally true.

Proof. Consider any x ∈
⋂
Aα and any open set U of x. Then, by Theorem 17.5 part (a), U intersects⋂

Aα so that, for any particular Aβ , U intersects Aβ . This shows that x ∈ Aβ by Theorem 17.5
part (a) so that x ∈ Aα for every α since β was arbitrary. Hence x ∈

⋂
Aα, which shows that⋂

Aα ⊂
⋂
Aα since x was arbitrary.

As in part (a), equality fails if we have A1 = [−1, 0) and A2 = (0, 1] in the standard topology on R.

By the same argument as in part (a) it follows that
⋂2
n=1An = ∅ 6= {0} =

⋂2
n=1An.

(c) Here we claim that A−B ⊃ A−B but that the converse does not always hold.

Proof. Consider any x ∈ A − B and any open set U containing x. Then x ∈ A so that every open
set containing x intersects A by Theorem 17.5 part (a). Also x /∈ B so that there is an open set V
containing x that does not intersect B, also by Theorem 17.5 part (a). Let W = U ∩ V so that W
contains x since both x ∈ U and x ∈ V . Now, since W is also an open set containing x, W intersects
A so that there is a y ∈W where also y ∈ A. It also cannot be that y ∈ B since we have y ∈W ⊂ V
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so that then V would intersect B. Therefore y ∈ A − B. Also we have y ∈ W ⊂ U so that also
y ∈ U . Hence U intersects A − B, which shows that x ∈ A−B by Theorem 17.5 part (a) since U
was an arbitrary neighborhood of x. Therefore A−B ⊃ A−B as desired since x was arbitrary.

As a counterexample to equality, consider the standard topology on R with A = [0, 2] and B = (1, 3].
Then clearly A = A = [0, 2] and B = [1, 3], from which it is easily shown that A − B = [0, 1). But
we also have A − B = [0, 1] so that obviously A−B = [0, 1] as well. Therefore A−B = [0, 1] 6=
[0, 1) = A−B as desired.

Exercise 17.9

Let A ⊂ X and B ⊂ Y . Show that in the space X × Y ,

A×B = A×B .

Solution:

Proof. (⊂) Consider (x, y) ∈ A×B. Also suppose that U and V are any open sets in X and Y ,
respectively, that contain x and y, respectively. Then U × V is a basis element of the product
topology on X × Y , by definition, that contains (x, y). It then follows from Theorem 17.5 part (b)
that U×V intersects A×B and hence there is a point (w, z) ∈ U×V where also (w, z) ∈ A×B. Then
w ∈ U and w ∈ A so that U intersects A, and hence x ∈ A by Theorem 17.5 part (a) since U was an
arbitrary neighborhood of x. An analogous argument shows that y ∈ B. Therefore (x, y) ∈ A × B
so that A×B ⊂ A×B since x was arbitrary.

(⊃) Now suppose that (x, y) is any point in A × B so that x ∈ A and y ∈ B. Suppose also that
U × V is any basis element of X × Y that contains (x, y) so that by definition U and V are open in
X and Y , respectively. Since x ∈ A and U is an open set where x ∈ U , it follows from Theorem 17.5
part (a) that U intersects A. Thus there is w ∈ U where w ∈ A as well. An analogous argument
shows that V intersects B so that there is a z ∈ V where also z ∈ B. We therefore have that
(w, z) ∈ U × V and (w, z) ∈ A× B so that U × V intersects A× B. Since U × V was an arbitrary
basis element containing (x, y), it follows from Theorem 17.5 part (b) that (x, y) ∈ A×B. This
shows that A×B ⊂ A×B since the point (x, y) was arbitrary.

Exercise 17.10

Show that every order topology is Hausdorff.

Solution:

Proof. Suppose that X is an ordered set with the order topology. Consider a pair of distinct points
x1 and x2 in X. Since X is an order, x1 and x2 must be comparable since they are distinct, so we
can assume that x1 < x2 without loss of generality.

Case: x2 is the immediate successor of x1. Then, if X has a smallest element a then clearly the set
U1 = [a, x2) is a neighborhood (because it is a basis element) of x1. If X has no smallest element then
there is an a < x1 so that U1 = (a, x2) is a neighborhood of x1. Similarly U2 = (x1, b] or U2 = (x1, b)
is a neighborhood of x2, where b is either the largest element of X or x2 < b, respectively. Either
way, for any y ∈ U1 we have that y < x2 so that y ≤ x1 since x2 is the immediate successor of x1.
Hence it is not true that y > x1 so that y /∈ U2. This shows that U1 and U2 are disjoint.
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Case: x2 is not the immediate successor of x1. Then there is an x ∈ X where x1 < x < x2. So
let U1 = [a, x) (or U1 = (a, x)) for the smallest element a of X (or some a < x1). Similarly let
U2 = (x, b] (or U2 = (x, b)) for the largest element b of X (or some x2 < b). Either way U1 and U2

are neighborhoods of x1 and x2, respectively. If y ∈ U1 then y < x so that clearly it is not true that
y > x so that x /∈ U2. Hence again U1 and U2 are disjoint.

Thus in either case we have shown that X is a Hausdorff space as desired since x1 and x2 were an
arbitrary pair.

Exercise 17.11

Show that the product of two Hausdorff spaces is Hausdorff.

Solution:

Proof. Suppose that X and Y are Hausdorff spaces and consider two distinct points (x1, y1) and
(x2, y2) in X × Y . Since these points are distinct, it has to be that x1 6= x2 or y1 6= y2. In the first
case x1 and x2 are distinct points of X so that there are disjoint neighborhoods U1 and U2 of x1 and
x2, respectively. This of course follows from the fact that X is a Hausdorff space. Then we have that
U1 × Y and U2 × Y are both basis elements, and therefore open sets, in the product space X × Y
since Y itself is obviously an open set of Y . Clearly also (x1, y1) ∈ U1 × Y and (x2, y2) ∈ U2 × Y so
that U1 × Y is a neighborhood of (x1, y1) and U2 × Y is a neighborhood of (x2, y2).

Then, for any (x, y) ∈ U1 × Y we have that x ∈ U1 so that x /∈ U2 since they are disjoint. Then it
has to be that (x, y) /∈ U2×Y . This suffices to show that U1×Y and U2×Y are disjoint since (x, y)
was arbitrary. Thus X×Y is a Hausdorff space since the points (x1, y1) and (x2, y2) were arbitrary.
An analogous argument in the case in which y1 6= y2 shows the same result.

Exercise 17.12

Show that a subspace of a Hausdorff space is Hausdorff.

Solution:

Proof. Suppose that X is a Hausdorff space and that Y is a subset of X. Consider any two distinct
points y1 and y2 in Y so that of course also y1, y2 ∈ X. Then there are neighborhoods U1 and U2 of
y1 and y2, respectively, that are disjoint since X is Hausdorff. Since U1 is open in X, we have that
V1 = U1 ∩ Y is open in Y by the definition of a subspace topology. Clearly also V1 contains y1 since
y1 ∈ U1 and y1 ∈ Y . Similarly V2 = U2 ∩ Y is an open set of Y that contains y2. Then, for any
x ∈ V1 clearly x ∈ U1 so that x /∈ U2 since U1 and U2 are disjoint. Then x /∈ U2 ∩ Y = V2. Since x
was arbitrary, this shows that V1 and V2 are disjoint, which then shows that Y is a Hausdorff space
as desired.

Exercise 17.13

Show that X is Hausdorff if and only if the diagonal ∆ = {x× x | x ∈ X} is closed in X ×X.

Solution:
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Proof. (⇒) Suppose that X is Hausdorff and consider any point x× y ∈ X ×X where x × y /∈ ∆.
Then it must be that x 6= y so that there are disjoint neighborhood U of x and V of y since X is
Hausdorff. Then U × V is a basis element of X ×X, by the definition of a product topology, and is
therefore open. Now consider any point w× z ∈ U ×V so that w ∈ U and z ∈ V . Then it has to be
that w 6= z since U and V are disjoint, which shows that w × z /∈ ∆. Since w × z was an arbitrary
point of U × V , this shows that U × V does not intersect ∆. Since also U × V is open and contains
x×y, this shows that x×y is not a limit point of ∆. Moreover, since x×y was an arbitrary element
of X × X that is not in ∆, it follows that ∆ must contain all of its limit points and is therefore
closed by Corollary 17.7.

(⇐) Now suppose that ∆ is closed and suppose that x and y are distinct points in X. Then x×y /∈ ∆
so that x× y cannot be a limit point of ∆ (since it contains all its limit points by Corollary 17.7).
Hence there is an open set T in X ×X that contains x× y and does not intersect ∆. It then follows
that there is a basis element U × V of X ×X containing x × y where U × V ⊂ T . Then U and V
are both open in X by the definition of the product topology, and clearly x ∈ U and y ∈ V . It also
follows that U × V does not intersect ∆ since, if it did, then T would as well.

Suppose that U and V are not disjoint so that there is a z ∈ U where also z ∈ V . Then clearly
z × z ∈ U × V but we also have that z × z ∈ ∆ so that U × V intersects ∆. As we know that
this cannot be the case, it has to be that U and V are disjoint. This shows that X is Hausdorff
as desired since U is a neighborhood of x, V is a neighborhood of y, and x and y were arbitrary
distinct points of X.

Exercise 17.14

In the finite compliment topology on R, to what point or points does the sequence xn = 1/n converge?

Solution:

We claim that this sequence converges to every point in R.

Proof. Suppose that this is not the case so that there is point a ∈ R where the sequence does not
converge to A. Then there is an open set U containing a such that, for every N ∈ Z+, there is
an n ≥ N where xn /∈ U . It is easy to see that xn /∈ U for an infinite number of n ∈ Z+. For, if
this were not the case, then there would be an N ∈ Z+ where xn ∈ U for every n ≥ N . We know,
though, that there must be an n ≥ N where xn /∈ U .

Moreover, clearly every xn in the sequence is distinct so that there are an infinite number of points
not in U . Since each of these points are still in X, we have that X − U is infinite. As this is the
finite compliment topology and U is open, this can only be the case if X − U = X itself, in which
case it would have be that U = ∅ since U ⊂ X. This is not possible since U contains a. So it seems
that a contradiction has been reached, which shows the desired result.

In fact, this is true for any sequence for which the image of the sequence {xn | n ∈ Z+} is infinite.
This is to say that any such sequence converges to every point of R. Note also that this shows that
the finite compliment topology on R is not a Hausdorff space by the contrapositive of Theorem 17.10.

Exercise 17.15

Show the T1 axiom is equivalent to the condition that for each pair of points of X, each has a neighbor-
hood not containing the other.
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Solution:

Note that, though it does not say so above, the points must be distinct since any neighborhood
containing x obviously has to contain x.

Proof. (⇒) Suppose that a space X satisfies the T1 axiom and consider any two distinct points x
and y of X. Then the point {x} is closed since it is finite, and hence it also contains all of its limit
points by Corollary 17.7. Since the point y is not in {x} (since y 6= x), it cannot be a limit point of
{x}. Hence there is a neighborhood U of y that does not intersect {x}. Hence x /∈ U . An analogous
argument involving {y} shows that there is a neighborhood V of x that does not contain y. Since x
and y were arbitrary points, this shows the desired property.

(⇐) Now suppose that, for each pair of distinct points in X, each point has a neighborhood that
does not contain the other point. As in the proof of Theorem 17.8, it suffices to show that every
one-point set is closed, since any finite set can be expressed as the finite union of such sets, which
is also then closed by Theorem 17.1. So let {x} be such a one-point set and consider any y /∈ {x}
so that clearly y 6= x. Then, since x and y are distinct, there is a neighborhood U of y such that U
does not contain x. Therefore U and {x} are disjoint. This shows that y is not a limit point of {x},
which shows that {x} contains all its limit points since y /∈ {x} was arbitrary. Hence {x} is closed
as desired by Corollary 17.7.

Exercise 17.16

Consider the five topologies on R given in Exercise 7 of §13.

(a) Determine the closure of the set K = {1/n | n ∈ Z+} under each of these topologies.

(b) Which of these topologies satisfy the Hausdorff axiom? the T1 axiom?

Solution:

Lemma 17.16.1. Suppose that T and T ′ are topologies on X and T ′ is finer than T . If T satisfies
the T1 axiom, then so does T ′. Similarly, if T is Hausdorff, then so is T ′.

Proof. First, suppose that T satisfies the T1 axiom and consider any finite subset A of X. Then A
is closed in T by the T1 axiom so that by definition X − A is open in T and hence X − A ∈ T .
Then X − A ∈ T ′ as well since T ⊂ T ′ so that X − A is open in T ′. Hence A is closed in T ′ by
definition. Since A was an arbitrary finite set, this shows that T ′ also satisfies the T1 axiom.

Now suppose that T is Hausdorff, and consider any two distinct points x and y in X. Then there
are neighborhoods U of x and V of y, both in T , that do not intersect since T is Hausdorff. Then
clearly U, V ∈ T ′ as well since T ⊂ T ′. Hence U and V are neighborhoods of x and y, respectively,
in T ′ that do not intersect. This shows that T ′ is Hausdorff as desired since x and y were arbitrary
points of X.

Main Problem.

First we summarize what we claim about these topologies on R for both parts:

Topology Definition T1 Hausdorff K
T1 Standard Yes Yes K ∪ {0}
T2 RK Yes Yes K
T3 Finite complement Yes No R
T4 Upper limit Yes Yes K
T5 Basis of (−∞, a) sets No No {x ∈ R | 0 ≤ x}
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Next we justify these claims for each part.

(a) First we show that K = K ∪ {0} in T1.

Proof. (⊂) Consider any real number x and suppose that x /∈ K ∪ {0}, hence x /∈ K and x 6= 0.
Since x 6= 0, we have

Case: x < 0. Then clearly the open set (x − 1, 0) contains x but does not intersect K since 0 < y
for every y ∈ K, but y < 0 for every y ∈ (x− 1, 0).

Case: x > 0. If 1 < x, then (1, x + 1) contains x but does not intersect K since y ≤ 1 for every
y ∈ K, but 1 < y for every y ∈ (1, x+ 1). If 1 ≥ x it follows from the fact that x /∈ K that there is
a positive integer n where n < 1/x < n+ 1, and hence 1/(n+ 1) < x < 1/n. Then clearly the open
set (1/(n + 1), 1/n) contains x, but we also have that it does not intersect K. If it did, then there
would be an integer m where 1/(n+ 1) < 1/m < 1/n so that n < m < n+ 1, which we know is not
possible since n+ 1 is the immediate successor of n in Z+.

Thus in all cases there is a neighborhood of x that does not intersect K. This of course shows that
x /∈ K by Theorem 17.5 part (a). We have therefore shown that x /∈ K ∪ {0} implies that x /∈ K.
By contrapositive, this shows that K ⊂ K ∪ {0}.
(⊃) Now consider any neighborhood U of 0 so that there is a basis element (a, b) containing 0 that
is a subset of U . Then a < 0 < b. Clearly there is an n ∈ Z+ large enough where a < 0 < 1/n < b
and hence 1/n ∈ (a, b) ⊂ U . Since also 1/n ∈ K, we have that U intersects K. Since U was an
arbitrary neighborhood, this shows that 0 is in K by Theorem 17.5 part (a). Since also clearly any
x ∈ K is also in K, it follows that K ⊃ K ∪ {0}.

Next we show that K = K in T2, which is to say that K is already closed.

Proof. First, clearly K ⊂ K basically by definition. Now consider any x /∈ K. Then clearly the set
B = (x− 1, x+ 1)−K is a basis element of T2. Also it clearly contains x since x /∈ K and also does
not intersect K since y ∈ B means that y /∈ K. This shows that x is not in K by Theorem 17.5
part (b). Since x was arbitrary this shows that x /∈ K implies that x /∈ K. Thus K ⊂ K by
contrapositive. This suffices to show that K = K as desired.

Now we show that K = R in T3.

Proof. Consider any real x and any neighborhood U of x. Then U is open in T3 so that R−U must
be finite, noting that R− U cannot be all of R since U would then have to be empty since U ⊂ R,
whereas we know that x ∈ U . It then follows that there are a finite number of real numbers not in
U . However, clearly K is an infinite set so that there must be an element of K that is in U . This
shows that K intersects U so that x is in K by Theorem 17.5 part (a) since U was an arbitrary
neighborhood. Hence R ⊂ K since x was arbitrary. Clearly also K ⊂ R so that K = R.

Next we show that K = K in T4 so that K is closed.

Proof. Clearly K ⊂ K. So consider any real x where x /∈ K.

Case: x ≤ 0. Then the set B = (x − 1, x] is clearly a basis element of T4 that contains x. For any
y ∈ K we have that x ≤ 0 < y so that y /∈ B. Hence B does not intersect K.

Case: x > 0. If 1 ≤ x then it has to be that 1 < x since 1 = 1/1 ∈ K but x /∈ K, and hence x 6= 1.
Then B = (1, x] is clearly a basis element of T4 and contains x. This also clearly does not intersect
K since y ≤ 1 for any y ∈ K so that y /∈ B. On the other hand, if 1 > x then there is an integer
n where n < 1/x < n + 1 so that 1/(n + 1) < x < 1/n since x /∈ K. It then follows that the set
B = (1/(n+ 1), x] is a basis element of T4 that contains x and does not intersect K.
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Hence in all cases there is a basis element B containing x that does not intersect K. This shows
that x /∈ K by Theorem 17.5 part (b). Hence we have shown that x /∈ K implies that x /∈ K, which
shows by contrapositive that K ⊂ K. Therefore K = K as desired.

Lastly we show that K = {x ∈ R | 0 ≤ x} in T5.

Proof. First, let A = {x ∈ R | 0 ≤ x} and consider any x ∈ A and any basis element B = (−∞, a)
containing x. Hence clearly 0 ≤ x since x ∈ A and x < a since x ∈ B. Thus 0 ≤ x < a so that there
is an integer n large enough that 0 < 1/n < a. Then 1/n ∈ B and also clearly 1/n ∈ K. Thus B
intersects K. Since B was any neighborhood of x it follows from Theorem 17.5 part (b) that x ∈ K.
Hence A ⊂ K since x was arbitrary.

Now suppose that x /∈ A so that x < 0. Then the set B = (−∞, 0) is clearly a basis element of T5

that contains x. Since 0 < y for any y ∈ K, it follows that y /∈ B, and thus B cannot intersect K.
Hence by Theorem 17.5 part (b) we have that x /∈ K. This shows that K ⊂ A by contrapositive,
which completes the proof that K = A.

(b) First we show that T1, T2, and T4 are Hausdorff spaces and satisfy the T1 axiom.

Proof. First consider any two distinct points x, y ∈ R. Without loss of generality, we can assume
that x < y. Let z = (x+y)/2 so that clearly x < z < y. Then obviously the open intervals (x−1, z)
and (z, y + 1) are disjoint open sets in T1 that contain x and y, respectively. This shows that T1 is
a Hausdorff space and therefore also satisfies the T1 axiom by Theorem 17.8.

It then follows that T2 and T4 are also both Hausdorff and satisfy the T1 axiom. This follows from
Lemma 17.16.1 since it was shown in Exercise 13.7 that T1 ⊂ T2 ⊂ T4.

Next we show that T3 satisfies the T1 axiom but is not a Hausdorff space.

Proof. So first consider any finite subset A of R. Let U = X−A so that clearly A = X− (X−A) =
X−U . Then, since X−U = A is finite, it follows that U is open in T3 by the definition of the finite
complement topology. Hence by definition A is closed in T3 since X − A = U is open. This shows
that T3 satisfies the T1 axiom since A was an arbitrary finite subset of R.

To show that T3 is not Hausdorff, consider any open set U containing 0 and any open set V containing
1. It then has to be that R−U is finite since it cannot be that R−U = R itself since then U would
have to be empty (which we know is not the case since 0 ∈ U) since U ⊂ R. Likewise R− V is also
finite. Thus there are a finite number of real numbers that are not in U and a finite number that
are not in V . From this it clearly follows that there are a finite number of real numbers x where
x /∈ U or x /∈ V . Since we have

x /∈ U ∨ x /∈ V ⇔ ¬(x ∈ U ∧ x ∈ V )⇔ ¬(x ∈ U ∩ V )⇔ x /∈ U ∩ V ,

it has to be that there are a finite number of reals numbers that are not in U ∩ V . But since R
is infinite, this means that there are an infinite number of real numbers that are in U ∩ V . Hence
U ∩ V 6= ∅, i.e. they intersect. Since U and V were arbitrary neighborhoods, this shows that T3 is
not Hausdorff by the negation of the definition.

Lastly we prove that T5 is neither a Hausdorff space nor satisfies the T1 axiom.

Proof. First consider the distinct real numbers 0 and 1. Consider then any open set V containing 1
so that there is a basis element B = (−∞, a) that contains 1 and is a subset of U . Clearly we have
that 0 ∈ B since 0 < 1 < a and hence 0 ∈ U since B ⊂ U . Since U was an arbitrary neighborhood
of 1, it follows there is no neighborhood of 1 that does not contain 0. Hence T5 does not satisfy the
T1 axiom by the negation of Exercise 17.15. It also then follows that T5 is not a Hausdorff space by
the contrapositive of Theorem 17.8.
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Exercise 17.17

Consider the lower limit topology on R and the topology given by the basis C of Exercise 8 of §13.
Determine the closures of the intervals A = (0,

√
2) and B = (

√
2, 3) in these two topologies.

Solution:

Recall that C = {[a, b) | a < b, a and b rational} from Exercise 13.8, noting that it was shown there
that this basis generates a topology different from the lower limit topology. Denote the lower limit
topology by Tl, and denote the topology generated by C by Tc.

Lemma 17.17.1. The closure of an open interval (a, b) is [a, b) in the lower limit topology on R.

Proof. First let A = (a, b) and C = [a, b) so that we must show that A = C.

(⊃) Consider any x ∈ C.

Case: x = a. Consider any basis element B = [c, d) that contains x = a so that c ≤ x = a < d. Let
e = min(b, d) so that a < e since both a < d and a < b. Then of course there is a real y between
a and e so that a < y < e. Thus we have c ≤ a < y < e ≤ d so that y ∈ B. Also a < y < e ≤ b
so that y ∈ A. Hence B intersects A so that x = a ∈ A by Theorem 17.5 part (b) since B was an
arbitrary basis element.

Case: x 6= a. Then it has to be that x ∈ (a, b) = A so that x ∈ A since obviously A ⊂ A.

This shows that C ⊂ A since x was arbitrary.

(⊂) Now consider any real x where x /∈ C so that either x < a or x ≥ b. If x < a then the basis
element B = [x, a) clearly contains x but does not intersect A. If x ≥ b then the basis element
B = [b, x+1) contains x and does not intersect A. Either way it follows from Theorem 17.5 part (b)
that x /∈ A. Since x was arbitrary, the contrapositive shows that A ⊂ C.

Lemma 17.17.2. The closure of an open interval (a, b) in Tc is [a, b) if b is rational and [a, b] if b
is irrational.

Proof. Let A = (a, b). Consider any real x, and we shall consider an exhaustive list of cases that
will show whether x ∈ A or x /∈ A.

Case: x < a. Obviously there is a rational p where p < x since the rationals are unbounded below.
Similarly, there is a rational q where x < q < a since the rationals are order-dense in the reals. The
set B = [p, q) is then clearly a basis element of Tc that contains x. It is also trivial to show that B
does not intersect A since q < a, which shows that x /∈ A by Theorem 17.5 part (b) whether b is
rational or not.

Case: x = a. Consider any basis element B = [p, q) (where p and q are rational) that contains x = a
so that p ≤ x = a < q. Let d = min(b, q) so that a < d since both a < q and a < b. Then of course
there is a real y between a and d so that a < y < d. Thus we have p ≤ a < y < d ≤ q so that
y ∈ B. Also a < y < d ≤ b so that y ∈ A. Hence B intersects A so that x = a ∈ A by Theorem 17.5
part (b) since B was an arbitrary basis element. Note that this is true whether or not b is rational.

Case: a < x < b. Then clearly x ∈ (a, b) = A so that x ∈ A since obviously A ⊂ A.

Case: x = b.

Case: b is rational. Then there is another rational q where q > b since the rationals are
unbounded above. Then clearly the set B = [b, q) is a basis element of Tc that contains b.
Also clearly B does not intersect A since y ∈ A implies that y < b and hence y /∈ B. This
shows that x = b /∈ A by Theorem 17.5 part (b).

Case: b is irrational. Then consider any basis element B = [p, q) containing b so that p and q
are rational. Thus p ≤ b < q, but since p is rational but b is not, it has to be that p < b < q.
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Let c = max(p, a) so that c < b since both a < b and p < b. There is then a real y where
c < y < b so that a ≤ c < y < b and hence y ∈ A. Also p ≤ c < y < b < q so that also y ∈ B.
Therefore B and A intersect, which shows that x = b ∈ A by Theorem 17.5 part (b) since B
was arbitrary.

Case: x > b. Then there are clearly rationals p and q where b < p < x and x < q. Then clearly the
set B = [p, q) is a basis element that contains x and does not intersect A. This of course shows that
x /∈ A by Theorem 17.5 part (b) again, noting that this is true regardless of the rationality of b.

These cases taken together show the desired results.

Main Problem.

First, it follows directly from Lemma 17.17.1 that that A = [0,
√

2) and B = [
√

2, 3) in Tl. It is
worth noting that A and B are both basis elements of Tl, which is interesting since they are closures
and therefore closed. This of course implies that basis elements in Tl are both open and closed,
which is indeed the case and is easy to see after a little thought.

It also follows directly from Lemma 17.17.2 that A = [0,
√

2] and B = [
√

2, 3) in Tc since
√

2 is
irrational and 3 is rational.

Exercise 17.18

Determine the closures of the following subsets of the ordered square:

A = {(1/n)× 0 | n ∈ Z+} ,
B =

{
(1− 1/n)× 1

2 | n ∈ Z+

}
,

C = {x× 0 | 0 < x < 1} ,
D =

{
x× 1

2 | 0 < x < 1
}
,

E =
{

1
2 × y | 0 < y < 1

}
.

Solution:

We assume that the ordered square refers to the set X = [0, 1]2 with the dictionary order topology.
Denote the dictionary order on X by ≺.

Definition 17.18.1. For a topology on R and some subset A ⊂ R, consider a point x ∈ R. We say
that x is a limit point of A from above if every neighborhood containing x also contains a point y
where y ∈ A and x < y. Similarly, a point x is a limit point of A from below if every neighborhood
containing x also contains a point y where y ∈ A and y < x.

Note that a point can be a limit point from both below and above.

Lemma 17.18.2. Suppose that A is a subset of the real interval [0, 1] and that B = {x× b | x ∈ A}
for some b ∈ [0, 1] so that B ⊂ X = [0, 1]2. Then the point x × y is a limit point of B in the
dictionary order topology on the unit square if and only if either y = 1 and x is a limit point of A
from above or y = 0 and x is a limit point of A from below in the order topology on [0, 1].

Proof. (⇒) We show this by contrapositive. So suppose that y 6= 1 or x is not a limit point of A
from above and that y 6= 0 or x is not a limit point from below.

Case: y 6= 0 and y 6= 1. Clearly then 0 < y < 1. If y = b then the dictionary order interval
(x × 0, x × 1) is a basis element that contains x × y and that does not contain any other points
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of B, if indeed x ∈ A so that x × y = x × b is in B. If y < b then the dictionary order interval
(x× 0, x× b) is a basis element with the same properties. Lastly, if y > b then the dictionary order
interval (x× b, x× 1) is a basis element that contains x× y but no points of B.

Case: y = 0 or y = 1. If y = 0 then we have

Case: x = 0. Then, if b = y = 0, we have that the dictionary order interval [0× 0, 0× 1) is a
basis element containing x× y = 0× 0 but no other points of B, if indeed x = 0 ∈ A so that
x × y ∈ B. If b 6= 0 then 0 < b so that the interval [0 × 0, 0 × b) is a basis element with the
same properties.

Case: x 6= 0. Then 0 < x and it has to be that x is a not a limit point of A from below.
Thus there is an interval (c, d) or (c, 1] (or [0, d) in which case let c = 0 in what follows) that
contains x but no other points y ∈ A where y < x. If b = y = 0 then it is easy to show that
(c × 1, x × 1) (or (c × 1, x × 1] if x = 1) is a basis element that contains x × y but no other
points of B, if indeed x ∈ A so that x× y ∈ B. If b 6= y = 0 then 0 < b so that (c× 1, x× b)
is a basis element with the same property.

If y = 1, then an analogous argument shows analogous results.

Thus in all cases and sub-cases it follows that x×y is not a limit point of B, which shows the desired
result by contrapositive.

(⇐) Now suppose that either y = 1 and x is a limit point of A from above or y = 0 and x is a limit
point of A from below. In the first case consider any dictionary order interval C = (a × c, d × e)
that contains x× y. Then it has to be that x < d since otherwise it would have to be that y = 1 < e
since x × y ≺ d × e, which is of course impossible. Then, since x is a limit point of A from above,
it follows that the open set [0, d) contains a point z ∈ A where x < z so that x < z < d. It then
follows that the point z × b is in both C and B, and is of course distinct from x × y since x < z.
The same argument can be made if C is a basis element in the form of [0× 0, d× e) or (a× c, 1× 1].
This suffices to show that x× y is a limit point of B since C was an arbitrary basis element.

An analogous argument can be made in the case when y = 0 and x is a limit point of A from below,
which shows the desired result.

Main Problem.

First we claim that A = A ∪ {0× 1}.

Proof. First, let K = {1/n | n ∈ Z+} ⊂ [0, 1] so that clearly A = {x× 0 | x ∈ K}. It is easy to show
that 0 is the only limit point of K and it is a limit point from above only. It then follows from
Lemma 17.18.2 that 0 × 1 is the only limit point of A so that A = A ∪ {0× 1} since the closure is
the union of the set and the set of its limit points.

Next we claim that B = B ∪ {1× 0}.

Proof. This time let L = {1− 1/n | n ∈ Z+} so that clearly B =
{
x× 1

2 | x ∈ L
}

. It is trivial to
show that 1 is the only limit point of L and that it is a limit point from below only. Hence 1× 0 is
the only limit point of B by Lemma 17.18.2 so that the result follows.

Now we claim that C = C ∪ {1× 0} ∪ {x× 1 | 0 ≤ x < 1}.

Proof. First, we clearly have that C = {x× 0 | x ∈ (0, 1)}. It is easy to show that every point of
(0, 1) is a limit point both from above and below, that 0 is a limit point from above only, and
that 1 is a limit point from below only. Thus it follows that the set of limit points of C are then
{x× 0 | 0 < x ≤ 1}∪ {x× 1 | 0 ≤ x < 1} by Lemma 17.18.2. As many of these points are contained
in C itself, the result follows.
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We claim that D = D ∪ {x× 0 | 0 < x ≤ 1} ∪ {x× 1 | 0 ≤ x < 1}.

Proof. The limit points ofD are the same as for C above for the same reasons, i.e. {x× 0 | 0 < x ≤ 1}∪
{x× 1 | 0 ≤ x < 1}. The result then follows.

Lastly, we claim that E =
{

1
2 × y | 0 ≤ y ≤ 1

}
=
{

1
2

}
× [0, 1], noting that clearly E =

{
1
2

}
× (0, 1).

Proof. Let F =
{

1
2

}
× [0, 1] so that we must show that E = F .

(⊂) Consider any x × y where x × y /∈ F so that simply x 6= 1
2 since it has to be that y ∈ [0, 1]. If

x < 1
2 then the basis element [0 × 0, 1

2 × 0) clearly contains x × y but no elements of E. If x > 1
2

then the basis element ( 1
2 × 1, 1× 1] clearly contains x× y but no elements of E either. This shows

that x× y is a not in E by Theorem 17.5 part (b). Hence E ⊂ F by contrapositive.

(⊃) Consider any x × y ∈ F so that x = 1
2 and y ∈ [0, 1]. If y ∈ (0, 1) then x × y ∈ E so that

x×y ∈ E since obviously E ⊂ E. If y = 0 then consider any dictionary order interval F = (a×c, b×d)
containing x × y = 1

2 × 0. In particular we have that 1
2 × 0 ≺ b × d so that either 1

2 < b, or b = 1
2

and 0 < d. In the first case we have that 1
2 ×

1
2 is in both F and E. In the second case let z = d/2

so that we have 0 < z < d ≤ 1. Then clearly the point 1
2 × z is in F , but we also have that 1

2 × z is
in E since 0 < z < 1. The same argument applies if the basis element F is of the form [0× 0, b× d)
or (a× c, 1× 1]. A similar argument shows an analogous result in the case when y = 1. This shows
by Theorem 17.5 part (b) that x × y ∈ E since F was an arbitrary basis element, which of course
shows that E ⊃ F since x× y was arbitrary.

Exercise 17.19

If A ⊂ X, we define the boundary of A by the equation

BdA = A ∩ (X −A) .

(a) Show that IntA and BdA are disjoint, and A = IntA ∪ BdA.

(b) Show that BdA = ∅⇔ A is both open and closed.

(c) Show that U is open ⇔ BdU = U − U .

(d) If U is open, is it true that U = Int (U)? Justify your answer.

Solution:

(a)

Proof. Consider any x ∈ IntA so that there is a neighborhood of x that is entirely contained in A.
Then, for any y ∈ U , we have that y ∈ A and hence y /∈ X−A. This shows that U does not intersect
X −A, which suffices to show that x is not in the closure of X −A by Theorem 17.5 part (a). Thus
x is not in the boundary of A since BdA = A∩ (X −A). This of course shows that IntA and BdA
are disjoint since x was arbitrary.

To show that A = IntA∪BdA, first consider any x ∈ A. If x ∈ IntA then clearly x ∈ IntA∪BdA,
so assume that x /∈ IntA. Consider any neighborhood U of X. Then it has to be that U is not a
subset of A since otherwise x would be in the union of open subsets of A and hence in the interior.
It then follows that there is a point y ∈ U where y /∈ A and therefore y ∈ X − A. This shows that
U intersects X − A so that x is in the closure of X − A since U was an arbitrary neighborhood.
Since also x ∈ A, we have that x ∈ A ∩ (X −A) = BdA. Hence clearly x ∈ IntA ∪ BdA so that
A ⊂ IntA ∪ BdA since x was arbitrary.
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Now consider any x ∈ IntA ∪ BdA. If x ∈ IntA then also x ∈ A since we have that IntA ⊂
A ⊂ A. On the other hand, if x ∈ BdA = A ∩ (X −A) then of course x ∈ A. This shows that
IntA ∪ BdA ⊂ A in either case since x was arbitrary. Since both directions have been shown, it
follows that A = IntA ∪ BdA as desired.

(b)

Proof. (⇒) First suppose that BdA = ∅. Then by part (a) we have that A = IntA ∪ BdA =
IntA ∪ ∅ = IntA. Hence A ⊂ A = IntA so that A = IntA since it is also always the case that
IntA ⊂ A. This shows that A is open since IntA is always open. We also have A = IntA ⊂ A so
that A = A since it is always also the case that A ⊂ A. This of course shows that A is also closed
since A is always closed.

(⇐) Now suppose that A is both open and closed. It then follows that A = A = IntA. So consider
any x ∈ A so that also x ∈ IntA. Then there is a neighborhood U of x contained entirely in A.
Thus, for any point y ∈ U , we have that y ∈ A so that y /∈ X − A, which shows that U does not
intersect X − A. Since U is a neighborhood of x, this shows that x /∈ X −A by Theorem 17.5
part (a). Then, since x was an arbitrary element of A, it follows that A and X −A are disjoint so
that BdA = A ∩ (X −A) = ∅ as desired.

(c)

Proof. (⇒) First suppose that U is open and consider any x ∈ BdU . Then we have that x ∈ U and
x ∈ X − U since BdU = U ∩ (X − U) by definition. Suppose for the moment that x ∈ U so that U
itself is a neighborhood of x since it is open. For any y ∈ U we have that y /∈ X − U , and hence U
does not intersect X − U . This shows that x is not in X − U by Theorem 17.5 part (a), which is a
contradiction since we know it is. Thus it must be that x /∈ U so that x ∈ U − U . This of course
shows that BdU ⊂ U − U since x was arbitrary.

Now consider any x ∈ U − U so that clearly x ∈ U . Since also x /∈ U , it follows that x ∈ X − U so
that of course x ∈ X − U as well. Hence x ∈ U ∩ (X − U) = BdU , which shows that U −U ⊂ BdU
since x was arbitrary. This suffices to show that BdU = U − U as desired.

(⇐) Now suppose that BdU = U − U and consider any x ∈ U . Then we have that x /∈ U − U =
BdU = U ∩ (X − U). Since we know that x ∈ U (since U ⊂ U), it must be that x /∈ X − U . Thus,
by Theorem 17.5 part (a), there is a neighborhood of V of x that does not intersect X − U . This
means that, for any point y ∈ V , we have that y /∈ X − U . Since of course y ∈ X, it follows that y
must be in U . This shows that V ⊂ U since y was arbitrary. Hence V is a neighborhood of x that is
entirely contained in U so that x is in the union of open sets contained in U , hence x ∈ IntU . Since
x was an arbitrary element of U , this shows that U ⊂ IntU . As it is always the case that IntU ⊂ U
as well, we have that U = IntU so that U is open since IntU is always open.

(d) We claim that this is not generally true.

Proof. As a counterexample consider the set U = R− {0} in the finite complement topology on R.
Clearly U is open as its complement R − U = {0} is finite. It is also obvious that U is an infinite
set.

Now consider any real number x and any neighborhood V of x. It cannot be that R− V is all of R
since then V would be empty, and we know that x ∈ V . So it must be that R−V is finite since V is
open, which means that there are only a finite number of real numbers that are not in V . However,
since U is infinite, there must be an element of U that is in V (in fact there are an infinite number
of such elements). Hence V intersects U so that x ∈ U by Theorem 17.5 part (a). Since x ∈ R was
arbitrary, it must be that U is all of R.
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Clearly R is open (since the a set is always open in any topology on that set) so that Int (U) =
IntR = R. Then, since 0 ∈ R = Int (U) but 0 /∈ U , we have that U 6= Int (U).

Exercise 17.20

Find the boundary and the interior of each of the following subsets of R2:

(a) A = {x× y | y = 0}
(b) B = {x× y | x > 0 and y 6= 0}
(c) C = A ∪B
(d) D = {x× y | x is rational}
(e) E =

{
x× y | 0 < x2 − y2 ≤ 1

}
(f) F = {x× y | x 6= 0 and y ≤ 1/x}

Solution:

(a) It is easy to show that A is closed so that A = A, and that also R−A = A so that BdA = A. It
is also easy to see that no basis element and therefore no neighborhood of any point in A is contained
entirely within A. From this it follows that IntA = ∅.

(b) It is easy to show that B is open so that IntB = B. It is likewise not difficult to prove
that B = {x× y | x ≥ 0}. We then have from Exercise 17.19 part (c) that BdB = B − B =
{x× y | x = 0} ∪ {x× y | x > 0 and y = 0}.
(c) Here we have that C = A∪B = {x× y | y = 0}∪{x× y | x > 0}. It is then easy to show that the
closure is C = {x× y | y = 0}∪{x× y | x ≥ 0}. We also have that R−C = {x× y | x ≤ 0 and y 6= 0}
so that R− C = {x× y | x ≤ 0}. From these we clearly then have

BdC = C ∩ (R− C) = {x× y | x < 0 and y = 0} ∪ {x× y | x = 0} .

It is also not difficult to show that IntC = {x× y | x > 0}.
(d) Clearly we have that D is all of R2 as a consequence of the fact that the rationals are order-dense
in the reals. Also, since any neighborhood of any point in D will intersect a point x×y with irrational
x, it follows that no point of D is in its interior. Thus IntD = ∅ so that D = IntD ∪ BdD =
∅ ∪ BdD = BdD by Exercise 17.19 part (a), and hence BdD = D = R2.

(e) It should be fairly obvious by this point that

BdE = {x× y | |y| = |x|} ∪
{
x× y | x2 − y2 = 1

}
and IntE =

{
x× y | 0 < x2 − y2 < 1

}
. This would be easy but tedious to prove rigorously.

(f) First we clearly have that IntF = {x× y | x 6= 0 and y < 1/x}. We also have that F =
{x× y | x = 0}∪ {x× y | x 6= 0 and y ≤ 1/x}. By Exercise 17.19 part (a) we have that F = IntF ∪
BdF and that IntF ∩ BdF = ∅ so that BdF = F − IntF . Thus we have that BdF =
{x× y | x = 0}∪ {x× y | x 6= 0 and y = 1/x}. Again these facts are not difficult to show rigorously
but would be tedious.

Exercise 17.21

(Kuratowski) Consider the collection of all subsets A of the topological space X. The operations of
closure A→ A and complementation A→ X −A are functions from the collection to itself.
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(a) Show that starting with a given set A, one can form no more than 14 distinct sets by applying these
two operations successively.

(b) Find a subset A of R (in its usual topology) for which the maximum of 14 is obtained.

Solution:

For the following we introduce the following notation to make things simpler. If A is a subset of a
topological space X then denote

cA = A xA = X − C
iA = IntA bA = BdA .

We can consider these (c, x, i, and b) as operators on sets that can be chained together in the
obvious way so that, for example, cxiA = X − IntA.

Lemma 17.21.1. For a subset A of topological space X, X = cA∪ixA, and cA and ixA are disjoint

Proof. First, it is obvious that cA ∪ ixA ⊂ X since each of the sets in the union is a subset of X.
Now consider any x ∈ X and suppose that x /∈ cA = A. Then by Lemma 17.5 part (a) there is an
open set U containing x where U does not intersect A. For any y ∈ U we thus have that y /∈ A and
hence y ∈ X −A = xA. This shows that U ⊂ xA since y was arbitrary, which suffices to show that
x ∈ Int (xA) = ixA since U is a neighborhood of x. This of course shows that x ∈ cA ∪ ixA so that
X ⊂ cA ∪ ixA since x was arbitrary. This completes the proof that X = cA ∪ ixA.

To show that cA and ixA are disjoint, consider any x ∈ cA. Consider any neighborhood U of x so
that U intersects A by Lemma 17.5 part (a). Hence there is a point y ∈ U where also y ∈ A, from
which it follows that y /∈ X − A = xA. This suffices to show that U is not a subset of xA. Since
U is an arbitrary neighborhood, this shows that x /∈ Int (xA) = ixA. This of course shows that cA
and ixA are disjoint as desired.

Lemma 17.21.2. For a subsets A and B of topological space X where A ⊂ B, we have the following:

(a) cA ⊂ cB

(b) iA ⊂ iB

(c) ccA = cA

(d) iiA = iA

(e) xxA = A

(f) xcA = ixA

(g) xiA = cxA

(h) icicA = icA

(i) ciciA = ciA.

Proof. (a) This was shown in Exercise 17.6 part (a).

(b) Consider any x ∈ iA so that there is a neighborhood U of x that is totally contained in A. Then
clearly U is also totally contained in B as well since, for any x ∈ U , we have that x ∈ A and hence
x ∈ B since A ⊂ B. This shows that x ∈ iB since U is a neighborhood of x. Hence iA ⊂ iB since
x was arbitrary.

(c) Since cA = A is closed, we clearly have ccA = cA.

(d) Since iA = IntA is open, its interior is itself, i.e. iiA = iA.

(e) Obviously xxA = X − (X −A) = A since A ⊂ X.

(f) We have by Lemma 17.21.1 that X = cA ∪ ixA where cA, and ixA are mutually disjoint. From
this it follows that ixA = X − cA = xcA.

(g) We have

cxA = xxcxA (by (e))

= xixxA (by (f))
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= xiA (by (e) again)

as desired.

(h) First we have that icA = iicA by (d). Also clearly icA = c(icA) = cicA since a set is always
a subset of its closure. Hence by (b) we have that icA = iicA = i(icA) ⊂ i(cicA) = icicA. Now,
we also have that icA = i(cA) ⊂ cA since the interior of a set is always a subset of the set.
Hence by (a) and (c) we have cicA = c(icA) ⊂ c(cA) = ccA = cA. It then follows from (b) that
icicA = i(cicA) ⊂ i(cA) = icA as well. This of course shows that icicA = icA as desired.

(i) Lastly, we have

ciciA = cicixxA (by (e))

= cicxcxA (by (f))

= cixicxA (by (g))

= cxcicxA (by (f))

= xicicxA (by (g))

= xicxA (by (h))

= cxcxA (by (g))

= cixxA (by (f))

= ciA (by (e))

as desired.

Main Problem.

(a)

Proof. We are interested in sequences applying the operators c and x to a subsetA. By Lemma 17.21.2
(c) and (e) we have that ccA = cA and xxA = A. Thus there is no point in ever applying c or
x twice in a row since that would clearly result in a set that we have seen before. We are then
interested only in sequences that apply alternating c and x. If we apply the closure c first, we obtain
the following sequence:

A = A

cA = cA

xcA = ixA (by Lemma 17.21.2f)

cxcA = cixA (previous result)

xcxcA = xcixA (previous result)

= ixixA (by Lemma 17.21.2f)

= icxxA (by Lemma 17.21.2g)

= icA (by Lemma 17.21.2e)

cxcxcA = cicA (previous result)

xcxcxcA = xcicA (previous result)

= ixicA (by Lemma 17.21.2f)

= icxcA (by Lemma 17.21.2g)

= icixA (by Lemma 17.21.2f)

If we apply the next operation we obtain

cxcxcxcA = cicixA (previous result)
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= cixA , (by Lemma 17.21.2i)

which is the same as the fourth set above. Therefore we can get at most 7 distinct sets by applying
c first, including A itself. If we instead apply x first then we get the following sequence:

xA = xA

cxA = cxA

xcxA = ixxA (corresponding result above)

= iA (by Lemma 17.21.2e)

cxcxA = ciA (previous result)

xcxcxA = xciA (previous result)

= ixiA (by Lemma 17.21.2f)

= icxA (by Lemma 17.21.2g)

cxcxcxA = cicxA (previous result)

xcxcxcxA = xcicxA (previous result)

= ixicxA (by Lemma 17.21.2f)

= icxcxA (by Lemma 17.21.2g)

= icixxA (by Lemma 17.21.2f)

= iciA (by Lemma 17.21.2e)

Again if we try to apply the next operation we get

cxcxcxcxA = ciciA (previous result)

= ciA (by Lemma 17.21.2i)

which as before is the same as the fourth set in the sequence. Hence we have at most 7 distinct sets
in this sequence for a total of 14 potentially distinct sets as desired.

Note that this only shows that there can be no more than 14 distinct sets. It could be that there
are always less than 14 in general. While there are certainly sets that generate less than 14 distinct
sets, the next part shows the existence of a topology and a set that does result in 14 distinct sets.
This of course shows that 14 is the lowest possible bound in general.

(b) We claim that A = (−3,−2) ∪ (−2,−1) ∪ ([0, 1] ∩ Q) ∪ {2} in the standard topology on R is a
set that results in 14 distinct sets when the operational sequences from part (a) are applied. We
do not prove each sequential operation as this is easy but would be prohibitively tedious. First we
enumerate the first sequence, starting with A.

Operations Set
A (−3,−2) ∪ (−2,−1) ∪ ([0, 1] ∩Q) ∪ {2}
cA [−3,−1] ∪ [0, 1] ∪ {2}

xcA = ixA (−∞,−3) ∪ (−1, 0) ∪ (1, 2) ∪ (2,∞)
cxcA = cixA (−∞,−3] ∪ [−1, 0] ∪ [1,∞)
xcxcA = icA (−3,−1) ∪ (0, 1)
cxcxcA = cicA [−3,−1] ∪ [0, 1]
xcxcxcA = icixA (−∞,−3) ∪ (−1, 0) ∪ (1,∞)

Next we enumerate the next sequence of 7 sets, starting with xA:
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Operations Set
xA (−∞,−3] ∪ {−2} ∪ [−1, 0) ∪ ((0, 1)−Q) ∪ (1, 2) ∪ (2,∞)
cxA (−∞− 3] ∪ {−2} ∪ [−1,∞)

xcxA = iA (−3,−2) ∪ (−2,−1)
cxcxA = ciA [−3,−1]
xcxcxA = icxA (−∞,−3) ∪ (−1,∞)
cxcxcxA = cicxA (−∞,−3] ∪ [−1,∞)
xcxcxcxA = iciA (−3, 1)

It is easy to see that these are 14 distinct sets.

We do note that, in an interval containing only rationals (or only irrationals), such as [0, 1]∩Q used
as part of A, clearly every point in the interval is a limit point, including any irrational (or rational)
points. This is because any open interval containing any real always contains both rationals and
irrationals on account of Q being order-dense in R. For the same reason no point of such an interval
of rationals (or irrationals) is in its interior. If, for example C = [0, 1]∩Q, this clearly then results in
cC = [0, 1] and iC = ∅. Indeed this property of this part of A is crucial in its success in generating
14 distinct sets.

§18 Continuous Functions

Exercise 18.1

Prove that for functions f : R→ R, the ε-δ definition of continuity implies the open set definition.

Solution:

Recall that that f : R→ R is continuous at a point x ∈ R if, for every real ε > 0, there is a real δ > 0
such that |f(y)− f(x)| < ε for every real y where |y − x| < δ. We say that f itself is continuous if
it is continuous at every p ∈ R.

Proof. Suppose that f : R→ R is continuous by the ε-δ definition above. We show that this implies
the open set definition by showing that f satisfies (4) in Theorem 18.1. So consider any x ∈ R and
any neighborhood V of f(x). Then of course there is a basis element (c, d) containing f(x) such
that (c, d) ⊂ V . Let ε = min(f(x) − c, d − f(x)), noting that ε > 0 since c < f(x) < d. It is then
trivial to show that (f(x)− ε, f(x) + ε) ⊂ (c, d) ⊂ V and contains x.

Then, since f is continuous at x, there is δ > 0 such that |y − x| < δ implies that |f(y)− f(x)| < ε
for any real y. Let U = (x−δ, x+δ), which is clearly a neighborhood of x. Now consider any z ∈ f(U)
so that z = f(y) for some y ∈ U . Then we have that x−δ < y < x+δ so that clearly −δ < y−x < δ,
from which it follows that |y − x| < δ. We then know that |z − f(x)| = |f(y)− f(x)| < ε since f
is continuous. Hence −ε < z − f(x) < ε so that f(x) − ε < z < f(x) + ε, and thus z ∈ V since
(f(x)− ε, f(x) + ε) ⊂ V . Since z ∈ f(U) was arbitrary, this shows that f(U) ⊂ V , which shows that
(4) holds for f since x was also arbitrary.

Exercise 18.2

Suppose that f : X → Y is continuous. If x is a limit point of the subset A of X, is it necessarily true
the f(x) is a limit point of f(A)?
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Solution:

This is not necessarily true.

Proof. As a counterexample consider a constant function f : X → Y defined by f(x) = y0 for any
x ∈ X and some y0 ∈ Y . It was shown in Theorem 18.2 part (a) that this is continuous. However,
clearly f(A) = {y0} for any subset A of X. So even if x is a limit point of A, no neighborhood of
f(x) can intersect f(A) in a point other than f(x) = y0 since y0 is the only point in f(A)! Therefore
f(x) is not a limit point of f(A).

Exercise 18.3

Let X and X ′ denote a single set in two topologies T and T ′, respectively. Let i : X ′ → X be the
identity function.

(a) Show that i is continuous ⇔ T ′ is finer than T .

(b) Show that i is a homeomorphism ⇔ T ′ = T .

Solution:

(a)

Proof. First note that clearly the inverse of the identity function is itself with the domain and image
reversed, and that for any subset A ⊂ X = X ′ we have i(A) = i−1(A) = A.

(⇒) Suppose that i is continuous and consider any open set U ∈ T . Then we have that i−1(U) = U
is open in T ′ since i is continuous. Since U was arbitrary, this shows that T ⊂ T ′ so that T ′ is finer.

(⇐) Now suppose that T ′ is finer so that T ⊂ T ′. Consider any open set U ∈ T so that also clearly
U ∈ T ′, i.e. U is also open in T ′. Since i−1(U) = U , this shows that i is continuous by the definition
of continuity.

(b)

Proof. Clearly i is a bijection since its domain and image are the same set, and i−1 = i. We then
have that

i is a homeomorphism ⇔ i and i−1 are both continuous

⇔ T ′ is finer than T and T is finer than T ′ (by part (a) applied twice)

⇔ T ⊂ T ′ and T ′ ⊂ T
⇔ T ′ = T

as desired.

Exercise 18.4

Given x0 ∈ X and y0 ∈ Y , show that the maps f : X → X × Y and g : Y → X × Y defined by

f(x) = x× y0 and g(y) = x0 × y

are imbeddings.
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Solution:

We only show that f is an imbedding of X in X × Y as the argument for g is entirely analogous.

Proof. First, it is easy to see and trivial to formally show that f is injective. The function f can
be of course be defined as f(x) = f1(x) × f2(x) where f1 : X → X is the identity function and
f2 : X → Y is the constant function that maps every element of X to y0. Since these have both
been proven to be continuous in the text, it follows that f is continuous by Theorem 18.4.

Now let f ′ be the function obtained by restricting the range of f to f(X) = {x× y0 | x ∈ X}.
Since f is injective, it follows that f ′ is a bijection. It follows from Theorem 18.2 part (e) that
f ′ is continuous. Clearly the inverse function f ′−1 is equal to the projection function π1 so that
f ′−1(x, y) = x. This was shown to be continuous in the proof of Theorem 18.4. This suffices to
show that f ′ is a homeomorphism, which shows the f is an imbedding of X in X × Y .

Exercise 18.5

Show that the subspace (a, b) of R is homeomorphic with (0, 1) and the subspace [a, b] of R is homeo-
morphic with [0, 1].

Solution:

First we show that (a, b) is homeomorphic to (0, 1).

Proof. First let X = (a, b) and Y = (0, 1), and define the map f : X → Y by

f(x) =
x− a
b− a

for any x ∈ X, noting that this is defined since a < b so that b− a > 0. It is trivial to show that f
is a bijection.

Now, f is a linear function that could just as well be defined as a map from R to R, and clearly this
would be continuous by basic calculus. It then follows from Theorem 18.2 part (d) that restricting
its domain to X means that it is still continuous. We also clearly have from basic algebra that its
inverse is the function f−1 : Y → X defined by

f−1(y) = a+ y(b− a)

for y ∈ Y . As this is also linear, it too is continuous by the same argument. This suffices to show
that f is a homeomorphism.

The exact same argument shows that [a, b] is homeomorphic to [0, 1] by simply setting X = [a, b]
and Y = [0, 1] in the above proof. It is assumed that here again a < b even though the interval
[a, b] is valid if a = b and simply becomes [a, b] = [a, a] = {a}. However, clearly this set cannot be
homeomorphic to [0, 1] since it is finite whereas [0, 1] is uncountable.

Exercise 18.6

Find a function f : R→ R that is continuous at precisely one point.

Solution:
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For any real x define

f(x) =

{
0 x ∈ Q
x x /∈ Q .

We claim that this is continuous only at x = 0.

Proof. As it is easier to do so, we show this using the ε-δ definition of continuity, which we know
implies the open set definition by Exercise 18.1. First we note that f(0) = 0 since 0 is rational. Now
consider any ε > 0 and let δ = ε. Suppose real y where |y − 0| = |y| < δ. If y is rational then y = 0 so
that |f(y)− f(0)| = |0− 0| = |0| = 0 < ε. If y is irrational then |f(y)− f(0)| = |y − 0| = |y| < δ = ε
again. Since ε was arbitrary this shows that f is continuous at x = 0.

Now consider any x 6= 0. Let ε = |x| /2, noting that ε > 0 since x 6= 0 so that |x| > 0. Now consider
any δ > 0.

Case: x ∈ Q. Then f(x) = 0 but there is clearly an irrational y close enough to x so that
|y − x| < min(ε, δ), and hence both |y − x| < ε and |y − x| < δ. We also have that f(y) = y. We
then have that

2ε = |x| = |x− 0| ≤ |x− y|+ |y − 0| < ε+ |y|

so that

ε < |y| = |f(y)| = |f(y)− 0| = |f(y)− f(x)| .

Case: x /∈ Q. Then f(x) = x, and there is clearly a rational y close enough to x that |y − x| < δ.
We then also have f(y) = 0 so that

|f(y)− f(x)| = |0− x| = |x| = 2ε > ε

since ε > 0.

Hence in either case there is a y such that |y − x| < δ but |f(y)− f(x)| ≥ ε. This suffices to show
that f is not continuous at x.

Exercise 18.7

(a) Suppose that f : R→ R is “continuous from the right,” that is

lim
x→a+

f(x) = f(a) ,

for each a ∈ R. Show that f is continuous when considered as a function from R` to R.

(b) Can you conjecture what functions f : R → R are continuous when considered as maps from R to
R`? We shall return to this question in Chapter 3.

Solution:

Lemma 18.7.1. In the topology R`, every basis element is both open and closed.

Proof. Consider any basis element B = [a, b), which is clearly open since basis elements are always
open. We then have that the complement of this set is C = R − B = (−∞, a) ∪ [b,∞). We claim
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that this complement is also open so that B is closed by definition. To see this, define the sets
Cn = [a−n− 1, a−n+ 1)∪ [b+n− 1, b+n+ 1) for n ∈ Z+. Clearly each Cn is open since it is the
union of two basis elements. It is also trivial to show that C =

⋃
n∈Z+

Cn, which is then also open
since it is a union of open sets.

Lemma 18.7.2. The only open sets in the standard topology on R that are both open and closed
are ∅ and R itself.

Proof. First, clearly both ∅ and R are both open and closed since they are compliments of each
other and are both open by the definition of a topology. Now suppose that U is a nonempty subset
of R that is both open and closed. Suppose also that U 6= R so that U ( R and hence there is a
y ∈ R where y /∈ U . We show that the existence of such a U results in a contradiction, which of
course shows the desired result since it implies that U = R if U 6= ∅. Since U is nonempty we have
that there is an x ∈ U and it must be that x 6= y since x ∈ U but y /∈ U .

If x < y then define the set A = {z > x | z /∈ U}. Clearly we have that A is nonempty since y ∈ A,
and that x is a lower bound of A. It then follows that A has a largest lower bound a since this is a
fundamental property of R. It could be that a ∈ U or a /∈ U . In the former case we have that any
basis element (c, d) containing a is not a subset of U . To see this, we have that c < a < d, which
means that d is not a lower bound of A since a is the largest lower bound. Hence there is a z ∈ A
where d > z. We then have c < a ≤ z < d (noting that a ≤ z since a is a lower bound of A) so
z ∈ (c, d) and z ∈ A so that z /∈ U . Hence (c, d) is not a subset of U , which contradicts the fact that
U is open since the basis element (c, d) was arbitrary.

In the latter case where a /∈ U then it has to be that x < a since x is a lower bound of A and a is
the largest lower bound (and it cannot be that a = x since x ∈ U but a /∈ U). We clearly have that
a ∈ R − U , which is open since U is closed. Now consider any basis element (c, d) containing a so
that c < a < d. Let b = max(x, c) so that b < a and hence there is a real z where c ≤ b < z < a < d
and hence z ∈ (c, d). Now, since z < a it has to be that z /∈ A since otherwise a would not be a
lower bound of A. We also have that x ≤ b < z so that it has to be that z ∈ U since otherwise
it would be that z ∈ A. Thus z /∈ R − U , which shows that (c, d) is not a subset of R − U since
z ∈ (c, d). Since (c, d) was an arbitrary basis element, this contradicts the fact that R− U is open.

It was thus shown that in either case a contradiction arises. Analogous arguments also show contra-
dictions when x > y, this time using the set A = {z < x | z /∈ U} and its least upper bound. Hence
it has to be that U = R, which shows the desired result.

Main Problem.

(a) Recall that by the definition of the one-sided limit, f : R → R is continuous from the right if,
for every a ∈ R and every ε > 0, there is a δ > 0 such that |f(x)− f(a)| < ε for every x > a where
|x− a| < δ.

Proof. So suppose that f is continuous from the right and consider any a ∈ R. Let V be neighbor-
hood of f(a) in R. Then there is a basis element (c, d) of R that contains f(a) and is a subset of
V . Hence c < f(a) < d, so let ε = min[f(a)− c, d− f(a)] so that clearly ε > 0 and if |y − f(a)| < ε,
then y ∈ (c, d) so that also y ∈ V . Now, since f is continuous from the right, there is a δ > 0 such
that |f(x)− f(a)| < ε for every x > a where |x− a| < δ. So let U = [a, a + δ) which is clearly a
basis element of R` and contains a so that it is a neighborhood of a.

Now consider any y ∈ f(U) so that there is an x ∈ U where y = f(x). If x = a then clearly
|f(x)− f(a)| = |f(a)− f(a)| = |0| = 0 < ε so that f(x) ∈ V . If x 6= a then it has to be that x > a
and also that |x− a| = x − a < δ since U = [a, a + δ). It then follows that |f(x)− f(a)| < ε so
that again f(x) ∈ V . Hence in both cases y = f(x) ∈ V , which shows that f(U) ⊂ V since y was
arbitrary. We have thus shown part (4) of Theorem 18.1, from which the topological continuity of
f follows.
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(b) We claim that only constant functions are continuous from R to R`.

Proof. First, it was shown in Theorem 18.2 part (a) that constant functions are always continuous
regardless of the topologies. Hence we must show that any continuous function from R to R` is
constant. So suppose that f is such a function. Now consider any real x where x 6= 0. Clearly if
f(x) = f(0) then f is a constant function since x was arbitrary. So suppose that this is not the case
so that f(x) 6= f(0). Without loss of generality we can assume that f(0) < f(x). So consider the
basis element B = [f(0), f(x)) of R`, which clearly contains f(0) but not f(x).

Since f is continuous and B is both open and closed by Lemma 18.7.1, it follows from the definition
of continuity and from Theorem 18.1 part (3) that f−1(B) must be both open and closed in R.
However the only sets that are both open and closed in R are ∅ and R itself by Lemma 18.7.2. Thus
either f−1(B) = ∅ or f−1(B) = R. It cannot be that f−1(B) = ∅ since we have that f(0) ∈ B so
that 0 ∈ f−1(B). Hence it must be that f−1(B) = R, but then we would have x ∈ f−1(B) so that
f(x) ∈ B, which we know it not the case. We therefore have a contradiction so that it must be that
f(x) = f(0) so that f is constant.

Lastly, we claim that the only functions that are continuous from R` to R` are those that are
continuous and non-decreasing from the right. For a function f : R → R this means that for every
x ∈ R and every ε > 0 there is a δ > 0 such that |f(y)− f(x)| < ε and f(y) ≥ f(x) for every
x ≤ y < x+ δ.

Proof. First we show that such functions are in fact continuous. So suppose that f is continuous
and non-decreasing from the right and consider any real x. Let V be any neighborhood of f(x) so
that there is a basis element B = [c, d) containing f(x) such that B ⊂ V . Let ε = d− f(x) so that
ε > 0 since f(x) < d. Hence there is a δ > 0 such that x < y < x+ δ implies that |f(y)− f(x)| < ε
and f(y) ≥ f(x). We then have that U = [x, x+ δ) is a basis element and therefore an open set of
R` that contains x. Consider any z ∈ f(U) so that z = f(y) for some y ∈ U . Then x ≤ y < x + δ
so that z = f(y) ≥ f(x) and |z − f(x)| = |f(y)− f(x)| < ε. It then follows that 0 ≤ z − f(x) < ε
so that c ≤ f(x) ≤ z < f(x) + ε = d, and hence z ∈ [c, d) = B. Thus also z ∈ V since B ⊂ V . This
shows that f(U) ⊂ V since z was arbitrary, and hence that f is continuous by Theorem 18.1.

Now we show that a continuous function must be continuous and non-decreasing from the right by
showing the contrapositive. So suppose that f is not continuous and non-decreasing from the right.
Then there exists a real x and an ε > 0 such that, for any δ > 0, there is a x ≤ y < x + δ where
f(y) < f(x) or |f(y)− f(x)| ≥ ε. Clearly we have that V = [f(x), f(x) + ε) is basis element and
therefore open set of R` that contains f(x). Consider any neighborhood U of x so that there is a
basis element B = [a, b) containing x where B ⊂ U . Then x < b so that δ = b − x > 0. It then
follows that there is a x ≤ y < x + δ = b such that f(y) < f(x) or |f(y)− f(x)| ≥ ε. Clearly
we have that y ∈ B so that also y ∈ U and f(y) ∈ f(U). However, if f(y) < f(x) then clearly
f(y) /∈ V . On the other hand if f(y) ≥ f(x) then it has to be that |f(y)− f(x)| ≥ ε. Then we have
that f(y) − f(x) ≥ 0 so that f(y) − f(x) = |f(y)− f(x)| ≥ ε, and hence f(y) ≥ f(x) + ε so that
again f(y) /∈ V . This suffices to show that f(U) is not a subset of V , which shows that f is not
continuous by Theorem 18.1 since U was an arbitrary neighborhood of x.

Exercise 18.8

Let Y be an ordered set in the order topology. Let f, g : X → Y be continuous.

(a) Show that the set {x | f(x) ≤ g(x)} is closed in X.

(b) Let h : X → Y be the function

h(x) = min {f(x), g(x)} .

Show that h is continuous. [Hint: Use the pasting lemma.]
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Solution:

(a) First let C = {x ∈ X | f(x) ≤ g(x)} so that we must show that C is closed in X.

Proof. We prove this by showing that the complement X −C is open in X. So first let S be the set
of all y ∈ Y where y has an immediate successor, and denote that successor by y + 1. Then clearly
y + 1 is well defined for all y ∈ S. Now define

A>y = {z ∈ Y | z > y} A<y = {z ∈ Y | z < y + 1}

for y ∈ S. As these are both rays in the order topology Y , they are both basis elements and therefore
open. It then follows that f−1(A>y) and g−1(A<y) are both open in X since f and g are continuous.
Hence their intersection Uy = f−1(A>y) ∩ g−1(A<y) is also open in X.

Similarly the rays

B>y = {z ∈ Y | z > y} B<y = {z ∈ Y | z < y}

for y ∈ Y are also open so that the intersection Vy = f−1(B>y) ∩ g−1(B<y) is open in X. Then
clearly the union of unions

D =
⋃
y∈S

Uy ∪
⋃
y∈Y

Vy

is also open in X. We claim that X − C = D so that the complement is open in X and hence C is
closed as desired.

(⊂) First consider any x ∈ X − C so that clearly f(x) > g(x). If g(x) has an immediate successor
g(x) + 1 then g(x) ∈ S and we have f(x) ∈ A>g(x) so that x ∈ f−1(A>g(x)). We also have that
g(x) ∈ A<g(x) since g(x) < g(x) + 1, and hence x ∈ g−1(A<g(x)). It then follows that x ∈ Ug(x) and
hence

⋃
y∈S Uy and x ∈ D since g(x) ∈ S. If g(x) does not have an immediate successor then there

must be a y ∈ Y where g(x) < y < f(x). We then have that clearly f(x) ∈ B>y and g(x) ∈ B<y so
that x ∈ f−1(B>y) and x ∈ g−1(B<y). Thus x ∈ Vy so that x ∈

⋃
y∈Y Vy and x ∈ D. This shows

that X − C ⊂ D since either way x ∈ D and x was arbitrary.

(⊃) Now suppose that x ∈ D. If x ∈
⋃
y∈S Uy when there is a y ∈ S where x ∈ Uy. Hence

x ∈ f−1(A>y) and x ∈ g−1(A<y) so that f(x) ∈ A>y and g(x) ∈ A<y. From this it follows that
f(x) > y and g(x) < y+1. Then it has to be that g(x) ≤ y so that f(x) > y ≥ g(x). If x ∈

⋃
y∈Y Vy

then there is a y ∈ Y where x ∈ Vy. Hence x ∈ f−1(B>y) and x ∈ g−1(B<y) so that f(x) ∈ B>y and
g(x) ∈ B<y. It then clearly follows that f(x) > y and g(x) < y so that f(x) > y > g(x). Therefore
in either case we have f(x) > g(x) so that x ∈ X − C. This of course shows that X − C ⊃ D since
x was arbitrary.

(b)

Proof. Let A = {x ∈ X | f(x) ≤ g(x)} and B = {x ∈ X | g(x) ≤ f(x)}, which are clearly both closed
by part (a). It is easy to see that X = A ∪ B. First, clearly X ⊃ A ∪ B since both A ⊂ X and
B ⊂ X. Then, for any x ∈ X, it has to be that either f(x) ≤ g(x) or f(x) > g(x) since < is a
total order on Y . In the former case of course x ∈ A, and in the latter x ∈ B so that either way
x ∈ A ∪ B. Hence X ⊂ A ∪ B. It is also easy to see that f(x) = g(x) for every x ∈ A ∩ B. For
any such x, we have that x ∈ A so that f(x) ≤ g(x), and x ∈ B so that g(x) ≤ f(x). From this it
clearly must be that f(x) = g(x).

Since f and g are continuous, it then follows from the pasting lemma that the function

h(x) =

{
f(x) x ∈ A
g(x) x ∈ B
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for x ∈ X is continuous as well. Based on the definitions of A and B it is then easy to see and trivial
to show that h(x) = min {f(x), g(x)} for all x ∈ X, which of course shows the desired result.

Exercise 18.9

Let {Aα} be a collection of subsets of X; let X =
⋃
αAα. Let f : X → Y ; suppose that f � Aα, is

continuous for each α.

(a) Show that if the collection {Aα} is finite and each set Aα is closed, then f is continuous.

(b) Find an example where the collection {Aα} countable and each Aα is closed, but f is not continuous.

(c) An indexed family of sets {Aα} is said to be locally finite if each point x of X has a neighborhood
that intersects Aα for only finitely many values of α. Show that if the family {Aα} is locally finite
and each Aα is closed, then f is continuous.

Solution:

(a)

Proof. We show using induction that f is continuous for any collection {Aα}nα=1, for any n ∈ Z+,
where each Aα is closed. This of course shows the desired result since the collection is {Aα}nα=1 for
some n ∈ Z+ if it is finite. So first, for n = 1, we have that A1 =

⋃n
α=1Aα = X so that of course

f = f � X = f � A1 is continuous.

Now suppose that f is continuous for any collection of size n and suppose we have the collection
{Aα}n+1

α=1 of size n + 1. Let A =
⋃n
α=1Aα, which is closed by Theorem 17.1 since each Aα is

closed and it is a finite union, and let B = An+1 so that B is also closed. We then have that
A ∪ B =

⋃n
α=1Aα ∪ An+1 =

⋃n+1
α=1Aα = X. We know that g = f � B = f � An+1 is continuous.

Considering the set A as a subspace of X, then each Aα for α ∈ {1, . . . , n} is closed in A by
Theorem 17.2 since they are subsets of A and closed in X. Since by definition

⋃n
α=1Aα = A, it

follows from the induction hypothesis that f ′ = f � A is continuous. Clearly also for any x ∈ A∩B
we have that x ∈ A and x ∈ B = An+1 so that f ′(x) = (f � A)(x) = f(x) = (f � An+1)(x) = g(x).

Then by the pasting lemma the function h : X → Y defined by

h(x) =

{
f ′(x) x ∈ A
g(x) x ∈ B

is continuous. However, consider any x ∈ X. If x ∈ A then h(x) = f ′(x) = (f � A)(x) = f(x).
Similarly if x ∈ B then h(x) = g(x) = (f � B)(x) = f(x) as well. This suffices to show that h = f
since x was arbitrary. Thus f is continuous, which completes the induction.

(b) Consider the standard topology on R and define the countable collection of set {An} by

An =


(−∞, 0] n = 1

[1,∞) n = 2[
1

n−1 ,
1

n−2

]
n > 2

for n ∈ Z+. Also define f : R→ R by

f(x) =

{
1 x ≤ 0

0 x > 0

for real x. We claim that this collection and function have the desired properties.
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Proof. First, it is trivial to show that the collection covers all of R, i.e. that
⋃∞
n=1An = R. It

is also obvious by this point that each An is closed in the standard topology. Clearly f is not a
continuous function since there is a discontinuity at x = 0, which is trivial to prove. Lastly, consider
any n ∈ Z+. If n = 1 then for any x ∈ An = A1 = (−∞, 0] we have that x ≤ 0 and hence f(x) = 1.
Likewise if n = 2 then for any x ∈ An = A2 = [1,∞) it follows that x ≥ 1 > 0 , and hence f(x) = 0.
Lastly, if n > 2 then for any x ∈ An = [1/(n − 1), 1/(n − 2)] we have that 0 < 1/(n − 1) ≤ x so
that f(x) = 0 again. Thus in all cases f � An is constant and therefore continuous. This shows the
desired properties.

(c)

Proof. Consider any x ∈ X so that there is a neighborhood U ′ of x that intersects a finite subcol-
lection {Ak}nk=1 of the full collection {Aα}. Consider A =

⋃n
k=1Ak as a subspace of X, from which

it follows from Theorem 17.2 that each Ak is closed in A since it is a subset of A and closed in X.
It is then easy to show that U ′ ⊂ A. It also follows from part (a) that f � A is continuous with the
domain being the subspace topology on A.

Now consider any neighborhood V of f(x), noting that of course x ∈ A since x ∈ U ′ and U ′ ⊂ A.
Thus f(x) is in the image of f � A so that there is a neighborhood UA of x in the subspace topology
such that (f � A)(UA) ⊂ V by Theorem 18.1 since f � A is continuous. Since UA is open in the
subspace topology, there is an open set UX in X where UA = A∩UX . Now let U = U ′∩UX , which is
open in X since U ′ and UX are both open in X. Then also x ∈ UX since x ∈ UA and UA = A∩UX ,
and hence x ∈ U since also x ∈ U ′ and U = U ′ ∩ UX . Thus U is a neighborhood of x in X.

Let z be any element of f(U) so that z = f(y) for some y ∈ U . Then y ∈ U ′ and y ∈ UX since
U = U ′ ∩UX . Then also y ∈ A since U ′ ⊂ A, and hence y ∈ A∩UX = UA. From this it follows that
z = f(y) = (f � A)(y) ∈ (f � A)(UA) so that z ∈ V since (f � A)(UA) ⊂ V . Since z was arbitrary,
this shows that f(U) ⊂ V , which in turn shows that f is continuous by Theorem 18.1 since V was
an arbitrary neighborhood of f(x) and x was an arbitrary element of X.

We note that the example in part (b) is not locally finite since any neighborhood of x = 0 intersects
infinitely many An in the collection. This fact is easy to see and would be easy to prove formally,
though a bit tedious.

Exercise 18.10

Let f : A→ B and g : C → D be continuous functions. Let us define a map f × g : A×C → B ×D by
the equation

(f × g)(a× c) = f(a)× g(c) .

Show that f × g is continuous.

Solution:

Proof. Consider any x× y ∈ A×C and any neighborhood V of (f × g)(x× y) in B×D. Since V is
open in B×D, there is a basis element UB×UD of the product topology that contains (f×g)(x×y)
where UB × UD ⊂ V . Then UB and UD are open in B and D, respectively. Since f is continuous,
we then have that UA = f−1(UB) is open in A. Likewise UC = g−1(UD) is open in C since g is
continuous. Then the set U = UA × UC is a basis element of the product topology A × C and
therefore open.

Since UB ×UD contains (f × g)(x× y) = f(x)× g(y) we have that f(x) ∈ UB and g(y) ∈ UD. From
this it follows that x ∈ f−1(UB) = UA and y ∈ g−1(UD) = UC . Therefore x× y ∈ UA × UC = U so
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that U is a neighborhood of x× y in A× C. Now consider any w × z ∈ (f × g)(U) so that there is
an x′ × y′ ∈ U = UA × UC where w × z = (f × g)(x′ × y′) = f(x′) × g(y′). Hence w = f(x′) and
x′ ∈ UA = f−1(UB) so that w = f(x′) ∈ UB . Similarly z = g(y′) and y′ ∈ UC = g−1(UD) so that
z = g(y′) ∈ UD. Thus w × z ∈ UB × UD so that also w × z ∈ V since UB × UD ⊂ V . This shows
that (f × g)(U) ⊂ V since w × z was arbitrary.

This suffices to show that f × g is continuous by Theorem 18.1 as desired.

Exercise 18.11

Let F : X × Y → Z. We say that F is continuous in each variable separately if for each y0 in Y ,
the map h : X → Z defined by h(x) = F (x× y0) is continuous, and for each x0 ∈ X, the map k : Y → Z
defined by k(y) = F (x0 × y) is continuous. Show that if F is continuous, then F is continuous in each
variable separately.

Solution:

Proof. To show that F is continuous in x, consider any y0 ∈ Y and define h : X → Z by h(x) =
F (x × y0). Now consider any x ∈ X and any neighborhood V of h(x) = F (x × y0). Then V is
an open set containing h(x) = F (x × y0) so that it is a neighborhood of F (x × y0). Since F is
continuous, this means that there is neighborhood U ′ of x × y0 in X × Y such that F (U ′) ⊂ V by
Theorem 18.1. It then follows that there is a basis element UX × UY of X × Y containing x × y0

where UX × UY ⊂ U ′. Since X × Y is a product topology, we have that UX is open in X and UY
is open in Y . Then, since x × y0 ∈ UX × UY we have that x ∈ UX and y0 ∈ UY so that UX is a
neighborhood of x in X.

So consider any z ∈ h(UX) so that z = h(x′) for some x′ ∈ UX . Then x′ × y0 ∈ UX × UY so that
also x′ × y0 in U ′ since UX × UY ⊂ U ′. It then also follows that z = h(x′) = F (x′ × y0) ∈ F (U ′)
so that z ∈ V since F (U ′) ⊂ V . This shows that h(UX) ⊂ V since z was arbitrary. It then follows
that h is continuous by Theorem 18.1.

The proof that F is continuous in y is directly analogous.

Exercise 18.12

Let F : R× R→ R by defined by the equation

F (x× y) =

{
xy/(x2 + y2) if x× y 6= 0× 0.

0 if x× y = 0× 0.

(a) Show that F is continuous in each variable separately.

(b) Compute the function g : R→ R defined by g(x) = F (x× x).

(c) Show that F is not continuous.

Solution:

(a)

Proof. It is easy to see that F is continuous in x. For any real y0 we generally have that

h(x) = F (x× y0) =
xy0

x2 + y2
0
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so long as one of x and y0 are nonzero. If y0 = 0 then x = 0 implies that x × y0 = 0 × 0 so that
h(x) = F (0 × 0) = 0 by definition. If x 6= 0 then we have h(x) = 0/x2 = 0 again. Thus h is
the constant function h(x) = 0 and so is continuous when y0 = 0. If y0 6= 0 then y2

0 > 0 so that
x2 + y2

0 > 0 since also x ≥ 0. Thus the denominator is never zero that the h(x) is given by the
expression above, which is continuous by elementary calculus. Hence h is always continuous. The
same arguments show that F is continuous in y as well.

(b) We clearly have

g(x) = F (x× x) =

{
x2

x2+x2 = x2

2x2 = 1
2 x 6= 0

0 x = 0 .

(c)

Proof. First consider the function f : R → R × R defined simply by f(x) = x × x. This function
is clearly continuous by Theorem 18.4 since it can be expressed as f(x) = f1(x) × f2(x) where the
identical functions f1(x) = f2(x) = x are obviously continuous. Then g = F ◦ f , where g is the
function from part (b) since we have g(x) = F (x × x) = F (f(x)) for any real x. Now, clearly g as
calculated in part (b) has a discontinuity at x = 0 so that it is not continuous. It then follows from
Theorem 18.2 part (c) that either F or f is not continuous since g = F ◦ f . As we know that the
trivial function f is continuous, it must then be that F is not as desired.

Exercise 18.13

Let A ⊂ X; let f : A → Y be continuous; let Y be Hausdorff. Show that if f may be extended to a
continuous function g : A→ Y , then g is uniquely determined by f .

Solution:

Proof. Suppose that g1 and g2 are both continuous functions from A to Y that extend f so that
g1(x) = g2(x) = f(x) for all x ∈ A. Clearly g1 = g2 if and only if g1(x) = g2(x) for all x ∈ A.
So suppose that this is not the case so that there is an x0 ∈ A where g1(x0) 6= g2(x0). Since Y is
a Hausdorff space and g1(x0) and g2(x0) are distinct, there are disjoint neighborhoods V1 and V2

of g1(x0) and g2(x0), respectively. Then there are also neighborhoods U1 and U2 of x0 such that
g1(U1) ⊂ V1 and g2(U2) ⊂ V2 by Theorem 18.1 since both g1 and g2 are continuous.

Now let U = U1 ∩ U2 so that U is also a neighborhood of x0. Since x0 ∈ A, it follows that U
intersects A so that there is a y ∈ U where also y ∈ A by Theorem 17.5. Since y ∈ A we have that
g1(y) = g2(y) = f(y). We also have that y ∈ U1 and y ∈ U2 since U = U1∩U2. Thus g1(y) ∈ g1(U1)
so that f(y) = g1(y) ∈ V1 since g1(U1) ⊂ V1. Similarly f(y) = g2(y) ∈ V2, but then we have that
f(y) ∈ V1∩V2, which contradicts the fact that V1 and V2 are disjoint! Hence it must be that g1 = g2,
which shows uniqueness.

§19 The Product Topology

Exercise 19.1

Prove Theorem 19.2
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Solution:

Let C be the collection of sets that are alleged to be a basis for the box or product topologies in
Theorem 19.2.

Proof. We show that C is a basis of the box or product topology using Lemma 13.2. First, it is
easy to see that C is a collection of open sets. Consider any B ∈ C so that B =

∏
Bα where each

Bα ∈ Bα (for a finitely many α ∈ J and Bα = Xα for the rest in the product topology). Since each
Bα is a basis element of Xα (or Xα itself), they are open so that B is a basis element of the box or
product topology by definition and therefore open. Note that the basis for the product topology is
given directly by Theorem 19.1.

Now suppose that U is an any open set of the box topology and consider any x ∈ U . Then it
follows that there is a basis element

∏
α∈J Uα of the box or product topology containing x where∏

α∈J Uα ⊂ U . Thus each Uα is an open set of Xα (or Uα = Xα for all but finitely many α ∈ J for
the product topology). Also x ∈

∏
α∈J Uα so that x = (xα)α∈J where each xα ∈ Uα. It then follows

that there is basis element Bα ∈ Bα of Xα containing xα where Bα ⊂ Uα (for Uα = Xα we simply
set Bα = Xα as well).

Then clearly x ∈
∏
α∈J Bα and

∏
α∈J Bα ∈ C. Consider also any y ∈

∏
α∈J Bα so that y = (yα)α∈J

where each yα ∈ Bα. Then also each yα ∈ Uα since Bα ⊂ Uα. This suffices to show that y ∈∏
α∈J Uα ⊂ U . Since y was arbitrary this shows that

∏
α∈J Bα ⊂ U . Therefore C is a basis of the

box topology by Lemma 13.2.

Exercise 19.2

Prove Theorem 19.3.

Solution:

Proof. The basis of the box or product topologies on
∏
Aα is the collection of sets

∏
Vα, where each

Vα is open in Aα and, in the case of the product topology, Vα = Aα for all but finitely many α ∈ J
(by Theorem 19.1). Denote this basis collection by C. By Lemma 16.1, the collection

BA =
{
B ∩

∏
Aα | B ∈ B

}
is a basis of the subspace topology on

∏
Aα, where B is the basis of

∏
Xα. To prove that

∏
Aα is

a subspace of
∏
Xα, it therefore suffices to show that C = BA.

(⊂) First consider any element B ∈ C so that B =
∏
Vα for open sets Vα in Aα (and Vα = Aα for all

but finite many α ∈ J for the product topology). For each α ∈ J , we then have that Vα = Uα ∩Aα
for some open set Uα in Xα since Aα is a subspace of Xα. Note that this is true even for those α
where Vα = Aα in the product topology since then Vα = Aα = Xα ∩ Aα. In fact, for these α we
need to choose Uα = Xα as will become apparent. We then have the following:

x ∈ B ⇔ x ∈
∏

Vα

⇔ ∀α ∈ J(xα ∈ Vα)

⇔ ∀α ∈ J(xα ∈ Uα ∩Aα)

⇔ ∀α ∈ J(xα ∈ Uα ∧ xα ∈ Aα)

⇔ ∀α ∈ J(xα ∈ Uα) ∧ ∀α ∈ J(xα ∈ Aα)

⇔ x ∈
∏

Uα ∧ x ∈
∏

Aα
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⇔ x ∈
(∏

Uα

)
∩
(∏

Aα

)
,

Since Uα = Xα for all but a finitely many α ∈ J for the product topology, we have that
∏
Uα is

a basis element of
∏
Xα, i.e.

∏
Uα ∈ B. This shows that B ∈ BA so that C ⊂ BA since B was

arbitrary.

(⊃) Now suppose that B ∈ BA so that B = BX ∩
∏
Aα for some basis element BX ∈ B of

∏
Xα.

We then have that BX =
∏
Uα where each Uα is an open set of Xα (and Uα = Xα for all but

finitely many α ∈ J for the product topology). Then let Vα = Uα ∩ Aα for each α ∈ J , noting
that Vα = Xα ∩ Aα = Aα when Uα = Xα. Following the above chain of logical equivalences in
reverse order then shows that B =

∏
Vα so that B ∈ C since clearly each Vα is open in the subspace

topology Aα. Hence C ⊃ BA since B was arbitrary.

Exercise 19.3

Prove Theorem 19.4.

Solution:

Proof. Suppose that x and y are distinct points of
∏
Xα. Then x = (xa) and y = (yα) where each

xα, yα ∈ Xα, and there must be a β where xβ 6= yβ since x 6= y. Thus xβ and yβ are distinct points
of Xβ , so that there are neighborhoods Wx and Wy of xβ and yβ , respectively, that are disjoint since
Xβ is a Hausdorff space. So define the sets

Uα =

{
Wx α = β

Xα α 6= β
Vα =

{
Wy α = β

Xα α 6= β

so that clearly x ∈
∏
Uα and y ∈

∏
Vα. Then since each Uα and Vα are open, we have that

∏
Uα

and
∏
Vα are both basis elements of

∏
Xα and therefore open. Note that this is true for both the

box and product topologies since, in the case of the latter, Uα and Vα are not all of Xα for only one
α, namely α = β. Thus

∏
Uα is a neighborhood of x and

∏
Vα is a neighborhood of y in

∏
Xα.

We also assert that
∏
Uα and

∏
Vα are disjoint, which of course completes the proof that

∏
Xα is

Hausdorff. To see this, suppose to the contrary that there is a z in both
∏
Uα and

∏
Vα. Then

z = (zα) and in particular we would have that zβ ∈ Uβ = Wx and zβ ∈ Vβ = Wy. But then
zβ ∈ Wx ∩Wy, which contradicts the fact that Wx and Wy are disjoint! So it must be that in fact∏
Uα and

∏
Vα are disjoint.

Exercise 19.4

Show that (X1 × · · · ×Xn−1)×Xn is homeomorphic to X1 × · · · ×Xn.

Solution:

Proof. First we note that since we are dealing with finite products, the box and product topologies
are the same; we shall find it most convenient to use the box topology definition. Also, as there
are no intervals involved here, we use the traditional tuple notation using parentheses. So define
f : X1 × · · · ×Xn → (X1 × · · · ×Xn−1)×Xn by

f(x1, . . . , xn−1) = ((x1, . . . , xn−1) , xn) .
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It is obvious that this is a bijection, and it is trivial to prove. Also obvious and trivial to prove
based on the definition of f is that f(A1× · · ·×An) = (A1× · · ·×An−1)×An when each Ak ⊂ Xk.

First we show that f is continuous by showing that the inverse image of every basis element in
(X1 × · · · ×Xn−1)×Xn is open in X1 × · · · ×Xn. So consider any basis element C of (X1 × · · · ×
Xn−1) × Xn and let U = f−1(C) so that of course f(U) = C and U ⊂ X1 × · · · × Xn. We then
have that C = V ′ × Vn where V ′ is open in X1 × · · · ×Xn−1 and Vn is open in Xn by the definition
of the box/product topology. Now consider any x ∈ U so that x = (x1, . . . , xn) and we have that
f(x) = ((x1, . . . , xn−1) , xn) ∈ f(U) = C. Hence x′ = (x1, . . . , xn−1) ∈ V ′ and xn ∈ Vn. Since V ′

is open in X1 × · · · ×Xn−1 there is a basis element C ′ containing x′ that is a subset of V ′. By the
definition of the box topology, we then have that C ′ = V1× · · ·×Vn−1 where each Vk is open in Xk.

We then have that B = V1 × · · · × Vn is a basis element of X1 × · · · × Xn and also clearly B
contains x since (x1, . . . , xn−1) = x′ ∈ C ′ = V1 × · · · × Vn−1 and xn ∈ Vn. Now suppose that
y = (y1, . . . , yn) ∈ B so that each yk ∈ Vk. Then we have that y′ = (y1, . . . , yn−1) ∈ C ′ so that also
y′ ∈ V ′ since C ′ ⊂ V ′. Since also of course yn ∈ Vn, we have that (y′, yn) ∈ V ′ × Vn = C. Also
clearly f(y) = (y′, yn) ∈ C = f(U) so that y ∈ U . Since y was arbitrary this shows that B ⊂ U ,
which suffices to show that U is open since x was arbitrary. This completes the proof that f is
continuous.

Next we show that f−1 is continuous, which is a little simpler. Let B be any basis element of
X1 × · · · ×Xn so that B = U1 × · · · × Un where each Uk is open in Xk by the definition of the box
topology. Then we have that f(B) = (U1× · · · ×Un−1)×Un. By the definition of the box topology,
we then have that U ′ = U1× · · ·×Un−1 is a basis element of X1× · · ·×Xn−1 and is therefore open.
Since Un is also open, we have that f(B) = U ′ × Un is a basis element of (X1 × · · · ×Xn−1)×Xn

by the definition of the box/product topology, and is therefore open. Since f(B) = (f−1)−1(B) is
the inverse image of B under f−1, this shows that f−1 is also continuous.

We have shown that both f and f−1 are continuous, which proves that f is a homeomorphism by
definition.

Exercise 19.5

One of the implications stated in Theorem 19.6 holds for the box topology. Which one?

Solution:

Example 19.2 gives a function f that is not continuous in the box topology even though all of its
constituent functions fα are continuous. Hence the only implication that can be generally true in
the box topology is that f being continuous implies that each fα is continuous. A proof of this is
straightforward.

Proof. As in Theorem 19.6 suppose that f : A→
∏
α∈J Xα be given by

f(a) = (fα(a))α∈J ,

where fα : A→ Xα for each α ∈ J . Here
∏
Xα has the box topology. Suppose that f is continuous

and consider any β ∈ J . We show that fβ is continuous, which of course shows the desired result.

So let V be any open set of Xβ and define

Bα =

{
V α = β

Xα α 6= β .

Then, since each Bα is clearly open in Xα, we have that B =
∏
Bα is a basis element of the box

topology by definition and is therefore open. Hence U = f−1(B) is open in A since f is continuous.
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We claim that U = f−1
β (V ), which shows that fβ is continuous since U is open in A and V was an

arbitrary open set of Xβ .

(⊂) If x ∈ U = f−1(B) then of course f(x) ∈ B so that each fα(x) ∈ Bα since f(x) = (fα(x))α∈J
and B =

∏
Bα. In particular fβ(x) ∈ Bβ = V so that x ∈ f−1

β (V ). Hence U ⊂ f−1
β (V ) since x was

arbitrary.

(⊃) If x ∈ f−1
β (V ) then fβ(x) ∈ V = Bβ . Since of course every other fα(x) ∈ Xα = Bα we have

that f(x) ∈
∏
Bα = B. Hence x ∈ f−1(B) = U so that f−1

β (V ) ⊂ U since x was arbitrary.

Exercise 19.6

Let x1,x2, . . . be a sequence of the points of the product space
∏
Xα. Show that the sequence converges

to the point x if and only if the sequence πα(x1), πα(x2), . . . converges to πα(x) for each α. Is this fact
true if one uses the box topology instead of the product topology?

Solution:

Proof. (⇒) First suppose that the sequence x1,x2, . . . converges to x and consider any β. Also
suppose that U is any neighborhood of πβ(x). Define

Ba =

{
U α = β

Xα α 6= β

so that B =
∏
Bα is a basis element of

∏
Xα since each Bα is open. Note that B is a basis element

of both the box and product topologies since possibly Bα 6= Xα for only one α (i.e. for α = β). We
also clearly have that x ∈ B so that B is a neighborhood of x in

∏
Xα. Since the sequence x1,x2, . . .

converges to x, we have that there is an N ∈ Z+ where xn ∈ B for all n ≥ N . So consider any such
n ≥ N so that xn ∈ B =

∏
Bα. Hence πα(xn) ∈ Bα for all α, and in particular πβ(xn) ∈ Bβ = U .

This suffices to show that the sequence πβ(x1), πβ(x2), . . . converges to πβ(x) as desired since U was
an arbitrary neighborhood.

(⇐) Now suppose that the sequence πα(x1), πα(x2), . . . converges to πα(x) for every α. Let U be
any neighborhood of x in

∏
Xα. Then there is a basis element B =

∏
Uα of

∏
Xα where x ∈ B

and B ⊂ U . Since
∏
Xα is the product topology, each Uα is open but only a finite number of them

are different from Xα. Suppose then that J is the index set of α and that I ⊂ J is the finite subset
where Uα = Xα for all α /∈ I.

Then for any β ∈ I we have that πβ(x) ∈ Uβ since x ∈ B =
∏
Uα, hence Uβ is a neighborhood of

πβ(x). Then, since πβ(x1), πβ(x2), . . . converges to πβ(x), there is an Nβ ∈ Z+ where πβ(xn) ∈ Uβ
for all n ≥ Nβ . So let N = maxα∈I Nα, noting that this exists since I is finite. Consider any n ≥ N
and any α ∈ J . If α ∈ I then we have that n ≥ N ≥ Nα so that πα(xn) ∈ Uα. If α /∈ J then
of course we have that πa(xn) ∈ Xα = Uα. Hence either way we have that πα(xn) ∈ Uα so that
xn ∈

∏
Uα = B and hence also xn ∈ U since B ⊂ U . Since n ≥ N was arbitrary and U was an

arbitrary neighborhood of x, this shows that x1,x2, . . . converges to x as desired.

As noted there, the forward direction of the preceding proof works for the product or the box
topology. However, then reverse direction was proved only for the product topology, with the
critical point being where we took maxα∈I Nα, which was only guaranteed to exist since I is finite
in the product topology. The provides a hint as to how to construct a counterexample that proves
that this direction is not generally true for the box topology.
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Proof. Define

xij =

{
1 j ≤ i

1
j−i j > i

for i, j ∈ Z+. Now define a sequence x1,x2, . . . in
∏
i∈Z+

R = Rω by πi(xj) = xij . With the box

topology on Rω we claim that each coordinate sequence πi(x1), πi(x2), . . . converges to 0 but that
the sequence x1,x2, . . . does not converge to the point 0 = (0, 0, . . .).

First, it is easy to see that each coordinate sequence πi(x1), πi(x2), . . . converges to 0 since, for
fixed i, there is always an N ∈ Z+ large enough such that j > i and πi(xj) = xij = 1/(j − i) is
small enough to be within any fixed neighborhood of 0 for all j ≥ N . To show that the sequence
x1,x2, . . . does not converge to 0 though, consider the neighborhood U =

∏
Uk of 0 where every

Uk = (−1, 1). We note that clearly U is open in the box topology since each Uk is a basis element
of R and therefore open. For any N ∈ Z+ we then have that πN (xN ) = xNN = 1 so that clearly
πN (xN ) /∈ (−1, 1) = UN and hence xN /∈

∏
Uk = U . This suffices to show that the sequence does

not converge, but it does not even come close to converging since there are actually no points in the
sequence that are even in this quite large neighborhood of 0!

Exercise 19.7

Let R∞ be the subset of Rω consisting of all sequences that are “eventually zero,” that is all sequences
(x1, x2, . . .) such that xi 6= 0 for only finitely many values of i. What is the closure of R∞ in Rω in the
box and product topologies? Justify your answer.

Solution:

First we claim that R∞ is dense in Rω in the product topology in the sense that its closure is all of
Rω.

Proof. We show that any point of Rω is in Rω. So consider any point x = (x1, x2, . . .) ∈ Rω and any
neighborhood U of x. Then there is a basis element B =

∏
Un containing x where B ⊂ U . By the

definition of the product topology each Un is open and Un = R for all but finitely many values of
n. So let I be a finite subset of Z+ such that Un = R for all n /∈ I and Un is merely just open for
n ∈ I.

Consider now the sequence y = (y1, y2, . . .) defined by

yn =

{
xn n ∈ I
0 n /∈ I

for n ∈ Z+. Since I is finite clearly y ∈ R∞. Also yn = xn ∈ Un when n ∈ I since B =
∏
Un

contains x. We also have yn = 0 ∈ R = Un when n /∈ I so that either way yn ∈ Un and hence
y ∈

∏
Un = B. Thus also y ∈ U since B ⊂ U . Since U was an arbitrary neighborhood and U

intersects R∞ (with y being a point in the intersection), this shows that x ∈ R∞ by Theorem 17.5.
This of course shows the desired result since x was any element of Rω.

For the box topology, we claim that R∞ is already closed.

Proof. We show this by showing that any point not in R∞ is not a limit point of R∞ so that R∞
must already contain all its limit points. So consider any x = (x1, x2, . . .) /∈ R∞ so that xn 6= 0 for

Page 194



infinitely many values of n. Now define the sets

Un =


(−1, 1) xn = 0

(xn/2, 2xn) xn > 0

(2xn, xn/2) xn < 0

for n ∈ Z+. Clearly each Un is a basis element of R and is therefore open. Also clearly each xn ∈ Un.
It therefore follows that B =

∏
Un is a basis element of Rω and is therefore open, and that x ∈ B.

Hence B is a neighborhood of x.

Then, for any y = (y1, y2, . . .) ∈ B we have that each yn ∈ Un. For infinitely many n ∈ Z+ we then
have that xn 6= 0 and hence xn > 0 or xn < 0. In the former case yn ∈ Un = (xn/2, 2xn) so that
0 < xn/2 < yn. In the latter case yn ∈ Un = (2xn, xn/2) so that yn < xn/2 < 0. Hence either way
yn 6= 0 so that y /∈ R∞ since this is true for infinitely many n. Since y ∈ B was arbitrary, this shows
that B cannot not intersect R∞. Therefore x is not a limit point of R∞ since B is a neighborhood
of x.

Exercise 19.8

Given sequences (x1, x2, . . .) and (b1, b2, . . .) of reals numbers with ai > 0 for all i, define h : Rω → Rω
by the equation

h((x1, x2, . . .)) = (a1x1 + b1, a2x2 + b2, . . .) .

Show that if Rω is given the product topology, h is a homeomorphism of Rω with itself. What happens
if Rω is given the box topology?

Solution:

Lemma 19.8.1. Consider the spaces
∏
Xα and

∏
Yα in the box topologies over the index set J . If

f :
∏
Xα →

∏
Yα is defined by

f((xα)α∈J) = (fα(xα))α∈J

and each fα : Xα → Yα is continuous, then f is continuous.

Proof. Consider any basis element B =
∏
Vα in

∏
Yα so that each Vα is open in Yα since we are

in the box topology. For each α ∈ J then define Uα = f−1
α (Vα), which is open in Xα since fα is

continuous. Hence the set U =
∏
Uα is a basis element of

∏
Xα in the box topology and is therefore

open. We claim that U = f−1(B), which shows that f is continuous since U is open and B was
arbitrary.

(⊂) Consider any x ∈ U =
∏
Uα. Then, for any α ∈ J , we have xα ∈ Uα = f−1

α (Vα) so that
f(xα) ∈ Vα. Hence f(x) = (fα(xα))α∈J ∈

∏
Vα = B so that x ∈ f−1(B). this shows that

U ⊂ f−1(B) since x was arbitrary.

(⊃) Now consider any x ∈ f−1(B) so that f(x) ∈ B =
∏
Vα and hence each fα(xα) ∈ Vα by the

definition of f . Then xα ∈ f−1
α (Vα) = Uα so that clearly x ∈

∏
Uα = U . Since x was arbitrary this

shows that f−1(B) ⊂ U as well.

Main Problem.
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Proof. First note that clearly h(x) = (h1(x), h2(x), . . .) for x ∈ Rω, where each hi : Rω → R is
defined by

hi(x) = aiπi(x) + bi .

This can further be broken down as hi(x) = fi(πi(x)) = (fi ◦ πi)(x), where each fi : R → R is
defined by fi(x) = aix+ bi. As discussed in the proof of Theorem 19.6, each πi is continuous and we
have that each fi is continuous by elementary calculus, noting that this is true whether each ai > 0
or not. It then follows from Theorem 18.2 part (c) that each fi ◦ πi = hi is continuous. Then we
have that h is continuous by Theorem 19.6 since each coordinate function is continuous and we are
using the product topology.

Now define the functions gi : R→ R by gi(x) = (x−bi)/ai for i ∈ Z+, noting that this is defined since
each ai > 0. Define also the functions ki : Rω → R by ki = gi ◦ πi, and finally define k : Rω → Rω
by k(x) = (k1(x), k2(x), . . .). Now again we have that each πi and gi are continuous by the proof of
Theorem 19.6 and elementary calculus. Hence ki = gi ◦ πi and k are continuous by Theorem 18.2
part (c), and Theorem 19.6, respectively, as before.

Now consider any x = (x1, x2, . . .) ∈ Rω so that we have, for any i ∈ Z+,

ki(h(x)) = [gi ◦ πi](h(x)) = gi(πi(h(x))) = gi(hi(x))

= gi([fi ◦ πi](x)) = gi(fi(πi(x))) = gi(fi(xi))

=
fi(xi)− bi

ai
=

(aixi + bi)− bi
ai

=
aixi
ai

= xi .

Therefore

k(h(x)) = (k1(h(x)), k2(h(x)), . . .) = (x1, x2, . . .) = x .

We also have that

hi(k(x)) = [fi ◦ πi](k(x)) = fi(πi(k(x))) = fi(ki(x))

= fi([gi ◦ πi](x)) = fi(gi(πi(x))) = fi(gi(xi))

= aigi(xi) + bi = ai

(
xi − bi
ai

)
+ bi = (xi − bi) + bi

= xi .

for each i ∈ Z+ so that

h(k(x)) = (h1(k(x)), h2(k(x)), . . .) = (x1, x2, . . .) = x .

Since x was arbitrary, it thus follows from Lemma 2.1 that h is bijective and k = h−1. Since we have
already shown that h and k = h−1 are continuous, this suffices to prove that h is a homeomorphism
as desired.

We claim that h is also a homeomorphism in the box topology.

Proof. First, h is still a bijection as the proof of this above does not depend on the topology at all.
However, Theorem 19.6 was used in the proofs that h and h−1 are continuous, and we know that
this theorem is not generally true for the box topology. On the other hand h can be formulated as
h(x) = (f1(x1), f2(x2), . . .), where as before each fi(x) = aix + bi. Since each fi is continuous by
elementary calculus, it follows from Lemma 19.8.1 that h is continuous in the box topology. The
same argument applies to the inverse function h−1 since h−1(x) = (g1(x1), g2(x2), . . .) and each gi
is continuous.
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Exercise 19.9

Show that the choice axiom is equivalent to the statement that for any indexed family {Aα}α∈J of
nonempty sets, with J 6= 0, the cartesian product∏

α∈J
Aα

is not empty.

Solution:

Proof. For the following denote the collection {Aα}α∈J by A.

(⇒) First suppose that the choice axiom is true. Then by Lemma 9.2 there exists a choice function

c : A →
⋃
A∈A

A

where c(A) ∈ A for each A ∈ A, noting that this is true since A is a collection of nonempty
sets. Then consider, set xα = c(Aα) for each α ∈ J so that xα = c(Aα) ∈ Aα. Therefore clearly
x = (xα)α∈J ∈

∏
Aα so that

∏
Aα is not empty.

(⇐) Now suppose that
∏
α∈J Aα is nonempty for any indexed family {Aα}α∈J of nonempty sets

when J 6= ∅. Let A be a collection of disjoint nonempty sets where A 6= ∅. Then the {A}A∈A is a
nonempty family of nonempty sets. Hence

∏
A∈AA is nonempty so that there is an x = (xA)A∈A ∈∏

A∈AA, and thus xA ∈ A for every A ∈ A. Now let C = {xA}A∈A so that clearly C ⊂
⋃
A.

Consider any A ∈ A so that xA ∈ C and xA ∈ A, and hence xA ∈ C ∩ A. Suppose that y ∈ C ∩ A
so that y ∈ C and hence there is a B ∈ A where y = xB . We also have that xB = y ∈ A. If B 6= A
then xB ∈ B and xB ∈ A, which is not possible since B and A are disjoint as they are distinct
elements of A. So it must be that B = A and hence y = xB = xA. Since y was arbitrary, this shows
that C ∩A has only a single element xA. This suffices to show the choice axiom.

Exercise 19.10

Let A be a set; let {Xα}α∈J be an indexed family of spaces; and let {fα}α∈J be an indexed family of
functions fα : A→ Xα.

(a) Show there is a unique coarsest topology T on A relative to which each of the functions fα is
continuous.

(b) Let

Sβ =
{
f−1
β (Uβ) | Uβ is open in Xβ

}
,

and let S =
⋃
Sβ . Show that S is a subbasis for T .

(c) Show that a map g : Y → A is continuous relative to T if and only if each map fα ◦ g is continuous.

(d) Let f : A→
∏
Xα be defined by the equation

f(a) = (fα(a))α∈J ;

let Z denote the subspace f(A) of the product space
∏
Xα. Show that the image under f of each

element of T is an open set of Z.
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Solution:

(a)

Proof. Let C be the collection of topologies on A relative to which each of the functions fα is
continuous. Clearly C is nonempty as the discrete topology is in C since every subset of A is open in
it so that fα(Vα) is always open when Vα is open in Xα. Let T =

⋂
C, which is a topology on A by

what was shown in Exercise 13.4 part (a). We claim that this is the unique coarsest topology such
that each fα is continuous relative to it. To see this suppose that T ′ is any topology in such that
each fα is continuous relative to it, hence T ′ ∈ C. Then, for any open U ∈ T =

⋂
C we of course

have that U ∈ T ′ since T ′ ∈ C. Hence T ⊂ T ′ since U was arbitrary so that T is courser than T ′,
noting that it could of course be that T = T ′ as well. Since T ′ was artbitary, this shows the desired
result.

Of course it also must be that T is unique since, for any other T ′ that is a coarsest element of C,
we just showed above that T ⊂ T ′ since T ′ ∈ C. But also T ⊃ T ′ since T ′ must be coarser than T
since T ∈ C. This shows that T = T ′ so that T is unique since T ′ was arbitrary. This also follows
from the more general fact that any smallest element in an order or partial order is always unique,
and inclusion is always at least a partial order.

(b)

Proof. We show that C from part (a) is exactly the set of topologies on A that contain the subbasis
S. That is, we show that T ′ ∈ C if and only if S ⊂ T ′ when T ′ is a topology on A. Since the
coarsest topology T from part (a) is defined as

⋂
C, this shows that T is the topology generated

from the subbasis S by Exercise 13.5.

(⇒) Suppose that T ′ ∈ C so that every fα is continuous relative to T ′. Now consider any subbasis
element S ∈ S so that S = f−1

β (Uβ) for some β ∈ J and some open set Uβ in Xβ . Then fβ is
continuous relative to T ′ so that S is open with respect to T ′, and hence S ∈ T ′. This shows that
S ⊂ T ′ since S was arbitrary, hence T ′ contains S.

(⇐) Now suppose that T ′ is a topology on A that contains S so that S ⊂ T ′. Consider any α ∈ J
and any open set Uα of Xα. Then clearly f−1

α (Uα) is in Sα so that it is also clearly in S =
⋃
Sβ .

Hence also f−1
α (Uα) ∈ T ′ since S ⊂ T ′. Therefore f−1

α (Uα) is open with respect to T ′, which shows
that fα is continuous relative to T ′ since Uα was an arbitrary open set of Xα. Since α ∈ J was also
arbitrary, this shows that every fα is continuous relative to T ′ so that T ′ ∈ C by definition.

(c)

Proof. (⇒) Suppose that g : Y → A is continuous relative to T . Consider any α ∈ J and any open
set Uα of Xα. Then f−1

α (Uα) is open with respect to T since fα is continuous relative to T since
every fα is. It then follows that g−1(f−1

α (Uα)) is open in Y since g is continuous relative to T .
From Exercise 2.4 part (a) we have that g−1(f−1

α (Uα)) = (fα ◦ g)−1(Uα), which shows that fα ◦ g
is continuous since Uα was an arbitrary open set of Xα. Since α ∈ J was arbitrary, this shows the
desired result.

(⇐) Now suppose that every fα ◦ g is continuous and consider any open set U of A with respect to
T . Then by part (b) we have that U is an arbitrary union of finite intersections of subbasis elements
f−1
α (Uα) for α ∈ J and open Uα in Xα. It then follows from Exercise 2.2 parts (b) and (c) that
g−1(U) is an arbitrary union of finite intersections of sets g−1(f−1

α (Uα)). Again we have that each
g−1(f−1

α (Uα)) = (fα ◦ g)−1(Uα) by Exercise 2.4 part (a) so that each of these sets is open in Y since
every fα ◦ g is continuous. Hence g−1(U) is open as well since it is the arbitrary union of finite
intersections of these open sets and Y is a topological space. Since U was an arbitrary open set of
A with respect to T , this shows that g is continuous relative to T as desired.
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(d)

Proof. Suppose that U is any open set of A with respect to T . Consider any y = (yα)α∈J ∈ f(U)
so that there is an a ∈ U where f(a) = y. Since a ∈ U and U is open in A, we have that there is a
basis element BA containing a where BA ⊂ U . It then follows from part (b) that this basis element
is a finite intersection of subbasis elements, hence BA =

⋂
β∈I f

−1
β (Uβ), where I ⊂ J is finite and

each Uβ is open in Xβ . Now define

Vα =

{
Uβ α ∈ I
Xβ α /∈ I

so that clearly the set Bp =
∏
Vα is a basis element of

∏
Xα in the product topology by Theorem 19.1

since I is finite. We then have that BZ = Z∩Bp is a basis element of the subspace Z by Lemma 16.1.

Now, we have that a ∈ U and U ⊂ A so that a ∈ A as well. It then follows that y = f(a) ∈ f(A) = Z.
For β ∈ I, we also have that a ∈ f−1

β (Uβ) since the basis element BA =
⋂
β∈I f

−1
β (Uβ) contains a.

Hence fβ(a) ∈ Uβ . Since of course every other fα(a) ∈ Xα when α /∈ I, we have that fα(a) ∈ Vα for
all α ∈ J and thus y = f(a) = (fα(a))α∈J ∈

∏
Vα = Bp. We therefore have that y ∈ Z ∩Bp = BZ

so that BZ contains y.

Lastly, consider any z = (zα)α∈J ∈ BZ = Z ∩ Bp. Then z ∈ Z = f(A) so that there is an x ∈ A
where f(x) = (fα(x))α∈J = z and hence each fα(x) = zα. We also have that z ∈ Bp =

∏
Vα

so that zα ∈ Vα for every α ∈ J . In particular fβ(x) = zβ ∈ Vβ = Uβ for all β ∈ I so that
x ∈ f−1

β (Uβ). Therefore x ∈
⋂
β∈I f

−1
β (Uβ) = BA so that also x ∈ U since BA ⊂ U . Then we have

that z = f(x) ∈ f(U). Since z was arbitrary this shows that BZ ⊂ f(U).

We have thus shown that BZ is a basis element of the subspace Z that contains y where BZ ⊂ f(U).
Since y was an arbitrary element of f(U), this suffices to show that f(U) is open in the subspace Z
as desired.

§20 The Metric Topology

Exercise 20.1

(a) In Rn, define

d′(x,y) = |x1 − y1|+ · · ·+ |xn − yn| .

Show that d′ is a metric that induces the usual topology of Rn. Sketch the basis elements under d′

when n = 2.

(b) More generally, given p ≥ 1, define

d′(x,y) =

[
n∑
i=1

|xi − yi|p
]1/p

for x,y ∈ Rn. Assume that d′ is a metric. Show that it induces the usual topology on Rn.

Solution:

Lemma 20.1.1. If x and y are real and x, y ≥ 0 then xp < yp if and only if x < y, for all integers
p ≥ 1.
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Proof. First, if x = 0 then of course

x < y ⇔ 0 < y ⇔ 0 < yp ⇔ 0p < yp ⇔ xp < yp

for any p ≥ 1, so assume it what follows that x > 0. We show this by induction on p. First, for
p = 1 we clearly have that xp = x and yp = y so that of course the biconditional holds. Now suppose
that xp < yp if and only if x < y. Suppose that x < y so that xp < yp follows by the induction
hypothesis. We also have that y > 0 since 0 < x < y so that yp > 0. Then

xp < yp

x · xp < x · yp (since x > 0)

x · xp < x · yp < y · yp (since x < y and yp > 0)

xp+1 < yp+1 .

Now suppose that it is not true that x < y so that x ≥ y. It then follows from the induction
hypothesis that xp ≥ yp. Then we have

xp ≥ yp

x · xp ≥ x · yp (since x > 0)

x · xp ≥ x · yp ≥ y · yp (since x ≥ y and yp ≥ 0 since y ≥ 0)

xp+1 ≥ yp+1 .

Hence by the contrapositive we have that xp+1 < yp+1 implies that x < y. This completes the
induction.

Corollary 20.1.2. If x and y are real and x, y ≥ 0 then x1/p < y1/p if and only if x < y, for all
integers p ≥ 1.

Proof. Consider any p ≥ 1 and let u = x1/p and v = y1/p. Then clearly we have u, v ≥ 0 since
x, y ≥ 0. We then have by Lemma 20.1.1 that

up < vp ⇔ u < v

(x1/p)p < (y1/p)p ⇔ x1/p < y1/p

x < y ⇔ x1/p < y1/p ,

which is of course the desired result.

Lemma 20.1.3. For any n, p ∈ Z+ and a finite sequence (xi)
n
i=1 where each xi ≥ 0,

n∑
i=1

xpi ≤

(
n∑
i=1

xi

)p
.

Proof. For every n ∈ Z+, we show this by induction on p. For p = 1 we clearly have

n∑
i=1

xpi =

n∑
i=1

xi ≤
n∑
i=1

xi =

(
n∑
i=1

xi

)p
.

Now suppose that the hypothesis is true for p. Then we have(
n∑
i=1

xi

)p+1

=

(
n∑
i=1

xi

)(
n∑
i=1

xi

)p
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≥

(
n∑
i=1

xi

)(
n∑
i=1

xpi

)
(by the induction hypothesis since

n∑
i=1

xi ≥ 0)

=

n∑
i=1

n∑
j=1

xix
p
j

=

n∑
i=1

xixpi +
∑
j 6=i

xix
p
j


=

n∑
i=1

xp+1
i +

n∑
i=1

∑
j 6=i

xix
p
j

≥
n∑
i=1

xp+1
i

since each xix
p
j ≥ 0 so that the double sum is as well. This completes the induction.

Main Problem.

(a) First, the basis elements of the metric topology induced by d′ are open intervals in R, open
diamonds in n = 2, open octahedrons for n = 3, and the higher dimensional analogues for n > 3. A
sketch of the ball Bd′(0× 0, 1) in R2 is shown below:

(−1, 0)

(0, 1)

(1, 0)

(0,−1)

Now we show that d′ is a metric and induces the usual topology of Rn.

Proof. It is easy to see that d′ meets the properties required of a metric. Clearly d′(x,y) ≥ 0 since
each |xi − yi| ≥ 0, and d′(x,y) = 0 if and only if each xi = yi so that x = y. Also it is obvious that
d′(x,y) = d′(y,x) since each |xi − yi| = |yi − xi|. For the triangle inequality we simply have that

d′(x, z) =

n∑
i=1

|xi − zi|

≤
n∑
i=1

(|xi − yi|+ |yi − zi|) (since each |xi − zi| ≤ |xi − yi|+ |yi − zi|)

=

n∑
i=1

|xi − yi|+
n∑
i=1

|yi − zi|
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= d′(x,y) + d′(y, z) .

We now show that the metric topology induced by d′ is the same as that induced by the square metric
ρ, which shows the desired result since the square metric induces the standard product topology
on Rn by Theorem 20.3. First consider any x ∈ Rn and any ε > 0. Let δ = ε and consider any
y ∈ Bd′(x, δ). Suppose also that j is an index in {1, . . . , n} where

ρ(x,y) = max {|x1 − y1| , . . . , |xn − yn|} = |xj − yj | .

Since y ∈ Bd′(x, δ), we have

d′(x,y) =

n∑
i=1

|xi − yi| < δ = ε

|xj − yj |+
∑
i 6=j

|xi − yi| < ε

|xj − yj | < ε−
∑
i 6=j

|xi − yi| ≤ ε

ρ(x,y) < ε

since of course
∑
i 6=j |xi − yi| ≥ 0. Therefore y ∈ Bρ(x, ε), which shows Bd′(x, δ) ⊂ Bρ(x, ε) so that

the metric topology of d′ is finer the the metric topology of ρ by Lemma 20.2.

Now again consider and x ∈ Rn and ε > 0, and this time let δ = ε/n. Consider any y ∈ Bρ(x, δ)
and again suppose also that j is an index in {1, . . . , n} where

ρ(x,y) = max {|x1 − y1| , . . . , |xn − yn|} = |xj − yj | .

We then have

|xj − yj | = ρ(x,y) < δ = ε/n

n |xj − yj | < ε .

We also have

d′(x,y) =

n∑
i=1

|xi − yi|

≤
n∑
i=1

|xj − yi| (since each |xi − yi| ≤ |xj − yj |)

= n |xj − yj |
< ε

so that y ∈ Bd′(x, ε). Hence Bρ(x, δ) ⊂ Bd′(x, ε) so that the metric topology of ρ is also finer than
that of d′ again by Lemma 20.2. Therefore it must be that the two topologies are equal since each
is finer than the other.

(b) Let d denote the metric defined in part (a), that is

d(x,y) =

n∑
i=1

|xi − yi| .
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First we show that the metric topology induced by d′ is finer than that induced by ρ. So consider
any x ∈ Rn and ε > 0. Let δ = ε and suppose that y ∈ Bd′(x, δ) so that

d′(x,y) =

(
n∑
i=1

|xi − yi|p
)1/p

< δ = ε .

Suppose that j is an index in {1, . . . , n} where

ρ(x,y) = max {|x1 − y1| , . . . , |xn − yn|} = |xj − yj | .

Then

|xj − yj |p ≤ |xj − yj |p +
∑
i 6=j

|xi − yi|p =

n∑
i=1

|xi − yi|p

so that, by Corollary 20.1.2, we have

(|xj − yj |p)
1/p ≤

(
n∑
i=1

|xi − yi|p
)1/p

< ε

|xj − yj | < ε

ρ(x,y) < ε .

Therefore y ∈ Bρ(x, ε) so that Bd′(x, δ) ⊂ Bρ(x, ε). This suffices to show that the metric topology
induced by d′ is finer than that induced by ρ by Lemma 20.2.

Now we show that the metric topology induced by d is finer than that induced by d′. So again
consider any x ∈ Rn and ε > 0. Again let δ = ε and suppose that y ∈ Bd(x, δ) so that

d(x,y) =

n∑
i=1

|xi − yi| < δ = ε .

Then, since each |xi − yi| ≥ 0, we have by Lemma 20.1.3 that

n∑
i=1

|xi − yi|p ≤

(
n∑
i=1

|xi − yi|

)p
(

n∑
i=1

|xi − yi|p
)1/p

≤

[(
n∑
i=1

|xi − yi|

)p]1/p

d′(x,y) ≤
n∑
i=1

|xi − yi| < ε ,

where we have used Corollary 20.1.2 in the second step. Thus y ∈ Bd′(x, ε) so that Bd(x, δ) ⊂
Bd′(x, ε). This of course shows that the metric topology induced by d is finer than that induced by
d′ by Lemma 20.2 again.

Thus we have shown that the metric topology induced by d′ is finer than that induced by ρ, and
also that that induced by d is finer than that induced by d′. But it was shown in part (a) and
Theorem 20.3 that those induced by d and ρ are the same topology, which is is the usual product
topology on Rn. Hence if Tp denotes this usual product topology, we have

Tp = Tρ ⊂ Td′ ⊂ Td = Tρ = Tp .

So it must be that the metric topology induced by d′ is this topology as well as desired.
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Exercise 20.2

Show that R× R in the dictionary order topology is metrizable.

Solution:

Proof. In what follows let

d̄(x, y) = min {|x− y| , 1}

be the standard bounded metric on R, noting that this is a metric by Theorem 20.1. Now define
the function d : R2 × R2 → R by

d(x,y) =

{
1 x1 6= y1

d̄(x2, y2) x1 = y1 .

We claim that this is a metric on R2 that induces the dictionary order topology.

First we show that d is a metric on R2. Clearly d(x,y) ≥ 0 since both 1 ≥ 0 and d̄(x2, y2) ≥ 0 since d̄
is a metric. Moreover if x = y then x1 = y1 and x2 = y2 so that d(x,y) = d̄(x2, y2) = 0. Conversely
if d(x,y) = 0 then clearly d(x,y) 6= 1 so that it must be that x1 = y1 and d(x,y) = d̄(x2, y2) = 0 so
that x2 = y2 since d̄ is a metric. From this it follows that x = y since x1 = y1 and x2 = y2, which
shows property (1) of a metric.

It is also obvious that d(x,y) = d(y,x) since if x1 6= y1 then d(x,y) = 1 = d(y,x). If x1 = x2 then
d(x,y) = d̄(x2, y2) = d̄(y2, x2) = d(y,x) since d̄ is a metric. This shows property (2) of a metric.
Lastly, consider x, y, and z in R2.

Case: x1 6= z1. Then d(x, z) = 1 and it must be that either y1 6= x1 or y1 6= z1 since otherwise we
would have that x1 = y1 = z1. Thus either d(x,y) = 1 or d(y, z) = 1 and hence

d(x,y) + d(y, z) ≥ 1 = d(x, z)

since both d(x,y) ≥ 0 and d(y, z) ≥ 0.

Case: x1 = z1. Then d(x, z) = d̄(x2, z2). If y1 = x1 then x1 = y1 = z1 so that

d(x, z) = d̄(x2, z2) ≤ d̄(x2, y2) + d̄(y2, z2) = d(x,y) + d(y, z)

since d̄ is a metric. If y1 6= x1 then y1 6= x1 = z1, and hence d(x,y) = d(y, z) = 1 so that

d(x, z) = d̄(x2, z2) ≤ 1 ≤ 2 = 1 + 1 = d(x,y) + d(y, z)

since d̄ is the bounded metric so that it is always at most 1.

Thus in all cases we have shown property (3) of a metric.

In what follows let ≺ denote the dictionary order on R2. To show that d induces the dictionary
order topology, first consider any point x ∈ R2 and any basis element B of the dictionary order
topology that contains x. Then of course B = (a,b), where a ≺ x ≺ b since the dictionary order
has no largest or smallest elements in R2. Now define

δa =

{
1 x2 = a2

|x2 − a2| x2 6= a2

and

δb =

{
1 x2 = b2

|x2 − b2| x2 6= b2 ,
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and let δ = min {1, δa, δb}. Clearly the set Bd(x, δ) is a basis element of the topology induced by d,
and we claim that x ∈ Bd(x, δ) ⊂ B.

That x ∈ Bd(x, δ) is obvious. So now consider any y ∈ Bd(x, δ) so that d(x,y) < δ ≤ 1. Hence it
cannot be that x1 6= y1 by definition, since d(x,y) = 1 in that case, and so x1 = y1. If x2 = a2

then it has to be that a1 < x1 since otherwise it would not be the case that a ≺ x. Thus we have
a1 < x1 = y1 so that a ≺ y.

On the other hand if x2 6= a2 then it must be that a1 ≤ y1 since otherwise we would have x1 = y1 < a1

so that x ≺ a. If a1 < y1 = x1 then of course a ≺ y so assume that a1 = y1 = x1. The
it must be that a2 < x2 since a ≺ x, and so |x2 − a2| = x2 − a2. Then, since x1 = y1, we
have that d̄(x2, y2) = d(x,y) < δ ≤ 1 so it must be that d(x,y) = d̄(x2, y2) = |x2 − y2|. Also
δa = |x2 − a2| = x2 − a2 since x2 6= a2. Hence we have |x2 − y2| = d(x,y) < δ ≤ δa = x2 − a2, from
which it readily follows that a2 < y2 so that again a ≺ y.

Therefore in all cases a ≺ y. Analogous arguments show that y ≺ b so that y ∈ (a,b) = B, which
shows that Bd(x, δ) ⊂ B as desired since y was arbitrary. This shows that the topology induced by
d is finer than the dictionary order topology by Lemma 13.3.

Now again suppose that x ∈ R2, and that ε′ > 0 and x′ ∈ R2 such that Bd(x
′, ε′) is an arbitrary

basis element of the metric topology induced by d that contains x. It was shown after the definition
of a metric topology in the text that there is another ball Bd(x, ε) centered at x such that Bd(x, ε) ⊂
Bd(x

′, ε′). Let δ = min {1, ε} and define a = x1×(x2−δ) and b = x1×(x2+δ). Set B = (a,b), which
is clearly a basis element of the dictionary order topology. So consider any y ∈ B so that a ≺ y ≺ b.
Clearly it must be that a1 = y1 = b1 = x1 since otherwise we would have that y ≺ a or b ≺ y. From
this it follows that a2 = x2− δ < y2 < x2 + δ = b2 so that −δ < y2−x2 < δ and hence |x2 − y2| < δ.
Moreover, since y1 = x1 and δ ≤ 1, it follows that d(x,y) = d̄(x2, y2) = |x2 − y2| < δ ≤ ε.
This shows that y ∈ Bd(x, ε), which shows that B ⊂ Bd(x, ε) ⊂ Bd(x

′, ε′) since y was arbitrary.
This proves that the dictionary order topology is finer than the topology induced by d again by
Lemma 13.3.

Since each is finer than the other the topologies must be the same, which shows that the dictionary
order topology is metrizable as desired.

Exercise 20.3

Let X be metric space with metric d.

(a) Show that d : X ×X → R is continuous.

(b) Let X ′ denote a space having the same underlying set as X. Show that if d : X ′ × X ′ → R is
continuous, then the topology of X ′ is finer than the topology of X.

One can summarize the result of this exercise as follows: If X has a metric d, then the topology induced
by d is the coarsest topology relative to which the function d is continuous.

Solution:

(a) We use Theorem 18.1 part (4) to show that d is continuous. So consider any x1 × x2 ∈ X ×X
and any neighborhood V of z = d(x1, x2), noting that V ⊂ R since R is the range of d. Since V is
open in R, there is a basis element B = (a, b) containing z where B ⊂ V . Hence a < z < b. Now let
ε = min {(z − a)/2, (b− z)/2}, noting that ε > 0 since z > a and b > z. Next define U1 = Bd(x1, ε)
and U2 = Bd(x2, ε) so that they are both basis elements and therefore open sets of the metric space
X. It then follows that U = U1 × U2 is a a basis element and therefore an open set of the product
space X ×X. Clearly we have that x1 ∈ Bd(x1, ε) = U1 and x2 ∈ Bd(x2, ε) = U2 so that U contains
x1 × x2 and so is a neighborhood of x1 × x2.
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We claim that d(U) ⊂ B. To see this, consider any w ∈ d(U) so that there is a y1×y2 ∈ U = U1×U2

such that w = d(y1, y2). Therefore y1 ∈ U1 = Bd(x1, ε) so that d(y1, x1) < ε, and similarly
d(y2, x2) < ε since y2 ∈ U2 = Bd(x2, ε). Then, since d is a metric, we have

z = d(x1, x2) ≤ d(x1, y1) + d(y1, x2)

≤ d(x1, y1) + d(y1, y2) + d(y2, x2)

= d(y1, x1) + d(y1, y2) + d(y2, x2)

< ε+ w + ε

z < w + 2ε ≤ w + 2(z − a)/2 = w + z − a
a < w .

Similarly, we have

w = d(y1, y2) ≤ d(y1, x1) + d(x1, y2)

≤ d(y1, x1) + d(x1, x2) + d(x2, y2)

= d(y1, x1) + d(x1, x2) + d(y2, x2)

< ε+ z + ε

w < z + 2ε ≤ z + 2(b− z)/2 = z + b− z
w < b .

We therefore have that a < w < b so that w ∈ (a, b) = B. This of course shows that d(U) ⊂ B
since w was arbitrary. Moreover, we have that B ⊂ V so that clearly d(U) ⊂ V , which completes
the proof of Theorem 18.1 part (4) so that d is continuous.

(b) Let U be any open set of X and consider any x ∈ U . Then clearly there is a basis element Bd(y, ε),
for some ε > 0 and y ∈ U , of the metric topology X that contains x and where Bd(y, ε) ⊂ U . Now,
since d is continuous with respect to X ′ × X ′, it follows from Exercise 18.11 that the function
dy(z) = d(y, z) is a continuous function from X ′ to R. Since clearly the interval (−∞, ε) is open in
R, it then follows that the set

d−1
y ((−∞, ε)) = {z ∈ X ′ | dy(z) < ε} = {z ∈ X | d(y, z) < ε} = Bd(y, ε)

is also open in X ′. Thus Bd(y, ε) is an open set in X ′ containing x such that Bd(y, ε) ⊂ U . This
shows that U is also open in X ′ by Exercise 13.1 since the point x ∈ U was arbitrary. This suffices
to show the desired result.

Exercise 20.4

Consider the product, uniform, and box topologies on Rω,

(a) In which topologies are the following functions from R to Rω continuous?

f(t) = (t, 2t, 3t, . . .),

g(t) = (t, t, t, . . .),

h(t) = (t, 1
2 t,

1
3 t, . . .).

(b) In which topologies do the following sequences converge?

w1 = (1, 1, 1, 1, . . .), x1 = (1, 1, 1, 1, . . .),

w2 = (0, 2, 2, 2, . . .), x2 = (0, 1
2 ,

1
2 ,

1
2 , . . .),

w3 = (0, 0, 3, 3, . . .), x3 = (0, 0, 1
3 ,

1
3 , . . .),
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. . . . . .

y1 = (1, 0, 0, 0, . . .), z1 = (1, 1, 0, 0, . . .),

y2 = ( 1
2 ,

1
2 , 0, 0, . . .), z2 = ( 1

2 ,
1
2 , 0, 0, . . .),

y3 = ( 1
3 ,

1
3 ,

1
3 , 0, . . .), z3 = ( 1

3 ,
1
3 , 0, 0, . . .),

. . . . . .

Solution:

Lemma 20.4.1. Suppose that X is a metric space with metric d. If U is an open set of X containing
a point x then there is a ball Bd(x, ε) centered at x that is contained in U .

Proof. The main part of this proof was given after the definition of a metric topology in the text,
but we repeat it here for completeness.

By the definition of the metric topology, there is a δ > 0 and y ∈ X such that the basis element
Bd(y, δ) contains x and is contained in U . Let ε = δ − d(x, y) so that d(x, y) = δ − ε, noting that
ε > 0 since x ∈ Bd(y, δ) so that d(x, y) < δ. Then, for any z ∈ Bd(x, ε), we have that d(z, x) < ε
and so

d(z, y) ≤ d(z, x) + d(x, y) = d(z, x) + δ − ε < ε+ δ − ε = δ

since d is a metric. Hence z ∈ Bd(y, δ) so that Bd(x, ε) ⊂ Bd(y, δ) ⊂ U as desired since z was
arbitrary.

Lemma 20.4.2. Suppose that X is a topological space and Y and Y ′ are topological spaces on the
same set, and that Y ′ is finer than Y . Suppose also that f : X → Y so that of course it is also a
function from X to Y ′. We assert the following:

(1) If f is continuous with respect to Y ′ then it is also continuous with respect to Y .

(2) If f is not continuous with respect to Y then it is also not continuous with respect to Y ′.

(3) If a sequence in Y ′ converges to a point y0, then it also converges to y0 in Y .

(4) If a sequence in Y does not converge to a point y0, then it also does not converge to y0 in Y ′.

(5) If a sequence in Y does not converge at all, then it also does not converge at all in Y ′.

(6) If Y is a Hausdorff space, then so is Y ′.

Proof. For assertion (1) suppose that f is continuous with respect to Y ′ and let U be any open set
of Y . Since Y ′ is finer than Y , it follows that U is also open in Y ′. Then, since f is continuous
with respect to Y ′ we have that f−1(U) is open in X, which suffices to show that f is continuous
with respect to Y since U was an arbitrary open set. Assertion (2) follows immediately from the
contrapositive of (1).

Regarding (3), suppose that a sequence (y1, y2, . . .) converges to y0 in Y ′ and let U be any neigh-
borhood of y0 in Y . Then U is also open in Y ′ since it is finer than Y , hence U is a neighborhood
of y0 in Y ′. Thus there is an N ∈ Z+ such that xn ∈ U for all n ≥ N , since the sequence converges
to y0 in Y ′. Since U was an arbitrary neighborhood of Y , this shows that the sequence converges
to y0 in Y . Assertion (4) follows immediately from the contrapositive of (3). Assertion (5) then
immediately follows from (4) since, if a sequence does not converge at all in Y then for any point
y0 ∈ Y , it does not converge to y0. Then it also does not converge to y0 in Y ′ by (4). Since y0 was
arbitrary, this shows that it does not converge at all in Y ′.
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For (6), suppose that Y is a Hausdorff space and let x and y be distinct points of Y ′ so that they
are of course also points of Y . Hence there are neighborhoods U and V of x and y, respectively, in
Y that are disjoint. Since Y ′ is finer than Y , we have that U and V are also open sets of Y ′ and
thus are disjoint neighborhoods of x and y in Y ′ as well. This suffices to show that Y ′ is Hausdorff
as desired.

Main Problem.

(a) Regarding whether or not the functions are continuous in the various topologies, we claim the
following:

Product Uniform Box
f Yes No No
g Yes Yes No
h Yes Yes No

Proof. First, the functions f , g, and h can all be considered as special cases of the more general
function

s(t) = (sn(t))n∈Z+
,

where each sn(t) = αnt, and αn = n for f , αn = 1 for g, and αn = 1/n for h.

Clearly each sn is continuous for the three αn by elementary calculus so that s is continuous in the
product topology by Theorem 19.6 for all three αn. We can show that s is not continuous in the
box topology for all three αn with a single example. Consider the set B =

∏
n∈Z+

(−1/n2, 1/n2),
which is clearly a basis element of the box topology and so is open. Similar to Example 19.2, if s
were continuous then there would be an interval (−δ, δ) about the point 0 such that s((−δ, δ)) ⊂ B,
where of course δ > 0. This would of course mean that

sn((−δ, δ)) = (−αnδ, αnδ) ⊂ (−1/n2, 1/n2)

for all n ∈ Z+. However, since clearly there is an n ∈ Z+ large enough that

n3δ ≥ n2δ ≥ nδ > 1 ,

we have that

nδ ≥ δ ≥ δ/n > 1/n2 ,

and hence for all three functions we have that αnδ > 1/n2 so that

sn((−δ, δ)) = (−αnδ, αnδ) 6⊂ (−1/n2, 1/n2) .

This shows that s cannot be continuous with respect to the box topology for all three αn.

Next we show that f is not continuous in the uniform topology. First, suppose that ρ̄ is the metric
that induces the uniform topology, i.e.

ρ̄(x,y) = sup
{
d̄(xn, yn) | n ∈ Z+

}
.

Now consider the basis element and open set Bρ̄(0, 1) in the uniform topology. If f were continuous
then there would be a δ > 0 such that

f((−δ, δ)) =
∏
n∈Z+

(−δn, δn) ⊂ Bρ̄(0, 1) .
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Clearly there is an n ∈ Z+ large enough such that n > 1/δ so that δn > 1. Then consider the point
x ∈ Rω defined by

xm =

{
0 m 6= n+ 1

δn m = n+ 1 .

We then have of course that −(n+ 1)δ < 0 < nδ = xn+1 < (n+ 1)δ so that xn+1 ∈ (−(n+ 1)δ, (n+
1)δ). It then follows that x ∈ f((−δ, δ). However, we also have that d̄(δn, 0) = max {|δn− 0| , 1} =
max {δn, 1} = 1 since δn > 1. Hence it is not true that ρ̄(x,0) < 1 so that x /∈ Bρ̄(0, 1). Thus
f((−δ, δ)) 6⊂ Bρ̄(0, 1) so that f is not continuous in the uniform topology.

Next we show that g and h are continuous in the uniform topology at the same time, which we
show using Theorem 18.1 part (4). Consider any real u and any neighborhood V of x = g(u) (or
x = h(u)) in the uniform topology. Then by Lemma 20.4.1 there is an ε > 0 such that the basis
element Bρ̄(x, ε) is a subset of V . Now consider the basis element and open set U = Bd(u, ε/2),
where d denotes the usual metric on R. Obviously U contains u but we also claim that g(U) ⊂ V
(or h(U) ⊂ V ), thereby completing the proof.

So consider any y ∈ g(U) (or y ∈ h(U)) so that there is some v ∈ U such that y = g(v) (or y = h(v))
In the case of g we have that x = g(u) = (u, u, u, . . .), which is to say that xn = u for all n ∈ Z+.
Similarly yn = v for all n ∈ Z+ since y = g(v). Now, since v ∈ U = Bd(u, ε/2), we have that

d̄(yn, xn) ≤ d(yn, xn) = d(v, u) < ε/2

for all n ∈ Z+. From this it follows that

ρ̄(y,x) = sup
{
d̄(yn, xn) | n ∈ Z+

}
≤ ε/2 < ε .

Likewise in the case of h we have that xn = u/n and yn = v/n for all n ∈ Z+ since x = h(u) and
y = h(v). We therefore have that

d̄(yn, xn) ≤ d(yn, xn) = |yn − xn| = |v/n− u/n| =
∣∣∣∣v − un

∣∣∣∣ =
1

n
|v − u| = 1

n
d(v, u) <

ε/2

n
≤ ε/2

for all n ∈ Z+ since every n ≥ 1. Hence again

ρ̄(y,x) = sup
{
d̄(yn, xn) | n ∈ Z+

}
≤ ε/2 < ε .

Therefore for both functions we have ρ̄(y,x) < ε so that y ∈ Bρ̄(x, ε). This shows that g(U) ⊂
Bρ̄(x, ε) ⊂ V (or h(U) ⊂ Bρ̄(x, ε) ⊂ V ) as desired since y was arbitrary.

(b) First we note that, since R is a Hausdorff space, Rω is as well in both the box and product topolo-
gies by Theorem 19.4. Therefore the uniform topology on Rω is also Hausdorff by Lemma 20.4.2
part (6) since it is finer than the product topology. It then follows from Theorem 17.10 that if any
of the sequences converge in any of the three topologies, then they converge to a unique point.

Regarding whether the sequences converge in the various topologies then, we claim

Product Uniform Box
w Yes No No
x Yes Yes No
y Yes Yes No
z Yes Yes Yes
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Proof. Now, regarding the w sequence, each element in the sequence is defined as

wn = (wn,1, wn,2, wn,3, . . .) ,

where

wn,m =

{
0 m < n

n m ≥ n

for n,m ∈ Z+.

First we show that the w sequence converges to the point 0 in the product topology. So consider
any neighborhood U of 0 in the product topology so that there is a basis element B containing 0
where B ⊂ U . Then B =

∏∞
m=1Bm where each Bm is open and Bm is all of R for all but finitely

many values of m. Let J then be a finite subset of Z+ where each Bm = R for m /∈ J . Of course we
also have that 0 ∈ Bm for all m ∈ Z+ since B contains 0.

Then J has a largest element N since it is a finite set of positive integers. Now consider any n ≥ N+1
and any m ∈ Z+. If m ∈ J then we have that m ≤ N < N + 1 ≤ n since N is the largest element of
J , and hence wn,m = 0 ∈ Bm. If m /∈ J then of course Bm = R so that of course wn,m ∈ R = Bm
regardless of whether wn,m = 0 or wn,m = n. Hence either way we have wn,m ∈ Bm, which shows
that wn ∈

∏∞
m=1Bm = B since m was arbitrary. Thus also wn ∈ U since B ⊂ U . Since n ≥ N + 1

was arbitrary and U was an arbitrary neighborhood of 0, this shows that the sequence converges to
0 as desired.

Next we show that the w sequence does not converge in the uniform topology. It suffices to show that
the sequence does not converge to 0, since if it converged to any other point x, then by Lemma 20.4.2
part (3) it would also converge to x in the product topology since it is coarser than the uniform
topology. However, this would violate the fact that the sequence converges to 0 in the product
topology (just shown above), and so cannot also converge to x 6= 0 since the convergence point is
unique as noted above.

So consider the neighborhood Bρ̄(0, 1) of 0 in the uniform topology. We claim that no elements of
the sequence are in this neighborhood so that it clearly cannot converge to 0. So consider any n ∈ Z+

so that we clearly have wn,n = n ≥ 1 > 0. Therefore d(wn,n, 0) = |wn,n − 0| = |wn,n| = wn,n ≥ 1,
from which it follows that it has to be that d̄(wn,n, 0) = 1. This of course implies that

ρ̄(wn,0) = sup
{
d̄(wn,m, 0) | m ∈ Z+

}
≥ 1 .

Hence it is not true that ρ̄(wn,0) < 1 so that wn /∈ Bρ̄(0, 1). This shows the desired result since n
was arbitrary.

It then follows that the w sequence also does not converge at all in the box topology by Lemma 20.4.2
part (5) since it is finer than the uniform topology.

Regarding the x sequence, the definition is that each

xn = (xn,1, xn,2, xn,3, . . .) ,

where

xn,m =

{
0 m < n

1/n m ≥ n

for n,m ∈ Z+.

First we show that this sequence converges to 0 in the uniform topology, which is of course is the
unique convergence point. So consider any neighborhood U of 0 in the uniform topology so that by
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Lemma 20.4.1 there is an ε > 0 where Bρ̄(0, ε) ⊂ U . Then there is a positive integer N large enough
so that N > 2/ε so that, for any n ≥ N we have 1/n ≤ 1/N < ε/2. Next consider any such n ≥ N
and any m ∈ Z+. Since xn,m is either 0 or 1/n we have that |xn,m| = xn,m ≤ 1/n so that

d̄(xn,m, 0) ≤ d(xn,m, 0) = |xn,m − 0| = |xn,m| = xn,m ≤ 1/n < ε/2 .

Thus, since m was arbitrary, it follows that

ρ̄(xn,0) = sup
{
d̄(xn,m, 0) | m ∈ Z+

}
≤ ε/2 < ε ,

and hence xn ∈ Bρ̄(0, ε). Thus also xn ∈ U since Bρ̄(0, ε) ⊂ U . Since n ≥ N was arbitrary as was
the neighborhood U , this shows that the sequence converges to 0 as desired.

Since it is coarser than the uniform topology, it follows that the x sequence also converges to 0 in
the product topology as well by Lemma 20.4.2 part (3).

Next we show that the x sequence does not converge in the box topology, for which it suffices to
show that it does not converge to 0. Again, this is because, if it were to converge to some other point
y 6= 0 in the box topology, then it would also converge to y in the uniform topology since it is coarser
(Lemma 20.4.2 part (3)), but this would violate the fact that it converges to the unique point 0 by
what was just shown. So consider the basis element and open set of the box topology U =

∏∞
n=1 Un

where each Un = (−1/n, 1/n). Clearly U contains 0 so that it is a neighborhood of 0. We claim
that no element of the sequence is in U , which of course suffices to show that it cannot converge to
0. So consider any n ∈ Z+ and so that xn,n = 1/n ≥ 1/n so that xn,n /∈ (−1/n, 1/n) = Un. From
this it follows that xn /∈

∏∞
n=1 Un = U . Since n was arbitrary this shows no element of the sequence

is in U so that the sequence cannot converge to 0.

Regarding the y sequence, it is defined as

yn = (yn,1, yn,2, yn,3, . . .) ,

where

yn,m =

{
1/n m ≤ n
0 m > n

for n,m ∈ Z+. Since yn,m is always either 0 or 1/n, the same argument that shows that the x
sequence converges to 0 in the uniform topology shows that the y sequence does as well. Of course
this also mean that it converges to 0 in the product topology as well since it is coarser. Similarly,
the same argument that shows that the x sequence does not converge in the box topology applies
to y as well since we have that yn,n = xn,n = 1/n for all n ∈ Z+.

Now, the z sequence is defined by

zn = (zn,1, zn,2, zn,3, . . .) ,

where

zn,m =

{
1/n m ≤ 2

0 m > 2

for n,m ∈ Z+.

We show that this sequence converges to 0 in the box topology. So consider any neighborhood U of
0 in the box topology so that there is a basis element B =

∏∞
m=1Bm containing 0 where B ⊂ U .

Of course then each Bm is open in R and 0 ∈ Bm. Considering the standard topology of R using
the metric topology basis, there is then an ε1 > 0 such that Bd(0, ε1) ⊂ B1 by Lemma 20.4.1 since
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B1 is open and contains 0. Likewise there is an ε2 > 0 where Bd(0, ε2) ⊂ B2. So set ε = min {ε1, ε2}
so that of course there is a positive integer N large enough that N > 1/ε. Then, for any n ≥ N
we have that n ≥ N > 1/ε so that 1/n < ε ≤ ε1, and similarly 1/n < ε ≤ ε2. Now consider any
m ∈ Z+. If m ≤ 2 then of course either m = 1 or m = 2 so that, either way, we have

d(zn,m, 0) = |zn,m − 0| = |zn,m| = |1/n| = 1/n < ε ≤ εm

so that zn,m ∈ Bd(0, εm) ⊂ Bm. If m > 2 then we clear have zn,m = 0 ∈ Bm as well. Since m was
arbitrary, this shows that zn ∈

∏∞
m=1Bm = B ⊂ U . This shows that the sequence converges to 0

since n ≥ N was arbitrary and U was any neighborhood of 0.

Of course this also shows that the z sequence converges to 0 in the uniform and product topologies
as well by Lemma 20.4.2 part (3) since they are both coarser than the box topology.

Exercise 20.5

Let R∞ be the subset of Rω consisting of all sequences that are eventually zero. What is the closure of
R∞ in Rω in the uniform topology? Justify your answer.

Solution:

Let R0 denote the subset of Rω consisting of all sequences that converge to zero. We then claim
that R∞ = R0, i.e. the closure of R∞ is R0.

Proof. (⊂) We show this by contrapositive. So suppose that x /∈ R0 so that the sequence x does not
converge to zero. Then there is a neighborhood V of 0 in the standard topology on R such that, for
any N ∈ Z+, there is an n ≥ N where xn /∈ V . It also follows from Lemma 20.4.1 that there is an
ε > 0 such that Bd(0, ε) ⊂ V . So let δ = min {ε, 1} and consider the set Bρ̄(x, δ), which is clearly a
neighborhood of x in the uniform topology. Also suppose that y is any element of R∞ so that y is
eventually zero. Then there must be an N where yn = 0 for all n ≥ N . From before we have that
there is a specific n ≥ N where xn /∈ V so that also xn /∈ Bd(0, ε), and thus

d(yn, xn) = d(0, xn) = d(xn, 0) ≥ ε ≥ δ .

Then we have that both d(yn, xn) ≥ δ and 1 ≥ δ so that

d̄(yn, xn) = min {d(yn, xn), 1} ≥ δ .

From this it clearly follows that

ρ̄(y,x) = sup
{
d̄(yn, xn) | n ∈ Z+

}
≥ δ

so that y /∈ Bρ̄(x, δ). Since y was arbitrary, this shows that Bρ̄(x, δ) does not intersect R∞. This
in turn shows that x is not a limit point of R∞. Now, clearly also x cannot be eventually zero since
then it would converge to zero, hence x /∈ R∞ either. Therefore x cannot be in the closure of R∞.
Hence by the contrapositive we have that R∞ ⊂ R0.

(⊃) Now consider any x ∈ R0 so that the sequence x converges to zero. Consider any neighborhood
U of x in the uniform topology so that, by Lemma 20.4.1, there is an ε > 0 such that Bρ̄(x, ε) ⊂ U .
Now, since Bd(0, ε/2) is a neighborhood of 0, it follows that there is an N ∈ Z+ where xn ∈ Bd(0, ε/2)
for all n ≥ N since x converges to 0. Now define the sequence y where

yn =

{
xn n < N

0 n ≥ N
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for n ∈ Z+. Clearly y is eventually zero so that y ∈ R∞.

We also claim that y ∈ U . To see this consider any n ∈ Z+. If n < N then clearly yn = xn so that

d̄(yn, xn) ≤ d(yn, xn) = d(xn, xn) = 0 < ε/2 .

If n ≥ N then yn = 0 and we have from before that xn ∈ Bd(0, ε/2) and hence

d̄(yn, xn) ≤ d(yn, xn) = d(0, xn) = d(xn, 0) < ε/2 .

Hence it follows that

ρ̄(y,x) = sup
{
d̄(yn, xn) | n ∈ Z+

}
≤ ε/2 < ε

so that y ∈ Bρ̄(x, ε) ⊂ U . This shows that y ∈ R∞ ∩ U . If y = x then of course x = y ∈ R∞ itself.
If y 6= x then we have shown that x is a limit point of R∞ since U was an arbitrary neighborhood.
Thus either way y ∈ R∞ so that R∞ ⊃ R0 since x was arbitrary.

Lastly, we note that R∞ is a proper subset of its closure R∞ = R0 since, for example, the sequence
x defined by xn = 1/n for all n ∈ Z+ clearly converges to zero so is in R0 but is not eventually zero
so is not in R∞.

Exercise 20.6

Let ρ̄ be the uniform metric on Rω. Given x = (x1, x2, . . .) ∈ Rω and given 0 < ε < 1, let

U(x, ε) = (x1 − ε, x1 + ε)× · · · × (xn − ε, xn + ε)× · · · .

(a) Show that U(x, ε) is not equal to the ε-ball Bρ̄(x, ε).

(b) Show that U(x, ε) is not even open in the uniform topology.

(c) Show that

Bρ̄(x, ε) =
⋃
δ<ε

U(x, δ) .

Solution:

(a)

Proof. We show that Bρ̄(x, ε) is not a subset of U(x, ε), which of course suffices to show that they
cannot be equal. To this end we define the point y in Rω by

yn = xn + ε

(
1− 1

n

)
for any n ∈ Z+. Then, for any such n, we clearly have that

n ≥ 1

−n ≤ −1 < 0

−1 ≤ − 1

n
< 0 (since n > 0)

0 ≤ 1− 1

n
< 1
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0 ≤ ε
(

1− 1

n

)
< ε (since ε > 0)

xn ≤ xn + ε

(
1− 1

n

)
< xn + ε

xn − ε < xn ≤ yn < xn + ε

so that yn ∈ (xn−ε, xn+ε). Since n was arbitrary, this shows that y ∈
∏∞
n=1(xn−ε, xn+ε) = U(x, ε).

However, again for any n ∈ Z+, it was shown that xn ≤ yn so that

d(yn, xn) = |yn − xn| = yn − xn = xn + ε

(
1− 1

n

)
− xn = ε

(
1− 1

n

)
.

It was shown above that

0 ≤ ε
(

1− 1

n

)
< ε < 1

0 ≤ d(yn, xn) < ε < 1

so that

d̄(yn, xn) = min {d(yn, xn), 1} = d(yn, xn) .

We then clearly have

lim
n→∞

d̄(yn, xn) = lim
n→∞

d(yn, xn) = lim
n→∞

ε

(
1− 1

n

)
= ε

so that

ρ̄(y,x) = sup
n∈Z+

d̄(yn, xn) = ε ≥ ε

since the sequence y is clearly monotonically increasing. This shows that y /∈ Bρ̄(x, ε) so that
Bρ̄(x, ε) cannot be a subset of U(x, ε).

(b)

Proof. Let y be the point in Rω defined in part (a) so that we know that y ∈ U(x, ε). Now if U(x, ε)
were open in the uniform topology then there would be a basis element Bρ̄(y, δ) that is contained in
U(x, ε). We shall show that any such basis element cannot be contained within U(x, ε), from which
the desired result follows.

So consider any δ > 0 so that there is an n ∈ Z+ large enough that n > ε/δ. Then we have

n >
ε

δ

δ > ε
1

n
(since both δ > 0 and n > 0)

−ε 1

n
+ δ > 0

ε− ε 1

n
+ δ > ε

xn + ε

(
1− 1

n

)
+ δ > xn + ε

yn + δ > xn + ε .
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Now define the point z by

zm =

{
ym m 6= n
(xn+ε)+(yn+δ)

2 m = n .

It then follows that xn + ε < zn < yn + δ. The fact that xn + ε < zn means that of course
zn /∈ (xn− ε, xn + ε) so that z /∈

∏∞
m=1(xm− ε, xm + ε) = U(x, ε). However, for m 6= n we have that

d(zm, ym) = d(ym, ym) = 0

and so d̄(zm, ym) = 0 as well. For m = n we have

xm + ε = xn + ε < zm = zn < yn + δ = ym + δ

xm + ε− ym < zm − ym < δ

xm + ε− xm − ε
(

1− 1

n

)
< zm − ym < δ

0 < ε
1

n
< zm − ym < δ

|zm − ym| < δ

d̄(zm, ym) ≤ d(zm, ym) < δ .

From these facts it follows that

ρ̄(z,y) = sup
m∈Z+

d̄(zm, ym) = d̄(zn, yn) < δ

so that z ∈ Bρ̄(y, δ). This shows that Bρ̄(y, δ) is not a subset of U(x, ε), which shows the desired
result as explained before.

(c)

Proof. (⊂) Let y be any element of Bρ̄(x, ε) so that ρ̄(y,x) < ε. Then there is a δ where ρ̄(y,x) <
δ < ε since the reals are order-dense. For any n ∈ Z+ it must be that d̄(yn, xn) < δ < ε < 1 since ρ̄
is the supremum of these. From this it has to be that d̄(yn, xn) = d(yn, xn) < δ so that

d(yn, xn) = |yn − xn| < δ

−δ < yn − xn < δ

xn − δ < yn < xn + δ .

Hence yn ∈ (xn−δ, xn+δ). Since n was arbitrary, this shows that y ∈
∏∞
n=1(xn−δ, xn+δ) = U(x, δ).

Thus obviously y ∈
⋃
δ<ε U(x, δ), which shows the desired result.

(⊃) Now suppose that y ∈
⋃
δ<ε U(x, δ) so that there is a δ < ε where y ∈ U(x, δ). Consider any

n ∈ Z+ so that we have yn ∈ (xn − δ, xn + δ). Then of course

xn − δ < yn < xn + δ

−δ < yn − xn < δ

so that d(yn, xn) = |yn − xn| < δ < ε < 1 so that it must be that d̄(yn, xn) = d(yn, xn) < δ. Since
n was arbitrary, it follows that

ρ̄(y,x) = sup
{
d̄(yn, xn) | n ∈ Z+

}
≤ δ < ε ,

and hence y ∈ Bρ̄(x, ε). Since y was arbitrary, this shows that Bρ̄(x, ε) ⊃
⋃
δ<ε U(x, δ), which

completes the proof.
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Exercise 20.7

Consider the map h : Rω → Rω defined in Exercise 8 of §19; give Rω the uniform topology. Under what
conditions on the numbers ai and bi is h continuous? a homeomorphism?

Solution:

First some discussion. We know that the product topology is strictly finer than the uniform topology
in Rω, and the that box topology is strictly finer than the uniform topology. By Lemma 20.4.2
part (1), when the topology on the range of a function becomes coarser, the function remains
continuous. It is similarly easy to show that if the topology on the domain of a function becomes
finer, it also remains continuous. However, nothing can be said for sure if the range becomes finer
and/or the domain becomes coarser.

It was shown in Exercise 19.8 that h is a homeomorphism (for ai > 0 as in the exercise) if both the
domain and range have the product topology, or if they both have the box topology. By what was just
discussed then, h is at least continuous with box topology on the domain, and the uniform topology
on the range, or likewise with the uniform topology on the domain and the product topology on the
range. However, the relative “fineness” of these topologies does not allow us to conclude anything
about whether h is continuous or a homeomorphism when both the domain and range are the
uniform topologies, which is unfortunately what we are interested in.

In fact, we claim that h is continuous with the uniform topology as the domain and range if and
only if the set of numbers {ai}i∈Z+

is bounded (and of course each ai > 0).

Proof. (⇒) We show this direction by contrapositive. So suppose that {ai} is not bounded. We
then show that h is not continuous by showing the negation of Theorem 18.1 part (4). So consider
the point 0 and the neighborhood V = Bρ̄(h(0), 1) in the uniform topology. Consider also any
neighborhood U of 0 so that by Lemma 20.4.1 there is an ε > 0 where Bρ̄(0, ε) ⊂ U . Now define
the point x ∈ Rω by xi = ε/2 for all i ∈ Z+. Then, for any i ∈ Z+, we have

d̄(xi, 0) ≤ d(xi, 0) = |xi − 0| = |xi| = |ε/2| = ε/2

so that clearly

ρ̄(x,0) = sup
{
d̄(xi, 0) | i ∈ Z+

}
≤ ε/2 < ε ,

and hence x ∈ Bρ̄(0, ε) so that also x ∈ U . Then clearly h(x) ∈ h(U).

Now, since the ai coefficients are unbounded, there is a specific i ∈ Z+, where ai ≥ 2/ε regardless
of how small ε is. We then have that

d(hi(xi), hi(0)) = d(aixi + bi, bi) = |aixi + bi − bi| = |aixi| = ai |xi| = ai
ε

2
≥ 2

ε

ε

2
= 1 ,

from which we have d̄(hi(xi), hi(0)) = 1 and so

ρ̄(h(x), h(0)) = sup
{
d̄(hi(xi), hi(0)) | i ∈ Z+

}
≥ 1 .

Then of course h(x) /∈ Bρ̄(h(0), 1) = V . This shows that h(U) 6⊂ V , which in turn shows that h is
not continuous, since U was an arbitrary neighborhood of 0.

(⇐) Now suppose that the coefficients ai are bounded so that there is a real a where 0 < ai ≤ a
for all i ∈ Z+. Consider any x ∈ Rω and any neighborhood V of h(x) in the uniform topology.
Then there is an ε > 0 where Bρ̄(h(x), ε) ⊂ V by Lemma 20.4.1. So let δ = min {ε/2a, 1}, noting
that δ > 0 since both ε > 0 and a > 0. Then U = Bρ̄(x, δ) is of course a neighborhood of x in the
uniform topology. We claim that h(U) ⊂ V .
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To see this, suppose that z ∈ h(U) so that there is a y ∈ U where z = h(y). Then ρ̄(y,x) < δ ≤ 1
since y ∈ U , from which it follows that each d̄(yi, xi) < δ ≤ 1, and hence

d̄(yi, xi) = d(yi, xi) = |yi − xi| < δ .

We then have that

d̄(hi(yi), hi(xi)) ≤ d(hi(yi), hi(xi)) = d(aiyi + bi, aixi + bi) = |aiyi + bi − aixi − bi|
= |aiyi − aixi| = |ai(yi − xi)| = ai |yi − xi| ≤ a |yi − xi|
< aδ ≤ aε/2a = ε/2

for each i ∈ Z+. From this it follows that

ρ̄(z, h(x)) = ρ̄(h(y), h(x)) = sup
{
d̄(hi(yi), hi(xi)) | i ∈ Z+

}
≤ ε/2 < ε

so that z ∈ Bρ̄(h(x), ε) ⊂ V . Since z was arbitrary, this shows that f(U) ⊂ V , which shows that h
is continuous by Theorem 18.1 part (4) since V was an arbitrary neighborhood.

The function h is a homeomorphism if and only if there are real a, a0 > 0 where 0 < a0 ≤ ai ≤ a
for all i ∈ Z+.

Proof. First, it was just shown that h is continuous if and only if {ai} is bounded above. It was
shown in Exercise 19.8 that h is bijective (so long as each ai > 0) and that its inverse function h−1

has the same form as h:

h−1(y) = (ciyi + di)i∈Z+
,

where each ci = 1/ai and di = −bi/ai. Since the topologies of the domain and range of h−1 are
both the uniform topology, as with h, it follows that the same conditions on ci and di will make
h−1 continuous. That is to say that h−1 is continuous (and thus h is a homeomorphism) if and only
if also {ci} = {1/ai} is bounded above. Of course {1/ai} being bounded above means that {ai}
cannot get arbitrarily close to zero and so must have some nonzero lower bound a0.

Exercise 20.8

Let X be the subset of Rω consisting of all sequences x such that
∑
x2
i converges. Then the formula

d(x,y) =

[ ∞∑
i=1

(xi − yi)2

]1/2

defines a metric on X. (See Exercise 10) On X we have the three topologies it inherits from the box,
uniform, and product topologies on Rω. We have also the topology given by the metric d, which we call
the `2-topology. (Read “little ell two.”)

(a) Show that on X, we have the inclusions

box topology ⊃ `2-topology ⊃ uniform topology .

(b) The set R∞ of all sequences that are eventually zero is contained in X. Show that the four topologies
that R∞ inherits as a subspace of X are all distinct.

(c) The set

H =
∏
n∈Z+

[0, 1/n]

Page 217



is contained in X; it is called the Hilbert cube . Compare the four topologies that H inherits as a
subspace of X.

Solution:

Lemma 20.8.1. Suppose that (a1, a2, . . .) and (b1, b2, . . .) are two real sequences that converge to a
and b, respectively. Then, if an ≤ bn for every n ∈ Z+, then a ≤ b.

Proof. Suppose to the contrary that a > b, and let ε = (a − b)/2 so that clearly ε > 0. Since
(a1, a2, . . .) converges to a there is an Na ∈ Z+ where |an − a| < ε for all n ≥ Na. Similarly there is
an Nb ∈ Z+ where |bn − b| < ε for all n ≥ Nb since (bn) converges to b. So let N = max {Na, Nb}
and consider any n ≥ N . Then n ≥ N ≥ Na so that |an − a| < ε and hence

−ε < an − a < ε

a− ε < an < a+ ε

a− a− b
2

< an

a+ b

2
< an .

Analogously, we have that n ≥ N ≥ Nb so that |bn − b| < ε and so

−ε < bn − b < ε

b− ε < bn < b+ ε

bn < b+
a− b

2

bn <
a+ b

2
.

Therefore we have bn < (a + b)/2 < an, which contradicts the supposition that bn ≥ an. So it has
to be that in fact a ≤ b as desired.

Corollary 20.8.2. Suppose that
∑
an and

∑
bn are two real series that converge to a and b,

respectively. Then, if an ≤ bn for every n ∈ Z+, then a ≤ b.

Proof. Since we have that an ≤ bn for every n ∈ Z+, it follows that we have

sn =

n∑
i=1

ai ≤
n∑
i=1

bi = tn

for any n ∈ Z+ for the partial sums. Then we have by definition of series that

a =

∞∑
n=1

an = lim
n→∞

sn ≤ lim
n→∞

tn =

∞∑
n=1

bn = b

by Lemma 20.8.1, as desired.

The following is a corollary of Lemma 20.4.1:

Corollary 20.8.3. Suppose that X is a subspace of metric space Y with metric d. If U is open in the
subspace topology on X and contains x, then there is a ball Bd(x, ε) in Y such that X∩Bd(x, ε) ⊂ U .
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Proof. Consider open U in X and any x ∈ U . Then there is an open set V in Y such that
U = X ∩ V by the definition of the subspace topology. Then of course x ∈ X and x ∈ V since
x ∈ U . It then follows that there is an ε > 0 such that Bd(x, ε) ⊂ V by Lemma 20.4.1. Now consider
any y ∈ X ∩ Bd(x, ε) so that y ∈ X and y ∈ Bd(x, ε). Then also y ∈ V since Bd(x, ε) ⊂ V . Hence
y ∈ X ∩ V = U , which shows that X ∩Bd(x, ε) ⊂ U as desired since y was arbitrary.

Definition 20.8.4. If (x1, x2, . . .) is a sequence whose series
∑
xi converges, we define the partial

series starting at n ∈ Z+ as

∞∑
i=n

xi =

∞∑
i=1

xi −
n−1∑
i=1

xi ,

where we adopt the standard convention that
∑b
i=a xi = 0 when b < a. According to this the partial

series starting at n = 1 is just the series itself as expected.

Lemma 20.8.5. If (x1, x2, . . .) is a series of non-negative real numbers such that the series
∑
xi

converges, then the sequence of partial series defined by

pn =

∞∑
i=n

xi

is non-increasing and converges to zero. Also each pn ≥ 0.

Proof. Since the terms are all non-negative, clearly the sequence of partial sums is non-decreasing.
Thus we have

n∑
i=1

xi ≤
n+1∑
i=1

xi

−
n∑
i=1

xi ≥ −
n+1∑
i=1

xi

∞∑
i=1

xi −
n∑
i=1

xi ≥
∞∑
i=1

xi −
n+1∑
i=1

xi

∞∑
i=n+1

xi ≥
∞∑

i=n+2

xi

pn+1 ≥ pn+2

for any n ∈ Z+. Of course we also have

0 ≤ x1 =

1∑
i=1

xi

0 ≥ −
1∑
i=1

xi

∞∑
i=1

xi ≥
∞∑
i=1

xi −
1∑
i=1

xi

p1 ≥ p2 .
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Together these show that the sequence of partial series is non-increasing. Also, since the series of
partial sums is non-decreasing, we have that that the infinite sum cannot be less than any of the
partial sums, that is

∞∑
i=1

xi ≥
n−1∑
i=1

xi

∞∑
i=1

xi −
n−1∑
i=1

xi ≥ 0

pn ≥ 0

for any n ∈ Z+.

To show that the sequence of partial series converges to zero, consider any ε > 0. We know that the
sequence of partial sums converges to the infinite sum by the definition of a series. Hence there is
an N ∈ Z+ such that ∣∣∣∣∣

n∑
i=1

xi −
∞∑
i=1

xi

∣∣∣∣∣ < ε

|−pn+1| < ε

|pn+1| < ε

|pn+1 − 0| < ε

for all n ≥ N , and hence |pn − 0| < ε for all n ≥ N + 1. This of course shows convergence to zero
as desired.

Main Problem.

(a)

Proof. First we show that the `2-topology is finer than the topology inherited from the uniform
topology using Lemma 20.2 since they are both metric topologies. So consider any x ∈ X and let
B = X∩Bρ̄(x, ε) for any ε > 0, which is of course a basis element of the subspace topology inherited
by the uniform topology. Then the set C = Bd(x, ε/2) (where d is the metric defined above for the
`2-topology instead of the usual metric on R) is a basis element of the `2-topology. We claim that
x ∈ C ⊂ B, which completes the proof that the `2-topology is finer.

First, it is obvious that x ∈ C. Now consider any y ∈ C = Bd(x, ε/2). Then we have that

d(y,x) =

[ ∞∑
i=1

(yi − xi)2

]1/2

< ε/2

For n ∈ Z+ let

sn =

n∑
i=1

(yi − xi)2

be the partial sums of the infinite sum
∑

(yi−xi)2. Clearly each term in the sum is non-negative so
that the sequence of partial sums is non-decreasing. It then follows that sn ≤

∑
(yi − xi)2 for any

n ∈ Z+. We clearly then have, for any n ∈ Z+, that

|yn − xn|2 = (yn − xn)2 ≤
n−1∑
i=1

(yi − xi)2 + (yn − xn)2 =

n∑
i=1

(yi − xi)2 = sn ≤
∞∑
i=1

(yi − xi)2

Page 220



since again each term is non-negative. Hence by Corollary 20.1.2 we have

|yn − xn| =
[
|yn − xn|2

]1/2
≤

[ ∞∑
i=1

(yi − xi)2

]1/2

< ε/2 .

It then follows that

p̄(yn, xn) ≤ p(yn, xn) = |yn − xn| < ε/2 ,

where we have let p and p̄ denote the standard metric and standard bounded metric, respectively,
on R. Since this is true for any n ∈ Z+, it follows that

ρ̄(y,x) = sup {p̄(yn, xn) | n ∈ Z+} ≤ ε/2 < ε

so that y ∈ Bρ̄(x, ε). Thus clearly y ∈ X ∩ Bρ̄(x, ε) = B so that C ⊂ B as desired since y was
arbitrary.

Now we show that the topology inherited from the box topology is finer the `2-topology using
Lemma 13.3. So consider any x ∈ X and any basis element B containing x of the `2-topology. Then
by Lemma 20.4.1 there is an ε > 0 where Bd(x, ε) ⊂ B since B is of course open. Now consider the
set

C = X ∩
∏
i∈Z+

Bp(xi, ε/
√

2i+1) ,

where again p denotes the usual metric on R. Then clearly C is a basis element of the subspace
topology inherited by the box topology and contains x, noting that clearly each ε/

√
2i+1 > 0. We

claim that C ⊂ Bd(x, ε) ⊂ B, which shows the desired result.

To see this suppose that y ∈ C so that y ∈ X and y ∈
∏
Bp(xi, ε/

√
2i+1). Then, for any i ∈ Z+,

we have that

p(yi, xi) = |yi − xi| ≤ ε/
√

2i+1

is true. It then follows from Lemma 20.1.1 that

(yi − xi)2 = |yi − xi|2 ≤
(
ε/
√

2i+1
)2

.

Since this is true for any i ∈ Z+, we have by Corollary 20.8.2 that

∞∑
i=1

(yi − xi)2 ≤
∞∑
i=1

(
ε√

2i+1

)2

=

∞∑
i=1

ε2

2i+1
= ε2

∞∑
i=1

(
1

2

)i+1

= ε2
∞∑
i=2

(
1

2

)i
= ε2

[ ∞∑
i=0

(
1

2

)i
−
(

1

2

)0

−
(

1

2

)1
]

= ε2
[

1

1− 1
2

− 1− 1

2

]
= ε2

[
2− 1− 1

2

]
=
ε2

2

since
∑

(1/2)i is a geometric series. It then follows from Corollary 20.1.2 that

d(y,x) =

[ ∞∑
i=1

(yi − xi)2

]1/2

≤
(
ε2

2

)1/2

=
ε√
2
< ε

so that y ∈ Bd(x, ε). Since y was arbitrary, this shows that C ⊂ Bd(x, ε) ⊂ B as desired, thereby
completing the proof.
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(b)

Proof. Since relative topological “fineness” is preserved when inherited by subspace topologies
(which is trivial to show), we have from part (a) and what was shown in the text that

box topology ⊃ `2-topology ⊃ uniform topology ⊃ product topology

on R∞. To show that they are all distinct, it then suffices to show that each of the box, `2, and
uniform topologies (or more properly the subspace topologies inherited from them) have open sets
that are not open in the `2, uniform, and product topologies, respectively.

First we show that the inherited box topology has an open set that is not open in the inherited
`2-topology. Consider the set U = R∞ ∩

∏
n∈Z+

(−1, 1/n), which is clearly a basis element and open

set in the inherited box topology. We show that U is not open in the inherited `2-topology using
the contrapositive of Corollary 20.8.3. So consider the point 0, which is clearly contained in U and
any ε > 0 and the arbitrary ball Bd(0, ε) of X. Of course, there is positive integer N large enough
that N ≥ 2/ε, and hence 1/N ≤ ε/2.

Now, consider the sequence x defined by

xn =

{
0 n 6= N

ε/2 n = N

for n ∈ Z+. Clearly x is eventually zero so that x ∈ R∞ since xn = 0 for all n ≥ N + 1. We also
clearly have

d(x,0) =

[ ∞∑
i=1

(xi − 0)2

]1/2

=

[ ∞∑
i=1

x2
i

]1/2

=

[( ε
2

)2
]1/2

=
ε

2
< ε

so that x ∈ Bd(0, ε). Therefore x ∈ R∞ ∩Bd(0, ε). However, we have that 1/N ≤ ε/2 = xN so that
xN /∈ (−1, 1/N), and hence x /∈

∏
n∈Z+

(−1, 1/n). From this clearly x /∈ U so that R∞ ∩ Bd(0, ε)
cannot be a subset of U . Since the ball Bd(0, ε) was arbitrary, this shows that U is not open in the
inherited `2-topology as desired.

Next we show that there is an open set in the inherited `2-topology that is not open in the inherited
uniform topology. So consider the set U = R∞ ∩Bd(0, 1), which is clearly open in the inherited `2-
topology. We show that U is not open in the inherited uniform topology, again by the contrapositive
of Corollary 20.8.3. Consider the point 0, clearly in U , and any ε > 0 so that Bρ̄(0, ε) is an arbitrary
ball in the uniform topology on Rω. Now clearly there is an N ∈ Z+ large enough that N ≥ (2/ε)2.
It then follows from Corollary 20.1.2 that

√
N ≥ 2/ε.

Now define the sequence x by

xn =

{
ε/2 n ≤ N
0 n > N

for n ∈ Z+, so that clearly x ∈ R∞. Then clearly we have

p̄(xn, 0) ≤ p(xn, 0) = |ε/2− 0| = |ε/2| = ε/2

for any n ≤ N , where again p and p̄ are the standard and standard bounded metrics on R, respec-
tively. If n > N clearly

p̄(xn, 0) ≤ p(xn, 0) = |0− 0| = |0| = 0 ≤ ε/2 .
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Hence it follows that

ρ̄(x,0) = sup {p̄(xn, 0) | n ∈ Z+} ≤ ε/2 < ε

so that x ∈ Bρ̄(0, ε). Therefore of course x ∈ R∞ ∩Bρ̄(0, ε). However, we also have

d(x, 0) =

[ ∞∑
i=1

(xi − 0)2

]1/2

=

[ ∞∑
i=1

x2
i

]1/2

=

[
N∑
i=1

( ε
2

)2
]1/2

=

[
N
( ε

2

)2
]1/2

=
√
N
ε

2

≥ 2

ε

( ε
2

)
= 1

since
√
N ≥ 2/ε. Therefore clearly x /∈ Bd(0, 1) so that x /∈ U . It follows that R∞ ∩Bρ̄(0, ε) cannot

be a subset of U . Since Bρ̄(0, ε) was an arbitrary ball, this shows that U is not open in the uniform
topology as desired.

Lastly we show that there is an open set in the inherited uniform topology that is not open in the
inherited product topology. So let U = R∞∩Bρ̄(0, 1), which is clearly open in the inherited uniform
topology. We show that U is not open in the inherited product topology using the definition of
a basis. Consider any basis element B of the inherited product topology that contains 0 so that
B = R∞∩

∏
n∈Z+

Bn, where each Bn is open in R and Bn 6= R for only finitely many n ∈ Z+. Then
clearly there is an N ∈ Z+ where BN = R, and clearly we have 0 ∈ Bn for all n ∈ Z+.

So define the sequence x by

xn =

{
0 n 6= N

1 n = N

for n ∈ Z+. Clearly x ∈ R∞ since xn = 0 for all n ≥ N + 1. For any n ∈ Z+ we have that
xn = 0 ∈ Bn if n 6= N , and xn = 1 ∈ R = Bn for n = N . Hence clearly x ∈

∏
Bn so that

x ∈ R∞ ∩
∏
Bn = B as well. However, we clearly have that

p(xN , 0) = |xN − 0| = |1− 0| = |1| = 1 ≥ 1

so that p̄(xN , 0) = min {p(xN , 0), 1} = 1 ≥ 1. Then it has to be that

ρ̄(x,0) = sup {p̄(xn, 0) | n ∈ Z+} ≥ 1

so that x /∈ Bρ̄(0, 1) and hence x /∈ U . This shows that B is not a subset of U , which shows that U
is not open in the inherited product topology since B was an arbitrary basis element.

(c) First, we note thatH is contained inX by the comparison test since the series
∑

(1/n)2 converges.
Then, again since relative topological “fineness” is preserved when inherited by subspace topologies,
we know that

box topology ⊃ `2-topology ⊃ uniform topology ⊃ product topology

on H. We claim, however, that the inherited box topology is distinct from the other three, which
are all the same.

Proof. First we show that the inherited box topology has an open set that is not open in the
inherited `2-topology, in a very similar way to how this was shown in part (b). Consider the set
U = H∩

∏
n∈Z+

(−1, 1/n), which is clearly a basis element and open set in the inherited box topology.
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We show that U is not open in the inherited `2-topology using the contrapositive of Corollary 20.8.3.
So consider the point 0, which is clearly contained in U and any ε > 0 and the arbitrary ball Bd(0, ε)
of X. Of course, there is positive integer N large enough that N ≥ 2/ε, and hence 1/N ≤ ε/2.

Now, consider the sequence x defined by

xn =

{
0 n 6= N

1/N n = N

for n ∈ Z+. Clearly x ∈ H since each xn ∈ [0, 1/n]. We also clearly have

d(x,0) =

[ ∞∑
i=1

(xi − 0)2

]1/2

=

[ ∞∑
i=1

x2
i

]1/2

=
[
x2
N

]1/2
= xN = 1/N ≤ ε/2 < ε

so that x ∈ Bd(0, ε). Therefore x ∈ H ∩ Bd(0, ε). However, we have that xN = 1/N so that
xN /∈ (−1, 1/N), and hence x /∈

∏
n∈Z+

(−1, 1/n). From this clearly x /∈ U so that H ∩ Bd(0, ε)
cannot be a subset of U . Since the ball Bd(0, ε) was arbitrary, this shows that U is not open in the
inherited `2-topology as desired.

To show that the other three topologies are the same on H, it suffices to show that the inherited
product topology is finer than the inherited `2-topology, which we do using Lemma 13.3. So consider
any x ∈ H and any basis element B of the inherited `2-topology that contains x. It then follows
from Corollary 20.8.3 that there is an ε > 0 where B′ = H ∩Bd(x, ε) ⊂ B since of course B is open.
Now, by Lemma 20.8.5 the sequence of partial series pn =

∑∞
i=n(1/i)2 converges to zero so that

there is an N ∈ Z+ where pn = |pn| = |pn − 0| < ε2/2 for all n ≥ N since each pn is non-negative
(also by Lemma 20.8.5). In particular pN+1 =

∑∞
i=N+1(1/i)2 < ε2/2. So define the following sets:

Cn =

{
Bp(xn, ε/

√
2N) n ≤ N

R n > 0

for n ∈ Z+, where again p is the usual metric on R. Clearly C = H ∩
∏
Cn is a basis element in the

inherited product topology that contains x. We now claim that C ⊂ B′ ⊂ B, which shows that the
inherited product topology is finer by Lemma 13.3 since B was an arbitrary basis element.

To see this, consider any y ∈ C so that y ∈ H and y ∈
∏
Cn. Now, for any n ≤ N , we have that

yn ∈ Cn = Bp(xn, ε/
√

2N) so that |yn − xn| < ε/
√

2N . It then follows from Lemma 20.1.1 that

(yn − xn)2 = |yn − xn|2 <
(

ε√
2N

)2

=
ε2

2N
.

Since this is true of each n ≤ N , we clearly have that

N∑
i=1

(yi − xi)2 <

N∑
i=1

ε2

2N
= N

ε2

2N
=
ε2

2
.

Now, for any n > N we have that of course that y ∈ H =
∏

[0, 1/n] so that yn ∈ [0, 1/n]. Similarly
x ∈ H so that xn ∈ [0, 1/n]. Then both 0 ≤ yn ≤ 1/n and 0 ≤ xn ≤ 1/n so that

0 ≤ xn ≤ 1/n

0 ≥ −xn ≥ −1/n

yn ≥ yn − xn ≥ yn − 1/n

1/n ≥ yn ≥ yn − xn ≥ yn − 1/n ≥ 0− 1/n = −1/n .
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Hence |yn − xn| ≤ 1/n, from which it follows that (yn−xn)2 = |yn − xn|2 ≤ (1/n)2 by Lemma 20.1.1.
Since this it true for any n > N , it follow from either Lemma 20.8.1 or Corollary 20.8.2 that

∞∑
i=N+1

(yi − xi)2 ≤
∞∑

i=N+1

(
1

i

)2

<
ε2

2
.

We then have, from the definition of partial series (Definition 20.8.4), that

∞∑
i=1

(yi − xi)2 =

N∑
i=1

(yi − xi)2 +

∞∑
i=N+1

(yi − xi)2 <
ε2

2
+
ε2

2
= ε2

Then Corollary 20.1.2 means that

d(y,x) =

[ ∞∑
i=1

(yi − xi)2

]1/2

<
(
ε2
)1/2

= ε

so that y ∈ Bd(x, ε), and hence clearly y ∈ H ∩ Bd(x, ε) = B′. Since y was arbitrary, this shows
that C ⊂ B′ ⊂ B as desired.

Exercise 20.9

Show that the euclidean metric d on Rn is a metric, as follows: If x,y ∈ Rn and c ∈ R, define

x + y = (x1 + y1, . . . , xn + yn) ,

cx = (cx1, . . . , cxn) ,

x · y = x1y1 + · · ·+ xnyn .

(a) Show that x · (y + z) = (x · y) + (x · z).

(b) Show that |x · y| ≤ ‖x‖ ‖y‖. [Hint: If x,y 6= 0, let a = 1/ ‖x‖ and b = 1/ ‖y‖, and use the fact
that ‖ax± by‖ ≥ 0.]

(c) Show that ‖x + y‖ ≤ ‖x‖+ ‖y‖. [Hint: Compute (x + y) · (x + y) and apply (b).]

(d) Verify that d is a metric.

Solution:

First we show some basic properties of these operations that will be useful:

Lemma 20.9.1. For any x,y ∈ Rn and a ∈ R, we assert the following:

(1) The dot product is commutative, that is x · y = y · x.

(2) 0 · x = 0.

(3) ‖x‖ = 0 if and only if x = 0.

(4) ‖x‖ ≥ 0

(5) x · x = ‖x‖2

(6) ‖ax‖ = |a| ‖x‖
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Proof. For assertion (1) clearly

x · y =

n∑
i=1

xiyi =

n∑
i=1

yixi = y · x

by the definition of the dot product. Regarding (2), we clearly have

0 · x =

n∑
i=1

0 · xi =

n∑
i=1

0 = 0 .

For (3) first suppose that x 6= 0 so that that there is an i ∈ {1, . . . , n} where xk 6= 0 so that clearly
x2
k > 0. Then we have

‖x‖ =

n∑
i=1

x2
i =

∑
i=k

x2
i +

∑
i 6=k

x2
i = x2

k +
∑
i 6=k

x2
i ≥ x2

k + 0 = x2
k > 0

since each term in the sum
∑
i 6=k x

2
i is non-negative so that the overall sum is as well. Thus of course

‖x‖ 6= 0. This shows the forward implication by contrapositive. For the reverse direction, suppose
that x = 0 so that

‖x‖ = ‖0‖ =

[
n∑
i=1

02

]1/2

=

[
n∑
i=1

0

]1/2

= [0]
1/2

= 0 .

Assertion (4) is fairly obvious from the definition. Clearly each x2
i ≥ 0 since it is a square, so that∑n

i=1 x
2
i ≥ 0 as well. It then follows from Corollary 20.1.2 that

‖x‖ =

[
n∑
i=1

x2
i

]1/2

≥ 01/2 = 0

as desired. Assertion (5) is also easy to show:

x · x =

n∑
i=1

xixi =

n∑
i=1

x2
i =

[ n∑
i=1

x2
i

]1/2
2

= ‖x‖2

by definition.

For part (6) we have by definition that

‖ax‖ =

[
n∑
i=1

(axi)
2

]1/2

=

[
n∑
i=1

a2x2
i

]1/2

=

[
a2

n∑
i=1

x2
i

]1/2

=
[
a2
]1/2 [ n∑

i=1

x2
i

]1/2

= |a| ‖x‖

as desired.

Main Problem.

(a)

Proof. By definition we have that

y + z = (y1 + z1, . . . , yn + yn)
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so that clearly

x · (y + z) =

n∑
i=1

xi(yi + zi) =

n∑
i=1

(xiyi + xizi) =

n∑
i=1

xiyi +

n∑
i=1

xizi = (x · y) + (x · z)

as desired.

(b)

Proof. First, if x = 0 then clearly by Lemma 20.9.1 parts (2) and (3)

|x · y| = |0 · y| = |0| = 0 ≤ 0 = 0 ‖y‖ = ‖0‖ ‖y‖ = ‖x‖ ‖y‖ .

Similarly if y = 0 then by all parts of Lemma 20.9.1

|x · y| = |x · 0| = |0 · x| = |0| = 0 ≤ 0 = ‖x‖ 0 = ‖x‖ ‖0‖ = ‖x‖ ‖y‖ .

So in what follows assume that x,y 6= 0. Then by Lemma 20.9.1 part (3) we have that ‖x‖ and ‖y‖
are both nonzero so that a = 1/ ‖x‖ and b = 1/ ‖y‖ are defined. Then, by Lemma 20.9.1 part (4),
we of course have

‖ax± by‖ ≥ 0 .

Since clearly

ax± by = (ax1 ± by1, . . . , axn ± byn)

by the definition of the operations, we have[
n∑
i=1

(axi ± byi)2

]1/2

= ‖ax± by‖ ≥ 0 .

It then follows from Lemma 20.1.1 that
n∑
i=1

(axi ± byi)2 ≥ 02 = 0

n∑
i=1

(a2x2
i ± 2abxiyi + b2y2

i ) ≥ 0

a2
n∑
i=1

x2
i ± 2ab

n∑
i=1

xiyi + b2
n∑
i=1

y2
i ≥ 0

a2 ‖x‖2 ± 2ab(x · y) + b2 ‖y‖2 ≥ 0

±2ab(x · y) ≥ −a2 ‖x‖2 − b2 ‖y‖2

±2
x · y
‖x‖ ‖y‖

≥ −‖x‖
2

‖x‖2
− ‖y‖

2

‖y‖2

±2
x · y
‖x‖ ‖y‖

≥ −1− 1

±2
x · y
‖x‖ ‖y‖

≥ −2

∓x · y ≤ ‖x‖ ‖y‖ .

Hence we have that both x · y ≤ ‖x‖ ‖y‖ and −x · y ≤ ‖x‖ ‖y‖ so that x · y ≥ −‖x‖ ‖y‖. Hence

−‖x‖ ‖y‖ ≤ x · y ≤ ‖x‖ ‖y‖

so we can conclude that |x · y| ≤ ‖x‖ ‖y‖ as desired.
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(c)

Proof. We have

‖x + y‖2 = (x + y) · (x + y) (by Lemma 20.9.1 part (5))

= (x + y) · x + (x + y) · y (by part (a))

= x · (x + y) + y · (x + y) (by Lemma 20.9.1 part (1))

= x · x + x · y + y · x + y · y (by part (a))

= ‖x‖2 + x · y + y · x + ‖y‖2 (by Lemma 20.9.1 part (5))

= ‖x‖2 + x · y + x · y + ‖y‖2 (by Lemma 20.9.1 part (1))

≤ ‖x‖2 + ‖x‖ ‖y‖+ ‖x‖ ‖y‖+ ‖y‖2 (by part (b))

= ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2 .

The desired result that ‖x + y‖ ≤ ‖x‖+ ‖y‖ then follows from Corollary 20.1.2.

(d)

Proof. First recall that the euclidean metric on Rn is defined as

d(x,y) = ‖x− y‖ .

Then part (1) of the definition of a metric follows directly from Lemma 20.9.1 since of course

d(x,y) = ‖x− y‖ ≥ 0 .

We also have that x = y if and only if x− y = 0, which is true if and only if

d(x,y) = ‖x− y‖ = 0

by Lemma 20.9.1 part (3). Similarly part (2) of the definition follows from Lemma 20.9.1 part (6)
as follows:

d(x,y) = ‖x− y‖ = ‖(−1)(y − x)‖ = |−1| ‖y − x‖ = ‖y − x‖ = d(y,x) .

Lastly, for part (3) of the definition, we have that

d(x, z) = ‖x− y‖ = ‖x− z + y − y‖ = ‖(x− y) + (y − z)‖
≤ ‖x− y‖+ ‖x− z‖ = d(x,y) + d(y, z) ,

where we have used what was shown in part (c). This shows that d has all the properties required
to be a metric.

Exercise 20.10

Let X denote the subset of Rω consisting of all sequences (x1, x2, . . .) such that
∑
x2
i converges. (You

may assume standard facts about infinite series. In case they are not familiar to you, we shall give them
in Exercise 11 of the next section.)

(a) Show that if x,y ∈ X, then
∑
|xiyi| converges. [Hint: Use (b) of Exercise 9 to show that the

partial sums are bounded.]

(b) Let c ∈ R. Show that if x,y ∈ X, then so are x + y and cx.
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(c) Show that

d(x,y) =

[ ∞∑
i=1

(xi − yi)2

]1/2

is a well-defined metric on X.

Solution:

(a)

Proof. First, denote the partial sums of the series
∑
|xiyi| by

sn =

n∑
i=1

|xiyi|

for any n ∈ Z+. Clearly then each term in the sum is non-negative so that the sequence of partial
sums is non-decreasing, which is to say that sn+1 ≥ sn for every n ∈ Z+. Then, to show that
the series converges, it suffices to show that the partial sums are bounded, since convergence then
follows from what will be shown in Exercise 21.11 part (a). To this end we show that the sequence
(s1, s2, . . .) is a bounded above.

So, first let us define the real numbers

‖x‖ =

[ ∞∑
i=1

x2
i

]1/2

‖y‖ =

[ ∞∑
i=1

y2
i

]1/2

,

which we know are well defined since x,y ∈ X. Also, for any n ∈ Z+, define the truncated
sequences xn = (x1, . . . , xn) and yn = (y1, . . . , yn). We know from Lemma 20.8.5 that the partial
series

∑∞
i=n x

2
i and

∑∞
i=n y

2
i are non-negative for any n ∈ Z+. From this and Definition 20.8.4 we

have that

n∑
i=1

x2
i ≤

n∑
i=1

x2
i +

∞∑
i=n+1

x2
i =

∞∑
i=1

x2
i

for any n ∈ Z+. It then follows from Corollary 20.1.2 that

‖xn‖ =

[
n∑
i=1

x2
i

]1/2

≤

[ ∞∑
i=1

x2
i

]1/2

= ‖x‖ ,

and similarly ‖yn‖ ≤ ‖y‖ for any n ∈ Z+. Hence, clearly ‖xn‖ ‖yn‖ ≤ ‖x‖ ‖y‖ since norms are
always non-negative by Lemma 20.9.1 part (4).

Lastly, we define xn = (|x1| , . . . , |xn|) and yn = (|y1| , . . . , |yn|) for any n ∈ Z+. From this definition
it follows that

‖xn‖ =

[
n∑
i=1

|xi|2
]1/2

=

[
n∑
i=1

x2
i

]1/2

= ‖xn‖ ,

and similarly that ‖yn‖ = ‖yn‖.
Putting all of this together we have by Exercise 20.9 part (b) that

sn =

n∑
i=1

|xiyi| =
n∑
i=1

|xi| |yi| = xn · yn ≤ ‖xn‖ ‖yn‖ = ‖xn‖ ‖yn‖ ≤ ‖x‖ ‖y‖
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for any n ∈ Z+. This shows that the sequence of partial sums is bounded by ‖x‖ ‖y‖, which shows
the desired result as previously discussed.

(b)

Proof. First, it is a well known fact that if a series converges absolutely, then it converges. Hence,
since it was shown in part (a) that

∑
|xiyi| converges, we have that

∑
xiyi also converges. We of

course also know that
∑
x2
i and

∑
y2
i converge since x,y ∈ X. It then follows from Exercise 21.11

part (b) that

∞∑
i=1

(xi + yi)
2 =

∞∑
i=1

(x2
i + 2xiyi + y2

i )

converges to
∑
x2
i + 2

∑
xiyi +

∑
y2
i . Since of course

x + y = (x1 + y1, x2 + y2, . . .)

we have that x + y ∈ X as desired. We also have that cx = (cx1, cx2, . . .) by definition, and it again
follows from Exercise 21.11 part (b) that

∞∑
i=1

(cxi)
2 =

∞∑
i=1

c2x2
i

converges to c2
∑
x2
i . Hence cx ∈ X as desired.

(c)

Proof. Suppose that x,y ∈ X. It then follows from part (b) that −y = (−1)y ∈ X. Then also
x− y = x + (−y) ∈ X as well, again by what was shown in part (b). Since we clearly have

x− y = (x1 − y1, x2 − y2, . . .) ,

it therefore follows that
∑

(xi − yi)2 converges since x− y ∈ X. Hence the function

d(x,y) =

[ ∞∑
i=1

(xi − yi)2

]1/2

is well defined.

To show that d is a metric, first it is obvious that d(x,y) ≥ 0 for all x,y ∈ X since each term is
non-negative so that the sequence of partial sums is non-negative and non-decreasing. Also, clearly
if y = x then

d(x,y) = d(x,x) =

[ ∞∑
i=1

(xi − xi)2

]1/2

=

[ ∞∑
i=1

02

]1/2

=

[ ∞∑
i=1

0

]1/2

= 01/2 = 0 .

To show the converse, suppose that x 6= y so that there is an n ∈ Z+ where xn 6= yn, and hence
xn − yn 6= 0 and (xn − yn)2 > 0. Referencing Definition 20.8.4, we then have

0 < (xn − yn)2 =

n∑
i=n

(xi − yi)2 ≤
n−1∑
i=1

(xi − yi)2 +

n∑
i=n

(xi − yi)2 +

∞∑
i=n+1

(xi − yi)2

=

n∑
i=1

(xi − yi)2 +

∞∑
i=n+1

(xi − yi)2 =

∞∑
i=1

(xi − yi)2
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Thus by Corollary 20.1.2 we have

d(x,y) =

[ ∞∑
i=1

(xi − yi)2

]1/2

> 01/2 = 0

so that of course d(x,y) 6= 0 as desired. This shows part (1) of the definition of a metric.

Showing part (2) of the definition is even easier:

d(x,y) =

[ ∞∑
i=1

(xi − yi)2

]1/2

=

[ ∞∑
i=1

(yi − xi)2

]1/2

= d(y,x) .

For part (3) consider any x,y, z ∈ X. Denote the truncated sequences by xn = (x1, . . . , xn) for any
n ∈ Z+, and similarly for yn and zn. Then we have

∞∑
i=1

(xi − yi)2 = lim
n→∞

n∑
i=1

(xi − yi)2 = lim
n→∞

‖xn − yn‖2 .

Since the function f(x) = x1/2 is continuous on the domain {x ∈ R | x ≥ 0} by elementary calculus,
it follows from Theorem 21.3 in the next section that

d(x,y) =

[ ∞∑
i=1

(xi − yi)2

]1/2

=
[

lim
n→∞

‖xn − yn‖2
]1/2

= lim
n→∞

[
‖xn − yn‖2

]1/2
= lim
n→∞

‖xn − yn‖

Since x and y are arbitrary, we of course also have that

d(x, z) = lim
n→∞

‖xn − zn‖ d(y, z) = lim
n→∞

‖yn − zn‖ .

Now, it was shown in Exercise 20.9 part (d) that

‖xn − zn‖ ≤ ‖xn − yn‖+ ‖yn − zn‖

for any n ∈ Z+. It then follows from Lemma 20.8.1 that

d(x,y) = lim
n→∞

‖xn − zn‖ ≤ lim
n→∞

(‖xn − yn‖+ ‖yn − zn‖)

= lim
n→∞

‖xn − yn‖+ lim
n→∞

‖yn − zn‖

= d(x,y) + d(y, z)

as desired. Note that we have used the well known property of sequences that, if (a1, a2, . . .) and
(b1, b2, . . .) are real sequences that converge to a and b, respectively, then limn→∞(an + bn) = a+ b.
(This is shown later in Exercise 21.5.) This shows that d has all three of the properties required to
be a metric.

Exercise 20.11

Show that if d is a metric for X, then

d′(x, y) = d(x, y)/(1 + d(x, y))

is a bounded metric that gives the same topology of X. [Hint: If f(x) = x/(1 + x) for x > 0, use the
mean value theorem to show that f(a+ b)− f(b) ≤ f(a).]
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Solution:

Proof. First we show that d′ is a valid metric. Since d is a metric, we have that

d(x, y) ≥ 0

1 + d(x, y) ≥ 1 > 0 .

Hence clearly d′(x, y) = d(x, y)/(1 + d(x, y)) ≥ 0 as well. If x = y then d(x, y) = 0 so that

d′(x, y) =
d(x, y)

1 + d(x, y)
=

0

1 + 0
= 0 .

Conversely, if d′(x, y) = 0 then it has to be that d(x, y) = 0 as well since 1 + d(x, y) > 0. It then
must be that x = y since d is a metric. This shows part (1) of the definition of a metric.

part (2) is easy to show:

d′(x, y) =
d(x, y)

1 + d(x, y)
=

d(y, x)

1 + d(y, x)
= d′(y, x)

since again d is a metric so that d(x, y) = d(y, x).

For part (3) define the function f(x) = x/(1 + x) over the domain {x ∈ R | x ≥ 0} so that clearly
d′(x, y) = f(d(x, y)). We first show that f is monotonically increasing. The easiest way to do this
is to show that its derivative is always positive, from which monotonicity follows from elementary
calculus. Using the quotient rule, we have

f ′(x) =
1 · (1 + x)− x · 1

(1 + x)2
=

1 + x− x
(1 + x)2

=
1

(1 + x)2
.

Clearly we have x ≥ 0 so that 1 +x ≥ 1 > 0, and hence (1 +x)2 > 02 = 0 by Lemma 20.1.1. It then
follows that f ′(x) = 1/(1 + x)2 > 0, and thus f is monotonically increasing.

Now, for any a, b ≥ 0 we clearly have

1 + a ≤ 1 + a+ b+ b+ ab+ b2

1 + a ≤ 1 · (1 + a+ b) + b(1 + a+ b)

1 + a ≤ (1 + a+ b)(1 + b)

1

(1 + a+ b)(1 + b)
≤ 1

1 + a

since 1 + a ≥ 0 and 1 + a + b and 1 + b are both non-negative so that their product is as well. It
then follows that

f(a+ b)− f(b) =
a+ b

1 + a+ b
− b

1 + b
=

(a+ b)(1 + b)− b(1 + a+ b)

(1 + a+ b)(1 + b)

=
a+ ab+ b+ b2 − b− ab− b2

(1 + a+ b)(1 + b)
=

a

(1 + a+ b)(1 + b)

≤ a

1 + a
= f(a)

by what was just shown before since a ≥ 0. Hence we have f(a + b) ≤ f(a) + f(b). Since d is a
metric, we then of course have

d(x, z) ≤ d(x, y) + d(y, z)
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f(d(x, z)) ≤ f(d(x, y) + d(y, z)) (since f is monotonically increasing)

f(d(x, z)) ≤ f(d(x, y) + d(y, z))

≤ f(d(x, y)) + f(d(y, z)) (by what was just shown)

d′(x, z) ≤ d′(x, y) + d′(y, z) ,

for any x, y, z ∈ X, which of course shows part (3) of the definition. This completes the proof that
d′ is a valid metric.

It is easy to see that d′ is bounded by 1:

0 < 1

d(x, y) < 1 + d(x, y)

d(x, y)

1 + d(x, y)
< 1

d′(x, y) < 1

so that d′ is a bounded metric.

Now we must show that the metric topologies induced by d and d′ are the same. First we show
that the topology induced by d is finer than that induced by d′ using Lemma 20.2. So consider any
x ∈ X and any ε > 0. If ε ≥ 1 set δ = 999, otherwise set δ = ε/(1− ε) noting that in this case ε < 1
so that 0 < 1 − ε and hence δ > 0. Now consider any y ∈ Bd(x, δ) so that d(y, x) < δ. If ε ≥ 1
then of course d′(y, x) < 1 ≤ ε since we have previously shown the d′ is bounded by 1. On the other
hand, if ε < 1, then we have

d(y, x) < δ =
ε

1− ε
d(y, x)(1− ε) < ε

d(y, x)− εd(y, x) < ε

d(y, x) < ε+ εd(y, x) = ε(1 + d(y, x))

d(y, x)

1 + d(y, x)
< ε

d′(x, y) < ε .

Thus either was we have d′(y, x) < ε so that y ∈ Bd′(x, ε), which of course shows that Bd(x, δ) ⊂
Bd′(x, ε) since y was arbitrary. Since ε was arbitrary this shows the desired result that the topology
induced by d is finer than that induced by d′.

Now we show the other direction, i.e. that the d′ topology is also finer than the d topology, again
using Lemma 20.2. So consider any x ∈ X and ε > 0 again. This time set δ = ε/(1 + ε) noting that
δ > 0 follows trivially from the fact that ε > 0. Then, for any y ∈ Bd′(x, δ), we have that

d′(y, x) < δ =
ε

1 + ε
d(y, x)

1 + d(y, x)
<

ε

1 + ε

d(y, x)(1 + ε) < ε(1 + d(y, x))

d(y, x) + εd(y, x) < ε+ εd(y, x)

d(y, x) < ε

so that y ∈ Bd(x, ε). This of course shows that Bd′(x, δ) ⊂ Bd(x, ε), which in turn shows that the
d′ topology is finer than the d topology as desired. Since each topology is finer than the other, of
course they must be the same as desired.
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§21 The Metric Topology (continued)

Exercise 21.1

Let A ⊂ X. If d is a metric for the topology of X, show that d � A × A is a metric for the subspace
topology on A.

Solution:

Proof. Let us denote the restricted function d � A× A by d′. Clearly d′ is a metric on A, since for
x, y ∈ A we have d′(x, y) = d(x, y) and d has all the properties of a metric. We show that the metric
topology induced by d′ is the same as the subspace topology using Lemma 13.3 in both directions.

First we show that Bd′(x, ε) = A ∩Bd(x, ε) for any x ∈ A and ε > 0. For any y ∈ Bd′(x, ε) we have
that clearly y ∈ A since the metric d′(y, x) must be defined, and d(y, x) = d′(y, x) < ε so that also
y ∈ Bd(x, ε). Thus y ∈ A ∩ Bd(x, ε), and hence Bd′(x, ε) ⊂ A ∩ Bd(x, ε). For the other direction
suppose that y ∈ A∩Bd(x, ε) so that y ∈ A and y ∈ Bd(x, ε). Thus y and x are in A so that d′(y, x) is
defined and d′(y, x) = d(y, x) < ε, and hence y ∈ Bd′(x, ε). This shows that Bd′(x, ε) ⊃ A∩Bd(x, ε),
which in turn shows that the two sets are the same.

Now, clearly each basis element of the metric topology Bd′(x, ε) = A∩Bd(x, ε) is also a basis element
of the subspace topology by Lemma 16.1. Hence for any x ∈ A we have that Bm = Bd′(x, ε) is
a basis element of the metric topology and Bs = A ∩ Bd(x, ε) is a basis element of the subspace
topology. But Bm = Bs so that x ∈ Bs ⊂ Bm and x ∈ Bm ⊂ Bs so that each topology is finer than
the other by Lemma 13.3. Thus they are the same topologies.

Exercise 21.2

Let X and Y be metric spaces with metrics dX and dY , respectively. Let f : X → Y have the property
that for every pair of points x1, x2 of X,

dY (f(x1), f(x2)) = dX(x1, x2) .

Show that f is an imbedding. It is called an isometric imbedding of X in Y .

Solution:

First, let Z = f(X) and let f ′ denote the function f with the range restricted to Z so that clearly
f ′ is surjective. First we must show that f and therefore also f ′ is injective, from which it clearly
follows that f ′ is a bijection. So suppose that x1, x2 ∈ X where f(x1) = f(x2). Then we have that

dX(x1, x2) = dY (f(x1), f(x2)) = dY (f(x1), f(x1)) = 0

by property (1) of the metric dY , so that it must be that x1 = x2 since dX is a metric and
dX(x1, x2) = 0. This of course means that f and f ′ are injective and hence f ′ is bijective.

We show that f ′ and f ′−1 are both continuous using Theorem 21.1 since X and Z are both metric
spaces, noting that Z ⊂ Y is a metric space with metric dZ = dY � Z × Z by the previous exercise.
So consider any x ∈ X and any ε > 0, and let δ = ε. Then for any x1, x2 ∈ X where dX(x1, x2) < δ
we have

dZ(f ′(x1), f ′(x2)) = dY (f(x1), f(x2)) = dX(x1, x2) < δ = ε ,
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which suffices to show that f ′ is continuous. A similar argument shows that f ′−1 : Z → X is
continuous. For y1, y2 ∈ Z and ε > 0, again let δ = ε and suppose that dZ(y1, y2) < δ. Let
x1 = f ′−1(y1) and x2 = f ′−1(y2). Then we have

dX(f ′−1(y1), f ′−1(y2)) = dX(x1, x2) = dY (f(x1), f(x2)) = dY (f ′(x1), f ′(x2))

= dY (f ′(f ′−1(y1)), f ′(f ′−1(y2))) = dY (y1, y2)

= dZ(y1, y2) < δ = ε ,

which of course shows that f ′−1 is also continuous. This shows that f ′ is a homeomorphism so that
f is an imbedding as desired.

Exercise 21.3

Let Xn be a metric space with metric dn, for n ∈ Z+.

(a) Show that

ρ(x, y) = max {d1(x1, y1), . . . , dn(xn, yn)}

is a metric for the product space X1 × · · · ×Xn.

(b) Let d̄i = min {di, 1}. Show that

D(x, y) = sup
{
d̄i(xi, yi)/i

}
is a metric for the product space

∏
Xi.

Solution:

Lemma 21.3.1. Suppose that (xα)α∈J and (yα)α∈J are sequences of real numbers indexed by J and
that {xα} and {yα} are bounded above so that sup {xα} and sup {yα} exist. We assert the following
facts:

(1) If xα ≤ yα for each α ∈ J , then sup {xα} ≤ sup {yα}.

(2) sup {xα + yα} exists and sup {xα + yα} ≤ sup {xα}+ sup {yα}.

Proof. The proofs of both parts are quite simple. Regarding part (1) we have that xβ ≤ yβ ≤
sup {yα} for any β ∈ J so that clearly sup {yα} is an upper bound of the set {xα}. It then follows
by the definition of the supremum as the least upper bound that sup {xα} ≤ sup {yα} as desired.

For part (2) consider any β ∈ J . Clearly xβ ≤ sup {xα} and yβ ≤ sup {yα} so that

xβ + yβ ≤ sup {xα}+ sup {yα} .

Since β was arbitrary, this shows that sup {xα}+ sup {yα} is an upper bound for the set {xα + yα}.
Therefore sup {xα + yα} ≤ sup {xα}+ sup {yα} as desired by the definition of the supremum as the
least upper bound.

Main Problem.

(a)
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Proof. First we must show that ρ is a metric at all. In what follows suppose that x, y, z ∈ X1×· · ·×Xn

and that k and m are elements of {1, . . . , n} such that

ρ(x, y) = max {d1(x1, y1), . . . , dn(xn, yn)} = dk(xk, yk)

and

ρ(x, z) = max {d1(x1, z1), . . . , dn(xn, zn)} = dm(xm, zm) .

First, we have ρ(x, y) = dk(xk, yk) ≥ 0 since dk is a metric. If x = y then of course xk = yk so that
ρ(x, y) = dk(xk, yk) = 0. Now suppose that ρ(x, y) = 0 and consider any l ∈ {1, . . . , n}. Then we
have that dl(xl, yl) ≥ 0 and that dl(xl, yl) ≤ ρ(x, y) = 0, and hence it must be that dl(xl, yl) = 0 so
that xl = yl since dl is a metric. Since l was arbitrary, this shows that x = y, which shows that ρ
satisfies part (1) of the definition of a metric.

As usual, part (2) of the definition is the easiest to show since

ρ(x, y) = max {d1(x1, y1), . . . , dn(xn, yn)} =

= max {d1(y1, x1), . . . , dn(yn, xn)} =

= ρ(y, x) ,

as we have that each dl(xl, yl) = dl(yl, xl) since dl is a metric. Lastly, for part (3) we have

ρ(x, z) = dm(xm, zm) ≤ dm(xm, ym) + dm(ym, zm) ≤ ρ(x, y) + ρ(y, z)

since of course dm is a metric. This completes the proof that ρ is a proper metric.

Now we show that both topologies are the same using Lemma 13.3. So suppose that x ∈ X1×· · ·×Xn

and Bρ(x, ε) is any basis element of the metric topology and let B =
∏n
i=1Bdi(xi, ε), which is clearly

a basis element of the product topology that contains x since each Bdi(xi, ε) is open in the metric
space Xi. Now suppose that y ∈ B so that each yi ∈ Bdi(xi, ε). So, for every i ∈ {1, . . . , n}, we
have di(yi, xi) < ε so that clearly

ρ(y, x) = max {d1(y1, x1), . . . , dn(yn, xn)} < ε ,

which shows that y ∈ Bρ(x, ε). This shows that x ∈ B ⊂ Bρ(x, ε) so that Bρ(x, ε) the product
topology is finer than the metric topology by Lemma 13.3.

Now consider again any x ∈ X1 × · · · × Xn and any basis element B =
∏n
i=1 Ui of the product

topology. Then of course each Ui is open in Xi and xi ∈ Ui so that there is a ball Bdi(xi, εi) such
that Bdi(xi, εi) ⊂ Ui by Lemma 20.4.1. Let ε = min {ε1, . . . , εn} and consider the basis element
Bρ(x, ε) in the metric space induced by ρ. Clearly x ∈ Bρ(x, ε) so consider any y ∈ Bρ(x, ε) so that

ρ(y, x) = max {d1(y1, x1), . . . , dn(yn, xn)} < ε .

Then, for any i ∈ {1, . . . , n}, we have

di(yi, xi) ≤ ρ(x, ε) < ε ≤ εi

so that yi ∈ Bdi(xi, εi) ⊂ Ui. Since this is true of any i ∈ {1, . . . , n}, it follows that y ∈
∏n
i=1 Ui = B.

We can then conclude that x ∈ Bρ(x, ε) ⊂ B since y was arbitrary. This shows that the ρ-metric
topology is finer than the product topology, again by Lemma 13.3. Hence the two topologies are
the same as desired.

(b)
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Proof. First we show that the metric D is well-defined and is in fact a metric. In what follows
suppose that x, y, z ∈

∏
Xi. For any j ∈ Z+ we have that 0 < 1 ≤ j so that 1/j ≤ 1. We also have

that d̄j(xj , yj) = min {dj(xj , yj), 1} ≤ 1 so that d̄j(xj , yj)/j ≤ 1/j ≤ 1. Hence 1 is an upper bound
for the set

{
d̄i(xi, yi)/i

}
since j was arbitrary, so that

D(x, y) = sup
{
d̄i(xi, yi)/i

}
exists and hence D is well defined.

To show part (1) of the definition of a metric, pick any j ∈ Z+ so that clearly d̄j(xj , yj) ≥ 0 and
hence d̄j(xj , yj)/j ≥ 0 also since j ≥ 1 > 0. Thus we have

D(x, y) = sup
{
d̄i(xi, yi)/i

}
≥ d̄j(xj , yj)/j ≥ 0 .

If x = y then we have that xj = yj for any j ∈ Z+. Thus d̄j(xj , yj) = 0 since d̄j is a standard
bounded metric, and therefore

d̄j(xj , yj)

j
=

0

j
= 0 .

Since j was arbitrary, this shows that

D(x, y) = sup

{
d̄i(xi, yi)

j

}
= sup {0} = 0 .

On the other hand, if D(x, y) = 0 then, for any j ∈ Z+, we have

0 ≤ d̄j(xj , yj)

j
≤ sup

{
d̄i(xi, yi)

i

}
= D(x, y) = 0 .

This shows that d̄j(xj , yj)/j = 0 so that clearly d̄j(xj , yj) = 0 as well, from which it follows that
xj = yj since d̄j is a standard bounded metric. Since j was arbitrary, this shows that x = y, which
completes the proof of part (1).

Showing part (2) is quite easy:

D(x, y) = sup

{
d̄i(xi, yi)

i

}
= sup

{
d̄i(yi, xi)

i

}
= D(x, y)

since d̄i is a standard bounded metric for every i ∈ Z+.

For part (3) consider any j ∈ Z+. Then

d̄j(xj , zj) ≤ d̄j(xj , yj) + d̄j(yj , zj)

since d̄j is a standard bounded metric. Then of course

d̄j(xj , zj)

j
≤ d̄j(xj , yj) + d̄j(yj , zj)

j
=
d̄j(xj , yj)

j
+
d̄j(yj , zj)

j

since j ≥ 1 > 0. Then, since j was arbitrary this shows that

D(x, z) = sup

{
d̄i(xi, zi)

i

}
≤ sup

{
d̄i(xi, yi)

i
+
d̄i(yi, zi)

i

}
≤ sup

{
d̄i(xi, yi)

i

}
+ sup

{
d̄i(yi, zi)

i

}
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= D(x, y) +D(y, z)

by both parts of Lemma 21.3.1. This of course completes the proof that D is a well defined metric.

Now we show that the metric topology induced by D is the same as the product topology on∏
Xi, which we do using Lemma 13.3. So consider any x ∈

∏
Xi and any basis element of the

metric topology BD(x, ε) centered at x. Clearly there is a positive integer N large enough such that
N > 2/ε, and so 1/N < ε/2. Now define the sets

Ui =

{
Bdi(xi, ε/2) i < N

R i ≥ N

for i ∈ Z+, and the set B =
∏
Ui. Clearly B is a basis element of the product topology since each

Ui is open in Xi and Ui 6= R for only finitely many i, namely when i < N . Clearly also x ∈ B since
each xi ∈ Ui. Now suppose that y ∈ B and consider any j ∈ Z+. If j < N then we of course have
that yj ∈ Uj = Bdj (xj , ε/2) so that

d̄j(yj , xj)

j
≤ d̄j(yj , xj) ≤ dj(yj , xj) < ε/2

since j ≥ 1. If j ≥ N then we have 1/j ≤ 1/N so that

d̄j(yi, xi)

j
≤ 1

j
≤ 1

N
<
ε

2

since d̄j(yj , xj) ≤ 1. Since j was arbitrary, this shows that

D(y, x) = sup

{
d̄i(yi, xi)

i

}
≤ ε

2
< ε

so that y ∈ BD(x, ε). Therefore x ∈ B ⊂ BD(x, ε) since y was arbitrary. Hence the product topology
is finer than the metric topology by Lemma 13.3.

Now again consider any x ∈
∏
Xi and any basis element B =

∏
Ui of the product topology where

x ∈ B. Then of course each Ui is open in Xi and there is a finite subset J ⊂ Z+ where Ui = R
for every i /∈ J . Of course also x ∈ Ui for each i ∈ Z+. For any j ∈ J we have that x ∈ Uj and
Uj is open in Xi so that there is a basis element Bdj (xj , εj) such that Bdj (xj , εj) ⊂ Uj . So let
ε = min({εj | j ∈ J} ∪ {1}) and k = max {j | j ∈ J}, which both exists since J is finite, and also
clearly ε > 0.

Now consider the set BD(x, ε/k), which is a basis element of the metric topology that clearly contains
x. Suppose that y ∈ BD(x, ε/k) so that D(y, x) < ε/k. Then, for any j ∈ Z+, clearly yi ∈ R = Ui if
j 6= J . On the other hand, if j ∈ J then we have that k ≥ j so that 1/k ≤ 1/j. We also have

d̄(yj , xj)

j
≤ sup

{
d̄i(yi, xi)

i

}
= D(y, x) <

ε

k
≤ ε

j
≤ 1

j

since 1/k ≤ 1/j and ε ≤ 1. Therefore d̄j(yj , xj) < 1 so that it must be that d̄j(yj , xj) = dj(yj , xj).
Hence we have dj(yj , xj) = d̄j(yj , xj) < ε ≤ εj so that yj ∈ Bdj (xj , εj) ⊂ Uj . Therefore yi ∈ Ui for
all i ∈ Z+ so that y ∈

∏
Ui = B. Since y was arbitrary, this shows that x ∈ BD(x, ε) ⊂ B, which in

turn proves that the metric topology is also finer than the product topology by Lemma 13.3. Thus
the two topologies must be the same.

Exercise 21.4
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Show that R` and the ordered square satisfy the first countability axiom. (This result does not, of course,
imply that they are metrizable.)

Solution:

Proof. Suppose that x is any element of R`. Define the sets Un = [x, x+ 1/n) for n ∈ Z+. Clearly
this is a countable collection of neighborhoods of x since each Un is a basis element of R` and x ∈ Un.
Now consider any other neighborhood U of x so that there is a basis element B = [a, b) that contains
x and B ⊂ U . Thus of course a ≤ x < b. There is clearly a positive integer N large enough that
N > 1/(b− x), noting that b− x > 0 since x < b. Now consider any y ∈ UN = [x, x+ 1/N) so that
x ≤ y < x+ 1/N . Then we have

1

b− x
< N

1

N
< b− x (since both N ≥ 1 > 0 and b− x > 0)

x+
1

N
< b

so that y ≤ x + 1/N < b. As we also clearly have a ≤ x ≤ y it follows that y ∈ [a, b) = B ⊂ U .
Thus UN ⊂ U since y was arbitrary. This shows that R` satisfies the first countability axiom since
U and x were arbitrary.

Now recall that the ordered square is the set I×I where I = [0, 1] with the dictionary order topology.
In what follows let ≺ denote the dictionary order on I × I. So suppose that x = x1 × x2 ∈ I × I so
that of course 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1. Now define the following

an,1 =

{
max {x1 − 1/n, 0} x2 = 0

x1 x2 > 0
bn,1 =

{
min {x1 + 1/n, 1} x2 = 1

x1 x2 < 1

an,2 = max {x2 − 1/n, 0} bn,2 = min {x2 + 1/n, 1}

for n ∈ Z+, which are all well defined since it is never the case that x2 < 0 or x2 > 1. Also define
an = an,1 × an,2 and bn = bn,1 × bn,2 for n ∈ Z+. Lastly, define the sets

Un =


[an,bn) x1 = x2 = 0

(an,bn] x1 = x2 = 1

(an,bn) otherwise

for n ∈ Z+, noting that the intervals are in the dictionary order so that these are basis elements of
the dictionary order topology and so are open.

As it is not obvious with all the different cases going on, we now show that x ∈ Un for every n ∈ Z+.
So consider any n ∈ Z+.

Case: x2 = 0. Then we have bn,1 = x1 and x2 < min {x2 + 1/n, 1} = bn,2 since x2 = 0 < 1 and
clearly x2 < x2 + 1/n. This shows that x ≺ bn.

Case: x1 = 0. Then we clearly have that x1−1/n < x1 = 0, and hence an,1 = max {x1 − 1/n, 0} =
0 = x1. Also clearly an,1 = 0 = x2 since x2 = 0. Hence an = 0 × 0 = x so that an 4 x is
true. This shows that x ∈ [an,bn) = Un.

Case: x1 > 0. Then we have x1−1/n < x1 and 0 < x1 so that an,1 = max {x1 − 1/n, 0} < x1.
Therefore an ≺ x so that x ∈ (an,bn) = Un.

Case: x2 = 1. Then we have an,1 = x1 and an,2 = max {x2 − 1/n, 0} < x2 since x2 = 1 > 0 and
clearly x2 > x2 − 1/n. This shows that an ≺ x.
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Case: x1 = 1. Then x1 + 1/n > x1 = 1 so that bn,1 = min {x1 + 1/n, 1} = 1 = x1. Likewise
we have that x2 + 1/n > x2 = 1 so that bn,2 = min {x2 + 1/n, 1} = 1. Thus bn = 1× 1 = x
and hence x 4 bn is true. Therefore x ∈ (an,bn] = Un.

Case: x1 < 1. Then we have x1 + 1/n > x1 and 1 > x1 so that bn,1 = min {x1 + 1/n, 1} > x1.
Therefore x ≺ bn so that x ∈ (an,bn) = Un.

Case: 0 < x2 < 1. Then an,1 = x1, and x2−1/n < x2 and 0 < x2 so that an,2 = max {x2 − 1/n, 0} <
x2. This shows that an ≺ x. Similarly bn,1 = x1, and x2 + 1/n > x2 and 1 > x2 so that
bn,2 = min {x2 + 1/n, 1} > x2. This shows that x ≺ bn. Therefore we have x ∈ (an,bn) = Un.

Hence x ∈ Un in all of the exhaustive cases so that {Un}n∈Z+
is a countable collection of neighbor-

hoods of x.

Lastly consider any other neighborhood of U of x in the dictionary order topology. Then there is a
basis element B of the dictionary order topology such that x ∈ B ⊂ U . Then we have that either
B = [c,d) where c = 0, B = (c,d), or B = (c,d] where d = 1 (where we denote 1 = 1 × 1). Now
we set Na, Nb ∈ Z+ based on the different cases we might have. First, we know that no matter what
we have c 4 x since x ∈ B. We therefore have:

Case: c1 < x1. If x2 > 0 then set Na = 1, and otherwise x2 = 0 and there is an Na large enough
such that Na > 1/(x1 − c1), noting that this is defined since x1 − c1 > 0.

Case: c1 = x1. Then it has to be that c2 ≤ x2 since c 4 x. If c2 = x2 then it must be that B = [c,d)
and c = x = 0, so just set Na = 1. On the other hand, if c2 < x2, then there must be an Na large
enough such that Na > 1/(x2 − c2), noting that x2 − c2 > 0.

Now we set Nb in an analogous way, noting that we have x 4 d no matter what since x ∈ B:

Case: x1 < d1. If x2 < 1 then simply set Nb = 1, and otherwise x2 = 1 and there is an Nb large
enough such that Nb > 1/(d1 − x1), noting that d1 − x1 > 0.

Case: x1 = d1. Then it must be that x2 ≤ d2 since x 4 d. If x2 = d2 then it has to be that
B = (c,d] and x = d = 1, so just set Nb = 1. On the other hand, if x2 < d2, then there is an Nb
large enough such that Nb > 1/(d2 − x2), noting that d2 − x2 > 0.

Now let N = max {Na, Nb}, and we claim that UN ⊂ B in every case. We have again know that
c 4 x so that we have:

Case: c1 < x1. If x2 > 0 then c1 < x1 = aN,1. If x2 = 0 then we have N ≥ Na > 1/(x1 − c1),
from which it readily follows that c1 < x1 − 1/n ≤ aN,1. Thus either way we have c1 < aN,1 so that
c ≺ aN .

Case: c1 = x1. If also c2 = x2 then again it has to be that B = [c,d) and c = x = 0. In this case it
was established above that UN = [aN ,bN ) and aN = 0. So we have here that c = 0 4 0 = aN . On
the other hand if c2 < x2 then N ≥ Na > 1/(x2−c2), from which it follows that c2 < x2−1/n ≤ aN,2.
Also c1 = x1 = aN,1 so that c ≺ aN since 0 ≤ c2 < x2.

We also of course again have that x 4 d so that

Case: x1 < d1. If x2 < 1 then bN,1 = x1 < d1. If x2 = 1 then we have N ≥ Nb > 1/(d1 − x1), from
which it follows that bN,1 ≤ x1 + 1/N < d1. Hence either was bN,1 < d1 so that bN ≺ d.

Case: x1 = d1. If also x2 = d2 then again it has to be that B = (c,d] and d = x = 1. In this case
it was established above that UN = (aN ,bN ] and bN = 1. So we have here that bN = 1 4 1 = d.
On the other hand if x2 < d2 then we have N ≥ Nb > 1/(d2 − x2), from which it readily follows
that bN,2 ≤ x2 + 1/N < d2. We also have bN,1 = x1 = d1 so that bN ≺ d since x2 < d2 ≤ 1.

Therefore in every case we have that c ≺ aN except when c = x = aN = 0 so that UN = [0,bN ) and
B = [0,d). Similarly we always have bN ≺ d except when bN = x = d = 1 so that UN = (aN ,1]
and B = (c,1]. When c = x = aN = 0 we cannot have x = 1, so that bN ≺ d. Analogously, when
bN = x = d = 1 it cannot be that x = 0, and hence c ≺ aN . Otherwise we have UN = (aN ,bN ),
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c ≺ aN , and bN ≺ d so that in every case x ∈ UN ⊂ B ⊂ U . Since U was an arbitrary neighborhood
and x was also arbitrary, this shows that I × I satisfies the first countability axiom as desired.

Exercise 21.5

Theorem. Let xn → x and yn → y in the space R. Then

xn + yn → x+ y

xn − yn → x− y
xnyn → xy ,

and provided that each yn 6= 0 and y 6= 0,

xn/yn → x/y .

[Hint: Apply Lemma 21.4; recall from the exercises of §19 that if xn → x and yn → y, then xn × yn →
x× y.]

Solution:

Proof. First, we have that the sequence xn × yn converges to x× y in the product space R× R by
Exercise 19.6 since both xn → x and yn → y in R. Now suppose that f : R× R→ R is continuous.
Then we have that

lim
n→∞

f(xn × yn) = f
(

lim
n→∞

xn × yn
)

= f(x× y)

by Theorem 21.3. Now, we have that addition, subtraction, and multiplication are all continuous
functions from R × R to R by Lemma 21.4. It then follows that for the continuous function + :
R× R→ R we have

lim
n→∞

(xn + yn) = lim
n→∞

+(xn × yn) = +(x× y) = x+ y .

It similarly follows that xn − yn → x− y and xnyn → xy as desired.

Regarding the quotient, we note that (yn) is a sequence in the subspace topology R−{0} since each
yn 6= 0. We also note that y 6= 0 and hence also y ∈ R− {0} so that the sequence (yn) converges to
a point still within the space R − {0}. It then again follows that xn × yn → x × y in the product
space R× (R− {0}) by Exercise 19.6. Since the quotient function is continuous from R× (R− {0})
to R by Lemma 21.4, it then follows as before that xn/yn → x/y by Theorem 21.3 just as we would
like.

Exercise 21.6

Define fn : [0, 1] → R by the equation fn(x) = xn. Show that the sequence (fn(x)) converges for each
x ∈ [0, 1], but that the sequence (fn) does not converge uniformly.

Solution:

First we build up a little more theory
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Definition 21.6.1. Let fn : X → Y be a sequence of functions from a set X to topological space Y .
We say that the sequence of functions converges pointwise to a function f : X → Y if the sequence
(fn(x)) converges to f(x) for every x ∈ X.

Lemma 21.6.2. Let fn : X → Y be a sequence of functions from a set X to topological space Y . If
Y is a Hausdorff space and (fn) converges pointwise to f , then f is unique.

Proof. Suppose that (fn) converges pointwise to two distinct functions f and g. Since they are
distinct, there is an x0 ∈ X where f(x0) 6= g(x0). But then the sequence (fn(x0)) converges to
both of the distinct points f(x0) and g(x0) since (fn) converges pointwise to both f and g. As
Y is Hausdorff, this violates Theorem 17.10 so that (fn) can only converge pointwise to a unique
function.

Lemma 21.6.3. Let fn : X → Y be a sequence of functions from a set X to metric space Y with
metric d. If (fn) converges uniformly to a function f , then it also converges pointwise to f .

Proof. Suppose that (fn) converges uniformly to f and consider any x0 ∈ X and ε > 0. Then there
is an N ∈ Z+ where d(fn(x), f(x)) < ε for all n > N and x ∈ X. Then, since x0 ∈ X, we have
d(fn(x0), f(x0)) < ε for all n ≥ N + 1 since then n > N . This shows that the sequence (fn(x0))
converges to f(x0) since ε was arbitrary. Since x0 was arbitrary, this shows that (fn) converges
pointwise to f as desired.

Main Problem.

Proof. First we show that the sequence (fn) converges pointwise to the function g : [0, 1] → R
defined by

g(x) =

{
0 x < 1

1 x = 1

for x ∈ [0, 1]. This of course shows that (fn(x)) converges for each x ∈ [0, 1] by Definition 21.6.1.

So consider any such x ∈ [0, 1] so that we have the following exhaustive cases:

Case: x = 0. Then fn(x) = xn = 0n = 0 for any n ∈ Z+. Thus clearly the sequence (fn(x)) =
(0, 0, . . .) converges to 0.

Case: x = 1. Somewhat similarly we have fn(x) = xn = 1n = 1 for every n ∈ Z+ so that clearly the
sequence (fn(x)) = (1, 1, . . .) converges to 1.

Case: 0 < x < 1. Here we show that, for any x ∈ (0, 1), that the sequence (fn(x)) is strictly
decreasing and that it is bounded below by 0. We prove this using induction on n. So first for n = 1
we have

0 < x < 1

0 < x2 < x (since x > 0)

0 < f2(x) < f1(x)

0 < fn+1(x) < fn(x) .

For the inductive step suppose that fn(x) > 0 and fn+1(x) < fn(x). Then we of course have
0 < fn(x) = xn so that clearly 0 = x · 0 < x · xn = xn+1 = fn+1(x) as well since x > 0. We also
clearly have

fn+1 < fn(x)

xn+1 < xn
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x · xn+1 < x · xn (since x > 0)

xn+2 < xn+1

fn+2(x) < fn+1(x) ,

which completes the inductive step.

Hence the sequence is strictly decreasing (and therefore of course non-increasing) and bounded below
by zero, from which it follows that it converges by a theorem analogous in an obvious way to that
shown in Exercise 21.11 part (a). So suppose that the sequence converges to the value a. Then of
course also the sequence (fn+1(x)) must also converge to a. Thus we have

a = lim
n→∞

fn+1(x) = lim
n→∞

xn+1 = lim
n→∞

x · xn = lim
n→∞

xfn(x) = x lim
n→∞

fn(x) = xa ,

where we note that clearly the function h(y) = xy for y ∈ R is clearly continuous so that

lim
n→∞

xfn(x) = lim
n→∞

h(fn(x)) = h
(

lim
n→∞

fn(x)
)

= x lim
n→∞

fn(x)

by Theorem 21.3. Therefore we have a = xa so that it would be that 1 = x if a were any nonzero
value. However, we know that x < 1 so it must be that a = 0. This completes the proof that (fn)
converges pointwise to g.

It then becomes fairly easy to show that (fn(x)) does not converge uniformly. Consider any function
f : [0, 1] → R. If f 6= g then (fn) cannot converge pointwise to f since it was shown to converge
pointwise to g above and g is unique by Lemma 21.6.2 since R is Hausdorff. Hence (fn) cannot
converge uniformly to f by the converse of Lemma 21.6.3 since it does even not converge pointwise.
On the other hand if f = g then clearly f = g has a discontinuity at 1 so that it is not continuous.
However each fn(x) = xn is continuous on [0, 1] by elementary calculus. This shows that (fn) cannot
converge uniformly to f = g since this would violate Theorem 21.6. Therefore (fn) does converge
uniformly to any function since f was arbitrary.

Exercise 21.7

Let X be a set, and let fn : X → R be a sequence of functions. Let ρ̄ be the uniform metric on the
space RX . Show that the sequence (fn) converges uniformly to the function f : X → R if any only if
the sequence converges to f as elements of the metric space (RX , ρ̄).

Solution:

Proof. (⇒) First suppose that (fn) converges uniformly to f in the functional sense. Consider any
ε > 0. Then, by the definition of uniform convergence there is an N ∈ Z+ where

d(fn(x), f(x)) < ε/2

for all n > N and x ∈ X, noting that d of course denotes the usual metric on R. Now consider any
x0 ∈ X and an n ≥ N + 1 so that n > N . Then of course we have

d̄(fn(x0), f(x0)) = min {d(fn(x0), f(x0)), 1} ≤ d(fn(x0), f(x0)) < ε/2 ,

from which it follows that

ρ̄(fn, f) = sup
{
d̄(fn(x), f(x)) | x ∈ X

}
≤ ε/2 < ε
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since x0 was arbitrary. This shows that fn ∈ Bρ̄(f, ε). Since n ≥ N + 1 and ε > 0 were both
arbitrary, this shows that the sequence (fn) converges to f as elements of the metric space RX .

(⇐) Now suppose that (fn) converges to f in the uniform metric space RX . Consider any ε > 0 and
let δ = min {ε, 1}. Then, since Bρ̄(f, δ) is a neighborhood of f in the uniform metric space, there is
an N ∈ Z+ where fn ∈ Bρ̄(f, δ) for all n ≥ N . So consider any n > N and x0 ∈ X. Then clearly
fn ∈ Bρ̄(f, δ) so that ρ̄(fn, f) < δ. Hence

d̄(fn(x0), f(x0)) ≤ sup
{
d̄(fn(x), f(x)) | x ∈ X

}
= ρ̄(fn, f) < δ ≤ 1

so it has to be that d(fn(x0), f(x0)) = d̄(fn(x0), f(x0)) since

d̄(fn(x0), f(x0)) = min {d(fn(x0), f(x0)), 1} < 1 .

Therefore we have

d(fn(x0), f(x0)) = d̄(fn(x0), f(x0)) ≤ ρ̄(fn, f) < δ ≤ ε .

Since n > N , x0 ∈ X, and ε > 0 were arbitrary, this shows that (fn) converges to f uniformly in
the functional sense.

Exercise 21.8

Let X be a topological space and let Y be a metric space. Let fn : X → Y be a sequence of continuous
functions. Let xn be a sequence of points of X converging to x. Show that if the sequence (fn) converges
uniformly to f , then (fn(xn)) converges to f(x).

Solution:

Proof. Suppose that (fn) converges to f uniformly and let d denote the metric for Y . Consider any
ε > 0. Since (fn) converges to f uniformly there is an N1 ∈ Z+ where d(fn(x′), f(x′)) < ε/2 for
any n > N1 and x′ ∈ X. We also know from the uniform limit theorem (Theorem 21.6) that f is
continuous since each fn is continuous. It then follows from Theorem 21.3 that the sequence (f(xn))
converges to f(x) since xn → x. Hence there is an N2 ∈ Z+ such that d(f(xn), f(x)) < ε/2 for all
n ≥ N2.

So set N = max {N1 + 1, N2} and consider any n ≥ N . Then of course n ≥ N ≥ N1 + 1 > N1 and
xn ∈ X so that

d(fn(xn), f(xn)) < ε/2 .

We also have that n ≥ N ≥ N2 so that

d(f(xn), f(x)) < ε/2 .

We then have

d(fn(xn), f(x)) ≤ d(fn(xn), f(xn)) + d(f(xn), f(x)) <
ε

2
+
ε

2
= ε

since d is a metric, and so fn(xn) ∈ Bd(f(x), ε). Since n ≥ N and ε > 0 were arbitrary, we have
shown that the sequence (fn(xn)) converges to f(x) in the metric space Y by definition.

Exercise 21.9
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Let fn : R→ R be the function

fn(x) =
1

n3[x− (1/n)]2 + 1
.

See Figure 21.1. Let f : R→ R be the zero function.

(a) Show that fn(x)→ f(x) for each x ∈ R.

(b) Show that fn does not converge uniformly to f . (This shows that the converse of Theorem 21.6
does not hold; the limit function f may be continuous even though the convergence is not uniform.)

Solution:

(a)

Proof. This is easy to show by evaluating the limit using techniques from elementary calculus. Fix
x ∈ R and first suppose that x 6= 0. Clearly 1/n → 0 as n → ∞ so that [x − (1/n)]2 → x2. Since
x2 > 0 it follows that n3[x− (1/n)]2 → n3x2 →∞ as n→∞. Hence the overall function

fn(x) =
1

n3[x− (1/n)]2 + 1
→ 1

∞+ 1
→ 0 = f(x)

as n → ∞. Of course this is a little informal, but it can be justified rigorously using nothing more
than Exercise 21.5. If x = 0 then we clearly have

fn(x) = fn(0) =
1

n3[−(1/n)]2 + 1
=

1

n3/n2 + 1
=

1

n+ 1
→ 0 = f(x)

as n→∞.

(b)

Proof. Let ε = 1/2 and consider any N ∈ Z+ and let n = N + 1 so of course n > N . Also set
x = 1/n. Then we have

fn(x) =
1

n3[x− (1/n)]2 + 1
=

1

n3[(1/n)− (1/n)]2 + 1
=

1

n3 · 0 + 1
=

1

1
= 1

whereas of course f(x) = 0. We therefore have

d(fn(x), f(x)) = d(1, 0) = |1− 0| = 1 ≥ 1/2 = ε .

This shows the negation of the definition of uniform convergence so that (fn) does not converge
uniformly to f as desired.

Note that this also shows that (fn) does not uniformly converge to any function at all since, if it did,
it can only converge uniformly to f since this is the only function to which it converges pointwise.
This follows from Lemmas 21.6.2 and 21.6.3 as in Exercise 21.6.

Exercise 21.10

Using the closed set formulation of continuity (Theorem 18.1), show that the following are closed subsets
of R2:

A = {x× y | xy = 1} ,
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S1 =
{
x× y | x2 + y2 = 1

}
,

B2 =
{
x× y | x2 + y2 ≤ 1

}
.

The set B2 is called the (closed) unit ball in R2.

Solution:

Proof. Regarding the set A, the function f : R × R → R defined by f(x × y) = xy is simply
the multiplication function, which is continuous by Lemma 21.4. Clearly the set A = f−1({1})
by definition. We also have that {1} is closed in R by Theorem 17.8 since R is Hausdorff. Thus
A = f−1({1}) is closed in R× R = R2 by Theorem 18.1 since f is continuous.

For S1, let d denote the usual euclidean metric on R×R, which we know induces the same topology
as the product topology. We also know from Exercise 20.3 that d : R × R → R is continuous. The
function f : R× R→ R by

f(x× y) = d(x, y) · d(x, y) = [d(x, y)]2 =
[√

x2 + y2
]2

= x2 + y2 .

is also then continuous by Theorem 21.5 being the product of two continuous functions. As previously
mentioned, the finite set {1} is closed in R. We also have that S1 = f−1({1}) by definition, which
then also must be closed in R× R = R2 again by Theorem 18.1 since f continuous.

Regarding the closed unit ball B2, define f = d ·d as above for S1, which is of course still continuous.
Define the subset C = {x ∈ R | 0 ≤ x ≤ 1} of R. We claim that B2 = f−1(C). This is pretty obvious
since clearly 0 ≤ f(x × y) = x2 + y2 ≤ 1 for any x × y ∈ B2 by definition so that f(x × y) ∈ C
and hence x× y ∈ f−1(C). Conversely, for any x× y ∈ f−1(C), we have that f(x× y) ∈ C so that
0 ≤ f(x × y) = x2 + y2 ≤ 1 so that x × y ∈ B2 by definition. This shows the desired equality of
B2 and f−1(C). As it is trivial to show that C is closed in R, and f is continuous, it follows that
B2 = f−1(C) is also closed in R× R = R2, again by Theorem 18.1.

Exercise 21.11

Prove the following standard facts about infinite series:

(a) Show that if (sn) is a bounded sequence of real numbers and sn ≤ sn+1 for each n, then (sn)
converges.

(b) Let (an) be a sequence of real numbers; define

sn =

n∑
i=1

ai .

If sn → s, we say that the infinite series

∞∑
i=1

ai

converges to s also. Show that if
∑
ai converges to s and

∑
bi converges to t, then

∑
(cai + bi)

converges to cs+ t.

(c) Prove the comparison test for infinite series: If |ai| ≤ bi for each i, and if the series
∑
bi

converges, then the series
∑
ai converges. [Hint: Show that the series

∑
|ai| and

∑
ci converge,

where ci = |ai|+ ai.]
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(d) Given a sequence of functions fn : X → R, let

sn(x) =

n∑
i=1

fi(x) .

Prove the Weierstrass M-test for uniform convergence: If |fi(x)| ≤ Mi for all x ∈ X and all
i, and if the series

∑
Mi converges, then the sequence (sn) converges uniformly to a function

s. [Hint: Let rn =
∑∞
i=n+1Mi. Show that if k > n, then |sk(x)− sn(x)| ≤ rn; conclude that

|s(x)− sn(x)| ≤ rn.]

Solution:

(a)

Proof. Clearly image of the sequence S = {sn | n ∈ Z+} is a set of real numbers that is bounded
above since the sequence is bounded above. Therefore s = supS exists, noting that of course sn ≤ s
for any n ∈ Z+ since sn ∈ S. We claim that sn → s. So consider any ε > 0 so that clearly s− ε < s,
and hence s − ε cannot be an upper bound of S (since s is the least upper bound). Thus there is
an N ∈ Z+ where s − ε < sN . Then, for any n ≥ N we have that s − ε < SN ≤ sn ≤ s since the
sequence is non-decreasing. Thus we have

s− ε < sn

s− sn < ε

|s− sn| < ε

d(sn, s) < ε

since s ≥ sn, where d denotes the usual metric on R. Hence sn ∈ Bd(s, ε), which shows that the
sequence converges to s since n ≥ N and ε were arbitrary.

(b)

Proof. Define the partials sums

sn =

n∑
i=1

ai tn =

n∑
i=1

bi

of
∑
ai and

∑
bi so that sn → s and tn → t by the definition of infinite series. Also define the

constant sequence cn = c for real c, so that of course cn → c. For any n ∈ Z+, we of course have

cnsn + tn = c

n∑
i=1

ai +

n∑
i=1

bi =

n∑
i=1

cai +

n∑
i=1

bi =

n∑
i=1

(cai + bi)

since these are just finite sums. It then follows from what was shown in Exercise 21.5 that

∞∑
i=1

(cai + bi) = lim
n→∞

n∑
i=1

(cai + bi) = lim
n→∞

(cnsn + tn) = cs+ t

as desired.

(c)
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Proof. Denote the partial sums

sn =

n∑
i=1

|ai| tn =

n∑
i=1

bi .

We know that (tn) converges by the definition of an infinite series, since
∑
bi converges. So suppose

that tn → t. We also clearly have that 0 ≤ |ai| ≤ bi for all i ∈ Z+, so that each term in both
sums is always non-negative. It then follows that the sequence of partial sums (sn) and (tn) are
non-decreasing, and moreover that tn ≤ t for all n ∈ Z+. Lastly, since each |ai| ≤ bi, it follows from
a simple inductive argument that each sn ≤ tn ≤ t. Hence (sn) is a non-decreasing sequence that is
also bounded (by t), and so it converges by part (a). Therefore the infinite series

∑
|ai| converges

by definition. Denote its convergence value by u.

Now, we also have that clearly

− |ai| ≤ ai ≤ |ai|
0 ≤ |ai|+ ai ≤ 2 |ai|

for every i ∈ Z+, and that
∑

2 |ai| converges to 2u by what was shown in part (b). Therefore, by
the same argument as above, the sequence of partial sums of

∑
(|ai| + ai) is non-decreasing and

bounded by 2u so that the series converges, say the the value v. Then, again by part (b), we have
that the series

∞∑
i=1

ai =

∞∑
i=1

(|ai|+ ai − |ai|) =

∞∑
i=1

[(|ai|+ ai) + (−1) |ai|]

converges to v − u since both v =
∑

(|ai| + ai) and u =
∑
|ai| have been shown to converge. This

shows the desired result.

(d)

Proof. First, since |fi(x)| ≤ Mi for all x ∈ X and
∑
Mi converges, it follows from part (c) that

the series
∑
fi(x) converges (as does the sequence (sn(x))) for each x ∈ X. So set the function

s : X → R to s(x) = limn→∞ sn(x) for each x ∈ X. Thus (sn) converges pointwise to s by
Definition 21.6.1, and s can be thought of as the (pointwise) infinite sum of the functions fi.

To show that sn → s uniformly, first define

rn =

∞∑
i=n+1

Mi

for n ∈ Z+ as the partial series of
∑
Mi as in Definition 20.8.4. Now consider any x ∈ X, any

n ∈ Z+, and any k > n. Then we have that

|sk(x)− sn(x)| =

∣∣∣∣∣
k∑
i=1

fi(x)−
n∑
i=1

fi(x)

∣∣∣∣∣ =

∣∣∣∣∣
k∑

i=n+1

fi(x)

∣∣∣∣∣ ≤
k∑

i=n+1

|fi(x)| ≤
k∑

i=n+1

Mi ≤
∞∑

i=n+1

Mi = rn ,

where we note that
∑k
i=n+1Mi ≤

∑∞
i=n+1Mi since each Mi is non-negative. Since the absolute

value function is continuous on R, it follows from Theorem 21.3 and Exercise 21.5 that the sequence
|sk(x)− sn(x)| converges as k → ∞, and moreover converges to |s(x)− sn(x)| since sk(x) → s(x)
as k → ∞ as shown above. Then, since the above inequality holds for any k > n, it follows from
Lemma 20.8.1 that

|s(x)− sn(x)| = lim
k→∞

|sk(x)− sn(x)| ≤ lim
k→∞

rn = rn .
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Now consider any ε > 0. We know from Lemma 20.8.5 that the sequence of partial series (rn)
converges to zero since each Mi is non-negative. Hence there is an N ∈ Z+ where |rn − 0| < ε for
all n ≥ N . Moreover, Lemma 20.8.5 asserts that each rn ≥ 0 so that |rn − 0| = |rn| = rn < ε for all
n ≥ N . Thus, for any n > N and any x ∈ X, we have

|s(x)− sn(x)| ≤ rn < ε .

This suffices to show that (sn) uniformly converges to s since ε was arbitrary.

Exercise 21.12

Prove continuity of the algebraic operations on R, as follows: Use the metric d(a, b) = |a− b| on R and
the metric on R2 given by the equation

ρ((x, y), (x0, y0)) = max {|x− x0| , |y − y0|} .

(a) Show that addition is continuous. [Hint: Given ε, let δ = ε/2 and note that

d(x+ y, x0 + y0) ≤ |x− x0|+ |y − y0| .]

(b) Show that multiplication is continuous. [Hint: Given (x0, y0) and 0 < ε < 1, let

3δ = ε/(|x0|+ |y0|+ 1)

and note that

d(xy, x0y0) ≤ |x0| |y − y0|+ |y0| |x− x0|+ |x− x0| |y − y0| .]

(c) Show that the operation of taking reciprocals is a continuous map from R−{0} to R. [Hint: Show
the inverse image of the interval (a, b) is open. Consider five cases, according as a and b are positive,
negative, or zero.]

(d) Show that the subtraction and quotient operations are continuous.

Solution:

First we note that this exercise proves Lemma 21.4 in the text. We also note that the square metric
ρ as defined above induces the usual product topology on R2, which was shown in Theorem 20.3.

(a)

Proof. We show the continuity of + : R2 → R using Theorem 21.1. So consider any x0×y0 ∈ R2 and
any ε > 0. Following the hint, let δ = ε/2 and consider any x× y ∈ R2 where ρ(x× y, x0 × y0) < δ.
Then we have that

ρ(x× y, x0 × y0) = max {|x− x0| , |y − y0|} < δ = ε/2 ,

from which it clearly follows that both |x− x0| < ε/2 and |y − y0| < ε/2. Then we have

d(+(x× y),+(x0 × y0)) = d(x+ y, x0 + y0) = |x+ y − (x0 + y0)|
= |(x− x0) + (y − y0)| ≤ |x− x0|+ |y − y0|

<
ε

2
+
ε

2
= ε .

This suffices to show that + is continuous by Theorem 21.1 since ε was arbitrary.
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(b)

Proof. We again use Theorem 21.1 so show that the multiplication function × : R2 → R is continu-
ous. So consider any x× y ∈ R2 and any ε > 0. Let

δ = min

{
ε

|x0|+ |y0|+ 1
, 1

}
so that of course δ > 0. Now consider any x× y ∈ R2 where ρ(x× y, x0 × y0) < δ. Then of course

ρ(x× y, x0 × y0) = max {|x− x0| , |y − y0|} < δ

so that both |x− x0| < δ and |y − y0| < δ. We then have

d(×(x× y),×(x0 × y0)) = d(xy, x0y0) = |xy − x0y0|
= |xy − x0y0 + (x0y − x0y) + (xy0 − xy0) + (x0y0 − x0y0)|
= |(x0y − x0y0) + (xy0 − x0y0) + (xy − xy0 − x0y + x0y0)|
= |x0(y − y0) + y0(x− x0) + (x− x0)(y − y0)|
≤ |x0(y − y0)|+ |y0(x− x0)|+ |(x− x0)(y − y0)|
= |x0| |y − y0|+ |y0| |x− x0|+ |x− x0| |y − y0|
< |x0| δ + |y0| δ + δ2

≤ |x0| δ + |y0| δ + δ

= δ(|x0|+ |y0|+ 1)

≤ ε

|x0|+ |y0|+ 1
(|x0|+ |y0|+ 1)

= ε ,

where we have used the fact that 0 < δ ≤ 1, from which it follows that δ2 ≤ d. This suffices to show
that × is continuous by Theorem 21.1 since ε was arbitrary.

(c)

Proof. Define the reciprocal function f : R− {0} → R by f(x) = 1
x . To show that f is continuous,

it suffices to show that f−1(B) is open in R− {0} for every basis element B of R, which was shown
back in §18. So let B = (a, b) be any basis element of R.

Case: a > 0. Then it has to be that 0 < a < b. We claim that f−1(B) = ( 1
b ,

1
a ), noting that

0 < 1
b <

1
a follows readily from the fact that 0 < a < b. We have the following

x ∈ ( 1
b ,

1
a )⇔ 1

b < x < 1
a ⇔

1
b < x ∧ x < 1

a

⇔ 1 < bx ∧ ax < 1⇔ 1
x < b ∧ a < 1

x

⇔ a < 1
x < b⇔ f(x) = 1

x ∈ (a, b) = B

⇔ x ∈ f−1(B) ,

noting that x > a > 0 and 1
x >

1
b > 0. This of course shows that f−1(B) = (1

b ,
1
a ) as desired.

Case: a = 0. Then we have 0 = a < b and hence also 0 < 1
b . We claim that f−1(B) = ( 1

b ,∞).
So first suppose that x ∈ f−1(B) so that f(x) ∈ B = (a, b) = (0, b), and hence 0 < x < b. Then
0 < 1 < b/x, from which follows 0 < 1

b < x so that x ∈ ( 1
b ,∞). Now consider any x ∈ ( 1

b ,∞) so
that 0 < 1

b < x. Then 0 < 1 < bx so that 0 < 1
x < b, and hence f(x) = 1

x ∈ (0, b) = (a, b) = B.
Therefore x ∈ f−1(B), from which we conclude that f−1(B) = ( 1

b ,∞) as desired.

Case: a < 0. Then also 1
a < 0 and we have the following sub-cases:
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Case: b > 0. Then also 1
b > 0. Here we claim that f−1(B) = (−∞, 1

a ) ∪ ( 1
b ,∞). So suppose

that x ∈ f−1(B) so that f(x) = 1
x ∈ B = (a, b), and hence a < 1

x < b. We know that
x 6= 0 since the domain of f is R − {0}. If x < 0 then we have a < 1

x so that ax > 1, and
hence x < 1

a since a < 0. Therefore x ∈ (∞, 1
a ). On the other hand, if x > 0 then we have

1
x < b so that 1 < bx, and hence 1

b < x since b > 0. Therefore x ∈ ( 1
b ,∞). So either way

x ∈ (−∞, 1
a ) ∪ ( 1

b ,∞) so that f−1(B) ⊂ (−∞, 1
a ) ∪ ( 1

b ,∞).

Now consider x ∈ (−∞, 1
a ) ∪ ( 1

b ,∞). If x ∈ (−∞. 1a ) then x < 1
a < 0 so that ax > 1, and

hence a < 1
x < 0 < b. If x ∈ ( 1

b ,∞) then 0 < 1
b < x so that 1 < bx, and hence a < 0 < 1

x < b.
Thus either way we have a < 1

x = f(x) < b so that f(x) ∈ (a, b) = B and x ∈ f−1(B). Hence
(−∞, 1

a ) ∪ ( 1
b ,∞) ⊂ f−1(B), which completes the proof that f−1(B) = (−∞, 1

a ) ∪ ( 1
b ,∞) as

desired.

Case: b = 0. Then we have a < b = 0. An argument analogous to the previous case when
a = 0 < b shows that f−1(B) = (−∞, 1

a ).

Case: b < 0. Then we have a < b < 0. An argument analogous to the previous case when
0 < a < b again shows that f−1(B) = (1

b ,
1
a ).

Thus in all cases and sub-cases clearly f−1(B) is an open set of R − {0}, which shows that f is
continuous as previously discussed since B = (a, b) was an arbitrary basis element.

(d)

Proof. Regarding the subtraction function − : R2 → R, first define the function f : R → R by
f(x) = −x, which is clearly continuous by elementary calculus. We also know that the coordinate
functions π1 : R2 → R and π2 : R2 → R are also continuous. Therefore the composition f ◦π2 : R2 →
R is also continuous by Theorem 18.2 part (c). We then have that the function g : R2 → R2 defined
by g(x × y) = π1(x × y) × (f ◦ π2)(x × y) is continuous by Theorem 18.4. Then the composition
+ ◦ g : R2 → R is continuous, again by Theorem 18.2 part (c), since it was shown in part (a) that
the addition function + : R2 → R is continuous.

However, for any x× y ∈ R2, we have

(+ ◦ g)(x× y) = +(g(x× y)) = +(π1(x× y)× (f ◦ π2)(x× y))

= π1(x× y) + (f ◦ π2)(x× y) = x+ f(π1(x× y))

= x+ f(y) = x− y
= −(x× y)

so that − = + ◦ g is continuous just as we would like.

Regarding the quotient function / : R×(R−{0})→ R, let f : R−{0} → R be the reciprocal function,
which we know is continuous by part (c). Again the coordinate functions π1 : R × (R − {0}) → R
and π2 : R× (R−{0})→ R−{0} are continuous so that the composition f ◦π2 : R× (R−{0})→ R
is also continuous by Theorem 18.2 part (c). Then we have that the function g : R× (R−{0})→ R2

defined by g(x×y) = π1(x×y)×(f ◦π2)(x×y) is continuous by Theorem 18.4. Thus the composition
×◦g : R×(R−{0})→ R is continuous again by Theorem 18.2 part (c) since it was shown in part (b)
that the multiplication function × : R2 → R is continuous.

Now, for any x× y ∈ R× (R− {0}), we have that

(× ◦ g)(x× y) = ×(g(x× y)) = ×(π1(x× y)× (f ◦ π2)(x× y))

= π1(x× y) · (f ◦ π2)(x× y) = x · f(π2(x× y))

= x · f(y) = x · 1
y = x

y

= /(x× y)

so that / = × ◦ g is continuous as desired.
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§22 The Quotient Topology

Exercise 22.1

Check the details of Example 3.

Solution:

Recall that Example 22.3 includes a function p : R → A where A = {a, b, c} is a three-point set.
The function is defined by

p(x) =


a x > 0

b x < 0

c x = 0 .

We are then asked to verify that the quotient topology on A induced by p is that indicated by the
following diagram:

a b c

Proof. Clearly the diagram illustrates the topology T = {∅, {a} , {b} , {a, b} , A} on A. We also note
that p is surjective, and that T is the unique topology such that p is a quotient map. First, obviously
∅ and A must be open in the quotient topology T since it is a topology. Then, clearly the following
sets

p−1 ({a}) = (0,∞)

p−1 ({b}) = (−∞, 0)

p−1 ({a, b}) = (0,∞) ∪ (−∞, 0)

are all open in R so that {a}, {b}, and {a, b} should be open in the quotient topology since p is a
quotient map. On the contrary, the sets

p−1 ({c}) = {0}
p−1 ({a, c}) = [0,∞)

p−1 ({b, c}) = (−∞, 0]

are all clearly not open in R (in fact they are all closed) so that {c}, {a, c} and {b, c} should not
be open in the quotient topology. As we have considered all eight of the possible subsets of A, this
shows the desired result.

Exercise 22.2

(a) Let p : X → Y be a continuous map. Show that if there is a continuous map f : Y → X such that
p ◦ f equals the identity map of Y , then p is a quotient map.
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(b) If A ⊂ X, a retraction of X onto A is a continuous map r : X → A such that r(a) = a for each
a ∈ A. Show that a retraction is a quotient map.

Solution:

(a)

Proof. First, f is a right inverse for p by definition so that p is surjective by Exercise 2.5 part (a).
Suppose that U is a subset of Y . If U is open in Y then p−1(U) is open in X since p is continuous.
So suppose that V = p−1(U) is open in X. Since we have p ◦ f = iY is bijective and iY = i−1

Y , it
follows from Exercise 2.4 part (a) that

U = iY (U) = i−1
Y (U) = (p ◦ f)−1(U) = f−1(p−1(U)) = f−1(V ) .

Then, since V is open in X, we have that f−1(V ) = U is open in Y since f is continuous. This
shows that p is a quotient map by definition.

(b)

Proof. Suppose X is a topological space, A ⊂ X, and r : X → A is a retraction. Let f : A→ X be
defined by f(a) = a for all a ∈ A, i.e. f is the identity function on A with the range expanded to X.
Now, iA is continuous (in fact it is a homeomorphism) by Exercise 18.3 so that f is also continuous
by Theorem 18.2 part (e) since it is just iA with an expanded range. Then for any a ∈ A we have
that

(p ◦ f)(a) = p(f(a)) = p(a) = a

since p is a retraction. Thus p ◦ f = iA, which shows that p is a quotient map by what was shown
in part (a).

Exercise 22.3

Let π1 : R× R→ R be projection on the first coordinate. Let A be the subspace of R× R consisting of
all points x × y for which either x ≥ 0 or y = 0 (or both); let q : A → R be obtained by restricting π1.
Show that q is a quotient map that is neither open nor closed.

Solution:

Proof. An illustration of the subspace A ⊂ R× R is shown below:

First, we know that π1 is continuous from §18. It then follows that the restriction q is a continuous
map as well by Theorem 18.2 part (d).
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Now define a map f : R → A by f(x) = x × 0 for any x ∈ R, noting that clearly f(x) ∈ A. We
show that f is continuous by considering any basis element U × V of R × R so that U and V are
open in R. Now, if either of U or V are empty, then of course U × V is empty as well so that
f−1(U × V ) = f−1(∅) = ∅ is open in R. Otherwise if 0 /∈ V then also f−1(U × V ) = ∅ is open in
R. If 0 ∈ V then we claim that f−1(U ×V ) = U , which is of course open in R. This is easy to show:

x ∈ f−1(U × V )⇔ f(x) ∈ U × V
⇔ x× 0 ∈ U × V
⇔ x ∈ U

since we know that 0 ∈ V . Thus in all cases f−1(U × V ) is open in R, which suffices to show that
f is continuous.

Now consider any x ∈ R so that we have

(q ◦ f)(x) = q(f(x)) = q(x× 0) = π1(x× 0) = x ,

which shows that q◦f = iR. Since q : A→ R and f : R→ A have both been shown to be continuous,
it follows from Exercise 22.1 part (a) that q is a quotient map as desired.

To show that q is not an open map, consider that subset U = [0, 1) × (1, 2) ⊂ A, which is open in
the subspace A since U = A∩ [(−1, 1)× (1, 2)] and clearly (−1, 1)× (1, 2) is a basis element of R×R
and so is open. However, clearly the set q(U) = π1(U) = [0, 1) is not open in R. To show that q
is not a closed map, consider the set C = {x× (1/x) | x > 0}. It is easy to see and not difficult to
show that C is a closed subset of the subspace A because no point of A − C is a limit point of C.
Also clearly q(C) = π1(C) = R+, which is not closed in R since its complement {x | x ≤ 0} is not
open. Thus q is not a closed map either.

Exercise 22.4

(a) Define an equivalence relation on the plane X = R2 as follows:

x0 × y0 ∼ x1 × y1 if x0 + y2
0 = x1 + y2

1 .

Let X∗ be the corresponding quotient space. It is homeomorphic to a familiar space; what is it?
[Hint: Set g(x × y) = x + y2.]

(b) Repeat (a) for the equivalence relation

x0 × y0 ∼ x1 × y1 if x2
0 + y2

0 = x2
1 + y2

1 .

Solution:

(a) Two points in the plane are in the same equivalence class if x + y2 have the same value, say c.
Then we have that x + y2 = c and hence x = c− y2, which is the equation for horizontally-oriented
parabola opening to the left and shifted in x by c. A few of these parabolic equivalence classes are
shown below for various values of c:
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−4 −2 2 4

−4

−2

2

4

c = −3 c = 0 c = 3

Then, if X∗ is the quotient space induced, by this equivalence relation, then each element of X∗ is
one of these equivalence classes. We claim that this space is homeomorphic to R.

Proof. So define f : X∗ → R as follows: if U is an equivalence class (so that U ∈ X∗) containing
x×y then set f(U) = x+y2, noting that clearly f(U) ∈ R. We also note that if x0×y0 and x1×y1

are both in the equivalence class X then x0 + y2
0 = x1 + y2

1 so that f(X) = x0 + y2
0 = x1 + y2

1 is well
defined.

Now suppose that U0 and U1 are two distinct equivalence classes and that x0 × y0 ∈ U0 and
x1 × y1 ∈ U1. It then follows that it is not true that x0 × y0 ∼ x1 × y1 so that x0 + y2

0 6= x1 + y2
1 .

Thus we have f(U0) = x0 +y2
0 6= x1 +y2

1 = f(U1), which shows that f is injective. Next consider any
real c and, the point c×0 in the plane, and let U be the equivalence class containing c×0, which must
exist since the equivalence classes form a partition of the plane. Then we have f(U) = c + 02 = c,
which shows that f is surjective since c was arbitrary. This completes the proof that f is a bijection,
noting that of course this means that f−1 is also a bijective function.

Now, the standard topology of R of course can have different bases, but we will concern ourselves
with the order topology basis first. So consider any basis element B = (a, b) of R in the order
topology. Clearly then the inverse image of B is the collection U of equivalence classes U where
a < f(U) < b. Then the union of all the sets in U is the set of points in the plane x × y where
a < x + y2 < b. An illustration of such a subset of the plane is illustrated below for a = −2 and
b = 3:

−4 −2 2 4

−4

−2

2

4
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It is easy to see that such a set is open in R2 for any a and b, which we shall not show formally.
Thus U is an open subset of X∗, which suffices to show that f is continuous.

Now, to show that f−1 is continuous we utilize metric topology bases for both R2 and R, which we
know induce the standard topologies on those sets. In particular, we use the standard metric d on
R but use the square metric ρ on R2, which induces the standard topology on R2 by Theorem 20.3.
Recall that the square metric is defined by

ρ(x0 × y0, x1 × y1) = max {|x0 − x1| , |y0 − y1|} .

So consider any x ∈ R, let U be the equivalence class in X∗ such that U = f−1(x) so that f(U) = x,
and let U be a neighborhood of U = f−1(x) in the quotient topology on X∗. Then we have that U
is a collection of equivalence classes and that x× 0 must be in U since x+ 02 = x = f(U). Clearly
also the union A =

⋃
U ′∈U U

′ is then open in R2 since U is open in the quotient space, and x×0 ∈ A
since x× 0 ∈ U and U ∈ U . Thus by Lemma 20.4.1 there is a δ > 0 where Bρ(x× 0, δ) ⊂ A.

Now, consider the set Bd(x, δ), which is clearly a neighborhood of x in R. Consider any V ∈
f−1(Bd(x, δ)) and let v = f(V ) so that it must be that v × 0 ∈ V since v + 02 = v = f(V ). Then
v = f(V ) ∈ Bd(x, δ) so that d(v, x) = |v − x| < δ. Since we have |v − x| ≥ 0 = |0− 0|, it follows
that

ρ(v × 0, x× 0) = max {|v − x| , |0− 0|} = |v − x| < δ ,

and hence v × 0 ∈ Bρ(x × 0, δ) ⊂ A =
⋃
U ′∈U U

′. Therefore there is an equivalence class W in U
such that v × 0 ∈ W and W ∈ U . However, since the equivalence classes are all disjoint, it has to
be that W = V since v × 0 ∈ V as well. Thus V = W ∈ U so that f−1(Bd(x, δ)) ⊂ U since V was
arbitrary. This suffices to show that f−1 is continuous by Theorem 18.1 since U was an arbitrary
neighborhood of U = f−1(x). This completes the proof that f is a homeomorphism so that X∗ is
homeomorphic to R as desired.

(b) Here two points are in the same equivalence class if x2 + y2 have the same value, say c. Then we
have that the equivalence class is all the points in the plane such that x2 + y2 = c, which is clearly a
circle in the plane with radius

√
c centered at the origin, noting that of course always c = x2+y2 ≥ 0.

We also note that the only point such that x2 + y2 = 0 is 0 × 0 itself, so this the only point in its
equivalence class. We claim that the quotient topology on the set of equivalence classes X∗ is
homeomorphic to the subspace topology of nonnegative reals, i.e. the subspace A = {x ∈ R | x ≥ 0}
of R.

Proof. Taking a similar approach to that in part (a), define f : X∗ → A by f(U) = ‖x × y‖ =√
x2 + y2 if x× y is a point in the equivalence class U . Clearly we have f(U) ≥ 0 so that f(U) ∈ A.

It also follows that f is well-defined since, if x0×y0 and x1×y1 are two points in the same equivalence
class U , then f(U) =

√
x2

0 + y2
0 =

√
x2

1 + y2
1 since x2

0 + y2
0 = x2

1 + y2
1 .

Now, if U0 and U1 are two distinct equivalence classes and x0×y0 ∈ U0 and x1×y1 ∈ U1 then it is not
true that x0 × y0 ∼ x1 × y1 so that f(U0) =

√
x2

0 + y2
0 6=

√
x2

1 + y2
1 = f(U1) since x2

0 + y2
0 6= x2

1 + y2
1

and the square root function is injective on the nonnegative reals. This shows that f is injective.
Also, if c is any element of A then let U be the equivalence class containing c× 0, which exists since
the classes form a partition on the plane. Then we have f(U) =

√
c2 + 02 = |c| = c since c ≥ 0,

which shows that f is surjective since c was arbitrary. Hence f is a bijection so that of course f−1

is also a bijective function.

Next, consider the order topology basis of R and any corresponding basis element B of the subspace
A. Then clearly either B = [0, b) (since then, for example, B = A ∩ (−1, b) and (−1, b) is clearly
a basis element of R) or B = (a, b) for some 0 ≤ a < b. In the former case clearly f−1(B) is the
collection U of equivalence classes U such that 0 ≤ f(U) < b, the union of which is clearly the set of
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points x × y in the plane such that
√
x2 + y2 < b, which is an open filled circle of radius b centered

at the origin. This is obviously an open set of R2. In the later case clearly f−1(B) is the collection
U of equivalence classes U such that a < f(U) < b, the union of which is the set of points in the
plane x × y such that a <

√
x2 + y2 < b. As this is clearly an open annular ring centered at the

origin, it is open in R2. Hence in either case the union of the collection U is open in R2 so that
U = f−1(B) is an open subset of X∗. Since B was an arbitrary basis element of A, this shows that
f is continuous.

Similar to what was done in part (a), we show that f−1 is also continuous by utilizing the euclidean
metric d on R2 and the standard metric d′ on A, i.e. d′ is the standard metric d on R restricted to
A×A, which is a metric for the subspace A by the remarks at the beginning of §21. So consider any
x ∈ A so that x ≥ 0, let U be the equivalence class in X∗ such that U = f−1(x) so that f(U) = x,
and let U be a neighborhood of U = f−1(x) in the quotient topology on X∗. Then we have that U
is a collection of equivalence classes and that x× 0 must be in U since

√
x2 + 02 = |x| = x = f(U).

Clearly also the union C =
⋃
U ′∈U U

′ is then open in R2 since U is open in the quotient space, and
x×0 ∈ C since x×0 ∈ U and U ∈ U . Thus by Lemma 20.4.1 there is a δ > 0 where Bd(x×0, δ) ⊂ C.

Now, consider the set Bd′(x, δ), which is clearly a neighborhood of x in A. Consider any V ∈
f−1(Bd′(x, δ)) and let v = f(V ) ∈ A so that it must be that v × 0 ∈ V since

√
v2 + 02 = |v| = v =

f(V ). Then v = f(V ) ∈ Bd′(x, δ) so that d′(v, x) = d(v, x) = |v − x| < δ. Then also

d(v × 0, x× 0) =
√

(z − x)2 + (0− 0)2 =
√

(z − x)2 = |v − x| < δ ,

and hence v × 0 ∈ Bd(x × 0, δ) ⊂ C =
⋃
U ′∈U U

′. Therefore there is an equivalence class W in U
such that v × 0 ∈ W and W ∈ U . However, since the equivalence classes are all disjoint, it has to
be that W = V since v × 0 ∈ V as well. Thus V = W ∈ U so that f−1(Bd′(x, δ)) ⊂ U since V was
arbitrary. This suffices to show that f−1 is continuous by Theorem 18.1 since U was an arbitrary
neighborhood of U = f−1(x). This completes the proof that f is a homeomorphism so that X∗ is
homeomorphic to A as desired.

Exercise 22.5

Let p : X → Y be an open map. Show that if A is open in X, then the map q : A→ p(A) obtained by
restricting p is an open map.

Solution:

Consider any open set U in the subspace A so that U = A ∩ V for some open set V in X by the
definition of a subspace. Since A is also open in X we have that A ∩ V = U is also open in X by
the definition of a topology. Then q(U) = p(U) is open in Y since p is an open map. Since U ⊂ A,
it follows that p(U) ⊂ p(A) by Exercise 2.2 part (e) so that p(U)∩ p(A) = p(U) = q(U). This shows
that q(U) is open in the subspace p(A) since we have shown that p(U) is open in Y . Therefore q is
an open map since U was an arbitrary open set of A.

Exercise 22.6

Recall that RK denotes the real line in the K-topology. (See §13.) Let Y be the quotient space obtained
from RK by collapsing the set K to a point: let p : RK → Y be the quotient map.

(a) Show that Y satisfies the T1 axiom, but is not Hausdorff.

(b) Show that p × p : RK × RK → Y × Y is not a quotient map. [Hint: The diagonal is not closed in
Y × Y , but its inverse image is closed in RK × RK .]

Page 257



Solution:

In what follows let

Y = {K} ∪ {{x} | x ∈ R−K} .

It is easy to see and trivial to show that Y is a partition of RK , and that K becomes a single point
in the quotient space Y .

(a)

Proof. First, consider a single point U in the collection Y . If U = K then clearly p−1 ({U}) = K,
which we know is closed in RK as was shown in Exercise 17.16 part (b). If U 6= K then U = {x} for
some x ∈ R −K so that of course p−1 ({U}) = {x} is closed in RK since RK was shown to satisfy
the T1 axiom, again in Exercise 17.16 part (b). Hence either way p−1 ({U}) is closed in RK so that
{U} must be closed in Y since p is a quotient map. This suffices to show that Y satisfies the T1

axiom since U was arbitrary.

To show that Y is not Hausdorff consider any neighborhood V0 in Y of the point {0} and any
neighborhood VK in Y of the point K, noting that clearly {0} and K are distinct points in Y . Then
set UK = p−1(VK) =

⋃
V ∈VK V so that K ⊂ UK since K ∈ VK . Similarly, set U0 = p−1(V0) =⋃

V ∈V0
V so that {0} ⊂ U0 since {0} ∈ V0, and hence 0 ∈ U0. Since V0 is open in Y , it follows

that U0 = p−1(V0) must be open in RK since p is a quotient map. It then follows that there is a
basis element B0 in RK such that 0 ∈ B0 ⊂ U0. Hence B0 = (a, b) or B0 = (a, b) − K for some
a < 0 < b. Now, since we have 0 < b, clearly there is an n ∈ Z+ large enough that 0 < 1/n < b,
and by definition 1/n ∈ K ⊂ UK . Then, since UK is open in RK , there must be a basis element BK
of RK such that 1/n ∈ BK ⊂ UK . Then it must be that BK = (c, d) for some c < 1/n < d since
1/n ∈ K.

Next, set e = max {1/(n+ 1), c} and x = (e + 1/n)/2. Then we then have that 1/(n + 1) ≤ e <
x < 1/n so that x /∈ K. We also have a < 0 < 1/(n + 1) ≤ e < x < 1/n < b so that x ∈ B0 ⊂ U0

regardless of whether or not K is included in B0 or not. Lastly, we have that c ≤ e < x < 1/n < d
so that x ∈ (c, d) = BK ⊂ UK . Therefore x ∈ U0 and x /∈ K so that p(x) = {x} ∈ V0 since
U0 = p−1(V0). Likewise we have x ∈ UK and UK = p−1(VK) so that p(x) = {x} ∈ VK as well.
Hence {x} = p(x) ∈ V0 ∩VK so that these neighborhoods intersect. Since V0 and VK were arbitrary
neighborhoods of {0} and K, respectively, in Y , this shows that Y fails to be Hausdorff.

(b) In what follows we define the map p× p : RK × RK → Y × Y by

(p× p)(x × y) = p(x)× p(y)

for x × y ∈ RK × RK .

Proof. Define the set ∆Y = {(U,U) | U ∈ Y } ⊂ Y × Y to be the diagonal of Y × Y . Since it was
shown in part (a) that Y is not Hausdorff, it follows that ∆Y is not closed in Y ×Y by Exercise 17.13.
Now set ∆ = (p × p)−1(∆Y ) ⊂ RK × RK , and we claim that ∆ = ∆R ∪ (K ×K), where of course
∆R = {(x, x) | x ∈ R} is the diagonal of RK .

To show this, first consider x× y ∈ ∆ = (p× p)−1(∆Y ) so that (p× p)(x× y) = p(x)× p(y) ∈ DY .
Hence p(x) = p(y) ∈ Y so that either x, y ∈ K so that p(x) = K = p(y), or x, y /∈ K so that p(x) =
{x} = {y} = p(y) and x = y. Clearly in the former case we have x× y ∈ K ×K, and in the latter
case x×y = x×x ∈ ∆R. Thus either way we have x×y ∈ ∆R∪ (K×K) so that ∆ ⊂ ∆R∪ (K×K).
Now consider any x × y ∈ ∆R ∪ (K ×K). If x × y ∈ ∆R then x = y so that of course p(x) = p(y)
since p is a function. On the other hand, if x × y ∈ K ×K then we again have p(x) = K = p(y).
Therefore either way we have p(x) = p(y) so that (p× p)(x× y) = p(x)× p(y) = p(x)× p(x) ∈ ∆Y ,
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and thus x× y ∈ (p× p)−1(∆Y ) = ∆. Hence ∆ ⊃ ∆R ∪ (K ×K) as well so that equality has been
shown.

Now, since RK is Hausdorff (again, as shown in Exercise 17.16), it follows from Exercise 17.13 that
∆R is closed in RK × RK , and therefore ∆R = ∆R. Since K is also closed in RK (also shown in
Exercise 17.16), we have that K×K is closed in RK×RK per Exercise 17.3, and so K ×K = K×K.
By Exercise 17.6 part (b), we then have that

∆ = ∆R ∪ (K ×K) = ∆R ∪ (K ×K) = ∆R ∪ (K ×K) = ∆ ,

which shows that ∆ = (p× p)−1(∆Y ) is in fact closed in RK ×RK . This suffices to show that p× p
is not a quotient map as desired since ∆Y is not closed in Y × Y .

§TG Supplementary Exercises: Topological Groups

For this section, recall that a group is a set G together with some operation · that satisfies the following
properties, called the group axioms:

(1) (Closure) For all a, b ∈ G, the result a · b is also in G.

(2) (Associativity) (a · b) · c = a · (b · c) for all a, b, c ∈ G.

(3) (Identity Element) There is an element e ∈ G such that a · e = e · a = a for all a ∈ G, which is
called an identity element.

(4) (Inverse Element) For every a ∈ G, there is an element b ∈ G such that a · b = b · a = e, where e is
the identity element. This b is called an inverse element of a.

It is easy to show directly from these axioms that the identity element of a group is unique, and so we
refer to the identity element. Similarly, if a ∈ G, then its inverse element is also unique, and is usually
denoted by a−1.

Exercise TG.1

Let H denote a group that is also a topological space satisfying the T1 axiom. Show that H is a
topological group if and only if the map of H ×H into H sending x× y to x · y−1 is continuous.

Solution:

Lemma TG.1.1. In any group G the inverse element of an inverse element is the element itself,

i.e.
(
x−1

)−1
= x for any x ∈ G.

Proof. Consider any x in the group G with operation · and identity element e, and let y =
(
x−1

)−1
.

Then we have of course that y · x−1 = e since y is the inverse of x−1. Since we of course also have
x · x−1 = e since x−1 is the inverse of x, it has to be that y = x because the inverse of x−1 must be

unique. Therefore of course
(
x−1

)−1
= y = x as desired.

Main Problem.

Proof. (⇒) First suppose that H is a topological group. Then f : H → H defined by f(x) = x−1

and g : H ×H → H defined by g(x × y) = x · y are both continuous. Define h : H ×H → H by

h = g ◦ (iH × f) ,
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where of course iH is the identity function on H, and we have defined the function iH×f : H×H →
H ×H as in Exercise 18.10.

Now, we know that both iH and f are continuous so that iH × f is continuous by Exercise 18.10. It
then follows that g ◦ (iH × f) = h is continuous by Theorem 18.2 part (c) since g is also continuous.
Now, for any x × y ∈ H ×H, we have

h(x × y) = (g ◦ (iH × f)) (x × y)

= g((iH × f)(x × y))

= g(iH(x)× f(y))

= g(x× y−1)

= x · y−1 .

Since we have shown that h is continuous, this shows the desired result.

(⇐) Now again define h : H × H → H by h(x × y) = x · y−1, and suppose that h is continuous.
Then h is continuous in each variable separately by Exercise 18.11. So, if we let e be the unique
identity element of H, then we have that

h(e× x) = e · x−1 = x−1

is continuous for any x. Similarly, for any x, y ∈ H, we have that
(
y−1

)−1
= y by Lemma TG.1.1

so that

h(x× y−1) = x ·
(
y−1

)−1
= x · y

must also be continuous.

Exercise TG.2

Show that the following are topological groups:

(a) (Z,+)

(b) (R,+)

(c) (R+, ·)
(d) (S1, ·), where we take S1 to be the space of all complex numbers z for which |z| = 1.

(e) The general linear group GL(n), under the operation of matrix multiplication. (GL(n) is the set
of all nonsingular n by n matrices, topologized by considering it as a subset of euclidean space of
dimension n2 in the obvious way.)

Solution:

Lemma TG.2.1. Any discrete topology satisfies the T1 axiom.

Proof. Suppose that X is a set with the discrete topology and C is a finite point set. Then X − C
is clearly still a subset of X and so is open since X is discrete. This shows by definition that C is
closed. In fact by this same argument any subset of X is both open and closed.

Lemma TG.2.2. If Y and Y are sets both with discrete topologies, then X × Y is also the discrete
topology.
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Proof. It suffices to show that the subset of X × Y containing a single arbitrary element is open,
since clearly any other subset is the union of such single-element open subsets and is therefore also
open by the definition of a topology. So consider any (x, y) ∈ X×Y and the subset {(x, y)} ⊂ X×Y .
Then clearly {(x, y)} = {x} × {y}, which is a basis element of X × Y and therefore open by the
definition of a product topology since both {x} and {y} are open in X and Y , respectively, since
they are discrete.

Lemma TG.2.3. If X and Y are topological spaces and X has the discrete topology then any
function f : X → Y is continuous.

Proof. This is fairly obvious since, for any open subset V of Y , of course f−1(V ) is a subset of X
and so is open since X is discrete.

Main Problem.

(a)

Proof. First we must show that (Z,+) is even a group. Clearly a+ b is an integer when a and b are
so that the closure axiom is satisfied. Also, we know that integer addition is associative. We clearly
have that 0 ∈ Z and that a+ 0 = a for any a ∈ Z so that 0 is the identity element of (Z,+). Lastly,
for any a ∈ Z, we have that −a ∈ Z and that a+ (−a) = a− a = 0 so that clearly −a is the inverse
of a. This shows that (Z,+) is in fact a group.

To show that it is a topological group, we first note that Z clearly has the discrete topology when
considered both an order topology or as a subspace of R, for similar reason as discussed in Example 3
of §14. Thus Z satisfies the T1 axiom by Lemma TG.2.1 since it is discrete. Also X×X is the discrete
topology by Lemma TG.2.2. Thus the function f defined by f(x× y) = x+ y−1 = x+ (−y) = x− y
is a function from X×X to X, so that it follows that f is continuous by Lemma TG.2.3 since X×X
is discrete. Hence (Z,+) is a topological group by Exercise TG.1.

(b)

Proof. Similarly to part (a), clearly (R,+) is a group with identity element 0 and inverse element
−x for any x ∈ R. However, this time the topology is no longer discrete. Of course we know that
R satisfies the T1 axiom. Now consider the function f(x × y) = x + y−1 = x + (−y) = x − y for
any x, y ∈ R. Consider also any basis element B = (a, b) ∈ R, where here we are of course using the
order topology basis. Then we clearly have

f−1(B) = {x × y | f(x × y) ∈ (a, b)} = {x × y | a < f(x × y) < b}
= {x × y | a < x− y < b} = {x × y | a− x < −y < b− x}
= {x × y | x− a > y > x− b} .

Clearly this is the region in R2 between the lines y = x − b and y = x − a, which is obviously an
open set in R2. This shows that f is continuous since B was an arbitrary basis element, so that
(R,+) is a topological group by Exercise TG.1.

(c)

Proof. First, clearly R+ satisfies the T1 axiom since R does. Next we note that for any x, y ∈ R+ we
have that x ·y is also positive so that x ·y ∈ R+ as well, which shows the closure property of a group.
Also, clearly 1 ∈ R+ is the identity element of multiplication, and the inverse element is x−1 = 1/x
for any x ∈ R+, noting that this is defined since x > 0, and that 1/x > 0 so that x−1 = 1/x ∈ R+.
Lastly, we know that multiplication is associative on the reals (and therefore also on R+), which
completes the check that (R+, ·) is in fact a group.
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As before, define the function f : R+×R+ → R+ by f(x×y) = x ·y−1 = x ·1/y = x/y. Consider the
order topology basis of R and consider any basis element B of the subspace R+ so that B = R+∩(a, b)
for some a, b ∈ R where a < b by Lemma 16.1. Now, if a ≤ 0 then clearly B = (0, b), and we have
that

f−1(B) = {x × y | f(x × y) ∈ B} = {x × y | 0 < f(x × y) < b}
= {x × y | 0 < x/y < b} = {x × y | 0 < x < by}
= {x × y | 0 < x/b < y} ,

noting that 0 < b so that x/b is defined. Obviously this is the region in R+ × R+ (R+ × R+ being
the upper right quadrant of R2 that does not include either axis) above the line y = x/b, which is
easy to show is open in R+ × R+.

On the other hand, if a > 0 than B = (a, b) so that

f−1(B) = {x × y | f(x × y) ∈ B} = {x × y | a < f(x × y) < b}
= {x × y | a < x/y < b} = {x × y | ay < x < by}
= {x × y | ay < x ∧ x < by} = {x × y | y < x/a ∧ x/b < y}
= {x × y | x/b < y < x/a} ,

which is clearly the region of R+×R+ between the lines y = x/b and y = x/a. It is easy to see that
again this is an open subset of R+ ×R+, which shows that f is continuous either way. This in turn
proves that (R+, ·) is a topological space, again by Exercise TG.1.

(d)

Proof. Topologies on the complex plane C have not really been discussed, but C is usually defined
as R × R having the usual product topology. Then of course S1 is the unit circle in C. We know
that R is Hausdorff so that C = R×R is as well by Theorem 17.11. Then, again by Theorem 17.11,
S1 is Hausdorff since it is a subspace of C, and so it also satisfies the T1 axiom.

While perhaps not immediately obvious, it is easy to show that S1 is closed under multiplication. If
z, w ∈ S1 then |z| = |w| = 1 so that |z · w| = |z| · |w| = 1 ·1 = 1 by familiar rules of complex analysis
so that z ·w ∈ S1 as well. Clearly 1 ∈ S1 is the identity element where the inverse element of z ∈ S1

is 1/z, noting that |1/z| = 1/ |z| = 1/1 = 1 since z ∈ S1, and so 1/z ∈ S1. We also note that |0| = 0,
and hence 0 /∈ S1 so that the inverse 1/z is always defined. Lastly, we know that multiplication is
associative within C and therefore also within S1. This shows that (S1, ·) satisfies all of the group
axioms.

To rigorously show that S1 is a topological group is actually quite tedious so we shall omit some
details. Suppose that U is open in S1 and that z ×w ∈ f−1(U) so that f(z ×w) ∈ U . Now, clearly
the unit circle in C = R×R is the set S1 =

{
eiθ | θ ∈ R

}
so that we can express z = eiθ and w = eiφ

for some θ, φ ∈ R. We then have that

f(z × w) = z/w = eiθ/eiφ = eiθe−iφ = ei(θ−φ) ∈ U .

While tedious to show rigorously, it follows from the fact that U is open in S1 that there is an ε > 0
where f(z × w) ∈ Aθ−φ,ε ⊂ U , where we define

Aα,ε =
{
eiγ | α− ε < γ < α+ ε

}
,

noting that of course Aα,ε ⊂ S1. Now consider Aθ,ε/2 and Aφ,ε/2, which are both clearly open in S1

and noting that clearly z ∈ Aθ,ε/2 and w ∈ Aφ,ε/2. For any z′ = eiθ
′ ∈ Aθ,ε/2 and w′ = eiφ

′ ∈ Aφ,ε/2
we then have that

θ − ε/2 < θ′ < θ + ε/2 φ− ε/2 < φ′ < φ+ ε/2 .
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Hence

−φ+ ε/2 > −φ′ > −φ− ε/2
θ′ − φ+ ε/2 > θ′ − φ′ > θ′ − φ− ε/2

θ + ε/2− φ+ ε/2 > θ′ − φ+ ε/2 > θ′ − φ′ > θ′ − φ− ε/2 > θ − ε/2− φ− ε/2
(θ − φ) + ε > θ′ − φ′ > (θ − φ)− ε

so that f(z′×w′) = ei(θ
′−φ′) ∈ Aθ−φ,ε ⊂ U . Thus z′×w′ ∈ f−1(U) so that z×w ∈ Aθ,ε/2×Aφ,ε/2 ⊂

f−1(U) since z′ and w′ were arbitrary. We also have that Aθ,ε/2 × Aφ,ε/2 is open in S1 × S1 since
both Aθ,ε/2 and Aφ,ε/2 are open in S1. Since z ×w was an arbitrary element of f−1(U), this shows
that f−1(U) is open in S1 × S1, which in turn shows that f is continuous by definition. Thus by
Exercise TG.1 we have that S1 is a topological group.

(e)

Proof. First, from linear algebra we know that the matrix product of two nonsingular n by n matrices
is another nonsingular n by n matrix, so that GL(n) is closed under matrix multiplication. Clearly
the identity matrix is the identity element of GL(n), while the inverse matrix A−1 is the inverse
element of the matrix A ∈ GL(n), noting that this inverse matrix exists since A is nonsingular.
Lastly, we know that matrix multiplication is associative, which suffices to show that (GL(n), ·) is a
group.

To show that it is a topological group takes more work. To begin, we note that of course Rn2

is
Hausdorff and so satisfies the T1 axiom. Thus so does GL(n) since Rn2

gives it its topology. Next,
we denote a vector in Rn by xn = x1 × · · · × xn, using the subscript on the vector itself to indicate
its dimension. We show that the function sn : Rn → R defined by

sn(xn) =

n∑
i=1

xi

is continuous for all n ∈ Z+, which we show by induction. First, for n = 1, we clearly have that sn
is simply the identity function from R to R, which is clearly continuous. Now suppose that sn is
continuous. Define g : Rn+1 → Rn by

g(xn+1) = π1(xn+1)× · · · × πn(xn+1) = x1 × · · · × xn = xn ,

which is continuous by Theorem 19.6 since we know that each πi is continuous.

Then also sn◦g is continuous by Theorem 18.2 part (c). It then follows that the function h : Rn+1 →
R2 defined by h(xn+1) = (sn◦g)(xn+1)×πn+1(xn+1) is continuous by Theorem 18.4 since both sn◦g
and πn+1 are continuous. Lastly we then have that k : Rn+1 → R defined by + ◦ h is continuous
by Theorem 18.2 part (c), where of course + is the usual addition operation from R2 to R, which
we showed is continuous in Exercise 21.12. Now we claim that k = sn+1. For any xn+1 ∈ Rn+1 we
have

k(xn+1) = (+ ◦ h)(xn+1) = +(h(xn+1)) = +((sn ◦ g)(xn+1)× πn+1(xn+1))

= +(sn(g(xn+1)), xn+1) = +(sn(xn), xn+1) = sn(xn) + xn+1

=

n∑
i=1

xi + xn+1 =

n+1∑
i=1

xi

= sn+1(xn+1) .

This completes the induction since we have shown that k = sn+1 is continuous.
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Next we show that the function pij : Rn × Rn → R defined by pij(xn × yn) = xiyj is continuous,
where of course ij ∈ {1, . . . , n}. Define the function gij : Rn × Rn → R2 by gij = πi × πj as in
Exercise 18.10, which we know is continuous by that exercise since the coordinate functions are
continuous. Then the function · ◦gij from Rn×Rn to R is also continuous by Theorem 18.2 part (c),
where of course · is the normal multiplication operation from R2 to R, which we know is continuous
from Exercise 12.12. However, for any xn,yn ∈ Rn, we have

(· ◦ gij)(xn × yn) = ·(gij(xn × yn)) = ·(πi(xn)× πj(yn)) = ·(xi × yj) = xi · yj = pij(xn × yn)

so that · ◦ gij = pij is continuous, which shows the desired result.

Now, by definition, each matrix component of the resultant matrix in matrix multiplication on GL(n)
is a sum of products, where each product involves a term from each of the matrices, and the sum has
n terms going across a row of the first matrix and a column of the second. Thus each component
is a composition of the sum function sn : Rn → R with a mapping f from Rn2 × Rn2 → Rn,
where each element in Rn of this mapping is a product function pij . Since have shown above that
each pij is continuous, it follows from Theorem 19.6 that the mapping f is also continuous. Hence
the composition sn ◦ f , i.e. the matrix component function, is also continuous by Theorem 18.2
part (c) since we have also shown above that sn is continuous. Since each component function is
continuous, it again follows from Theorem 19.6 that the overall matrix multiplication mapping from
Rn2 × Rn2 → Rn2

is continuous.

Regarding the inverse element function, we recall from linear algebra that in the inverse of a matrix
A ∈ GL(n) is

A−1 =
1

|A|
adj(A) ,

where adj(A) is the adjugate matrix of A and |A| is the determinant of A, noting that this is
nonzero since A is nonsingular. Now, the determinant is a sum of products so that the function
g : GL(N) → R defined by g(A) = |A| is continuous by the same arguments as above for matrix
multiplication. Likewise each element of the adjugate matrix is a sum of products as well so that the
function fij : GL(A)→ R defined by fij(A) = adj(A)ij , i.e. the ith row and jth column component
of the adjugate matrix, is also continuous.

Then clearly the corresponding component of the inverse matrix is the function hij : GL(A) → R
defined by hij(A) = fij(A)/g(A). Since both fij and g are continuous (and again noting that
g is always nonzero), then their quotient hij is also continuous by Exercise 21.12. Hence, since
each component hij of the inverse matrix is continuous, it follows that the inversion operation as a

whole is continuous by Theorem 19.6 as above, considering the matrices as elements of Rn2

. Since
both multiplication and inversion are continuous, this shows that GL(n) is a topological group by
definition.

Exercise TG.3

Let H be a subspace of G. Show that if H is also a subgroup of G, then both H and H are topological
groups.

Solution:

Lemma TG.3.1. Any subspace of a space satisfying the T1 axiom also satisfies the T1 axiom.

Proof. Suppose that X is a subspace of Y and consider two distinct points x, y ∈ X. Then there is
a neighborhood U of x in Y that does not contain y by Exercise 17.15. It then follows that U ∩X
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is a neighborhood of x in X that does not contain y since y /∈ U . A similar argument shows that
there is a neighborhood of y in X that does not contain x. Hence X also satisfies the T1 axiom,
again by Exercise 17.15.

Main Problem.

Proof. Presumably here G is a topological group. Hence G satisfies the T1 axiom so that H and H
do as well by Lemma TG.3.1 since they are subspaces of G.

We first show that H is a subgroup of G, noting that of course H is nonempty since H must be (as
it is a subgroup) and H ⊂ H. Let f : G × G → G be the operation defined by f(x × y) = x · y−1

for x, y ∈ G. It is a well known theorem of group theory that H is a subgroup of G if and only if
x · y−1 ∈ H for any x, y ∈ H, which is to say that f(H ×H) ⊂ H. This is exactly what we intend
to show. We have the following deductions:

• As subsets of G×G, H ×H = H ×H by Exercise 17.9 since H ⊂ G.

• Since f is continuous on G×G, it follows that f(H ×H) ⊂ f(H ×H) by Theorem 18.1.

• Since H is a subgroup we have that x · y−1 ∈ H for every x, y ∈ H, which is to say that
f(H ×H) ⊂ H. It then follows from Exercise 17.6 part (a) that f(H ×H) ⊂ H.

Putting these all together, we can conclude that

f(H ×H) = f(H ×H) ⊂ f(H ×H) ⊂ H ,

which shows the desired result that H is a subgroup of G.

Next, obviously H and H are both groups by the definition of a subgroup. The operation of H (or
H) is of course the operation of G with its domain restricted to H ×H (or H ×H). The continuity
of this operation on H (or H) follows from Theorem 18.2 part (d) since it is continuous on G since G
is a topological group. Likewise the inversion function on H (or H) is a restriction of the inversion
function on G, and so is also continuous for the same reason. Hence H and H are topological groups
by definition.

Exercise TG.4

Let α be an element of G. Show that the maps fα, gα : G→ G defined by

fα(x) = α · x and gα(x) = x · α

are homeomorphisms of G. Conclude that G is a homogeneous space. (This means that for every pair
x, y of points of G, there exists a homeomorphism of G onto itself that carries x to y.)

Solution:

Proof. Clearly G is meant to be a topological group. Let e be the identity element of G. Define the
function f ′α : G→ G by f ′α(x) = α−1 · x. For any any x ∈ G we then have

(f ′α ◦ fα)(x) = f ′α(fα(x)) = f ′α(α · x) = α−1 · (α · x) = (α−1 · α) · x = e · x = x

and

(fα ◦ f ′α)(x) = fα(f ′α(x)) = fα(α−1 · x) = α · (α−1 · x) = (α · α−1) · x = e · x = x .
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This shows that both f ′α ◦ fα = iG and fα ◦ f ′α = iG so that f ′α is both a left inverse and a right
inverse for fα (see Exercise 2.5). Hence fα is bijective and f−1

α = f ′α by Exercise 2.5 part (e). An
analogous argument shows gα is bijective and that g′α(x) = x · α−1 is its inverse function.

To show that they are homeomorphisms, we note that the group operation is a continuous function
since G is a topological group. We then have that the operation is continuous in each variable
separately by Exercise 18.11. From this it clearly follows that both fα and gα are continuous since
fα(x) = ·(α × x) and gα(x) = ·(x × α). Similarly f−1

α and g−1
α are continuous since we have

f−1
α (x) = f ′α(x) = ·(α−1 × x) and g−1

α (x) = g′α(x) = ·(x × α−1). This shows that both fα and gα
are homeomorphisms by definition.

Now, to show that G is a homogeneous space, consider any points x0, y0 ∈ G. Set α = y0 · x−1
0 ,

noting that of course α ∈ G. We then claim that fα as defined above is a homeomorphism that
carries x0 to y0. Of course we already showed above that fα is a homeomorphism, so all that remains
is to show that fα(x0) = y0. To this end we have

fα(x0) = α · x0 = (y0 · x−1
0 ) · x0 = y0 · (x−1

0 · x0) = y0 · e = y0 ,

which shows the desired result.

Exercise TG.5

Let H be a subgroup of G. If x ∈ G, define xH = {x · h | h ∈ H}; this set is called a left coset of H in
G. Let G/H denote the collection of left cosets of H in G; it is a partition of G. Give G/H the quotient
topology.

(a) Show that if α ∈ G, the map fα of the preceding exercise induces a homeomorphism of G/H
carrying xH to (α · x)H. Conclude that G/H is a homogeneous space.

(b) Show that if H is a closed set in the topology of G then one-point sets are closed in G/H.

(c) Show that the quotient map p : G→ G/H is open.

(d) Show that if H is closed in the topology of G and is a normal subgroup of G, then G/H is a
topological group.

Solution:

First we note that it is a well-known theorem of group theory that any subgroup of a group contains
the identity element of the group, which is also the identity element of the subgroup. So, for what
follows, let e be the identity element of G and H above, from which it follows that x ∈ xH for any
x ∈ G since we have x = x · e and e ∈ H. We also have that H ∈ G/H since clearly H = eH. Also
let p : G→ G/H denote the quotient map corresponding to the quotient space.

(a)

Proof. Now, for α ∈ G, define the function hα : G/H → G/H by mapping the left coset xH ∈ G/H
to fα(x)H = (α · x)H. We note that if xH = yH for x, y ∈ G then of course y ∈ yH = xH so that
y = x · h for some h ∈ H. Then

fα(y) = α · y = α · (x · h) = (α · x) · h = fα(x) · h

so that fα(y) ∈ fα(x)H, which suffices to show that fα(x)H = fα(y)H since G/H is a partition.
Hence hα(yH) = fα(y)H = fα(x)H = hα(xH) so that the mapping hα is a well-defined function.
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To show that hα is a homeomorphism, we first show that it is a bijection. Suppose that xH and yH
are left cosets where hα(xH) = hα(yH). Then we have hα(xH) = fα(x)H = fα(y)H = hα(yH),
and hence fα(x) ∈ fα(y)H. From this it follows that

fα(x) = fα(y) · h = (α · y) · h = α · (y · h) = fα(y · h)

for some h ∈ H. Since fα is injective (since it was shown in Exercise TG.4 to be bijective), it
has to be that x = y · h so that x ∈ yH. Since also x ∈ xH and G/H is a partition, it must be
that xH = yH, which shows that hα is injective. Now consider any coset yH ∈ G/H. Since fα
is a surjection we have that there is an x ∈ G where y = fα(x). Thus it immediately follows that
hα(xH) = fα(x)H = yH, which shows that hα is surjective since yH was arbitrary. This completes
the proof that hα is a bijection.

Next we digress a bit and show that
⋃
hα(H) = fα (

⋃
H) for any subset H ⊂ G/H, where we use

the notation
⋃
A =

⋃
A∈AA for a collection of sets A. So first consider any x0 ∈

⋃
hα(H) so that

there is a coset yH ∈ hα(H) where x0 ∈ yH. Then, since yH ∈ hα(H), there is another coset
xH ∈ H where x0 ∈ yH = hα(xH) = fα(x)H. We then have that

x0 = fα(x) · h = (α · x) · h = α · (x · h) = fα(x · h)

for some h ∈ H. Since clearly x · h ∈ xH and xH ∈ H, we have that x · h ∈
⋃
H. Then of course

x0 ∈ fα(
⋃
H) since x0 = fα(x · h), which shows that

⋃
hα(H) ⊂ fα (

⋃
H) since x0 was arbitrary.

Now consider x0 ∈ fα(
⋃
H) so that there is a y0 ∈

⋃
H where x0 = fα(y0). Then also there is a

coset xH ∈ H where y0 ∈ xH since y0 ∈
⋃
H. Hence y0 = x · h for some h ∈ H. Define the coset

yH = hα(xH) = fα(x)H and we have

x0 = fα(y0) = α · y0 = α · (x · h) = (α · x) · h = fα(x) · h

so that x0 ∈ fα(x)H = yH. Then, since yH = hα(xH) and xH ∈ H, we have that yH ∈ hα(H).
As we also have x0 ∈ yH, it follows that x0 ∈

⋃
hα(H). This shows that

⋃
hα(H) ⊃ fα (

⋃
H) since

x0 was arbitrary, which completes the proof that
⋃
hα(H) = fα (

⋃
H).

To return to the main goal, we therefore have that

U is open in G/H ⇔
⋃
U is open in G (by the definition of the quotient space)

⇔ fα

(⋃
U
)

=
⋃
hα(U) is open in G (since fα is a homeomorphism)

⇔ hα(U) is open in G/H , (by the definition of the quotient space)

noting that fα was shown to be a homeomorphism in Exercise TG.4. This shows that hα is a
homeomorphism as desired.

Lastly, to show that G/H is homogeneous, consider two cosets xH, yH ∈ G/H. We know from what
was shown in Exercise TG.4 that there is an fα such that y = fα(x). If hα is the homeomorphism
on G/H induced by fα as defined above then we have hα(xH) = fα(x)H = yH. This suffices to
show that G/H is homogeneous since xH and yH were arbitrary.

(b)

Proof. Define the single-point subset H0 = {H} of G/H, noting that we showed above why H ∈
G/H. We have that H0 is closed in G/H since we know that p−1(H0) =

⋃
H0 = H is closed in

G, which follows from the alternative definition of a quotient map. Now consider any arbitrary
one-point subset H = {xH} ⊂ G/H. Since it was shown in part (a) that G/H is a homogeneous
space, there is a homeomorphism hα : G/H → G/H that maps H to xH. Then we clearly have
that hα(H0) = hα({H}) = {xH} = H. Since H0 is closed in G/H and hα is a homeomorphism,
it follows that hα(H0) = H is also closed in G/H. This shows the desired result since H was an
arbitrary single-point subset.
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(c)

Proof. Let gα : G → G be the function defined by gα(x) = x · α for α, x ∈ G, which we know is a
homeomorphism for any α ∈ G by Exercise TG.4. Consider any open set U of G.

We first show that p−1(p(U)) =
⋃
h∈H gh(U).

(⊂) Consider arbitrary x ∈ p−1(p(U)) so that p(x) ∈ p(U). Of course p(x) = xH so that xH ∈ p(U)
so that there is a y ∈ U where xH = p(y) = yH. From this it follows that x ∈ yH so that x = y ·h0

for some h0 ∈ H, and so x = gh0(y). Since y ∈ U we have that x ∈ gh0(U), and thus of course
x ∈

⋃
h∈H gh(U) since h0 ∈ H. This shows that p−1(p(U)) ⊂

⋃
h∈H gh(U) since x was arbitrary.

(⊃) Now consider x ∈
⋃
h∈H gh(U) so that there is an h0 ∈ H where x ∈ gh0

(U). Hence x = gh0
(y)

for some y ∈ U , and so x = y · h0. This shows that x ∈ yH since h0 ∈ H, and thus it must be
that xH = yH. However, we have that xH = yH = p(y) and y ∈ U so that xH ∈ p(U). Moreover
xH = p(x) so that p(x) ∈ p(U) and hence x ∈ p−1(p(U)). This shows that p−1(p(U)) ⊃

⋃
h∈H gh(U),

which shows the desired result.

Now, since each gh is a homeomorphism for h ∈ H and U is open in G, it follows that each gh(U)
also open in G. Then of course their union

⋃
h∈H gh(U) = p−1(p(U)) is open in G by the definition

of a topology. Since p−1(p(U)) is open in G, it follows that p(U) is open in G/H since p is a quotient
map. Then, since U was an arbitrary open set of G, this proves that p is an open map.

(d) Recall from algebra that H being a normal subgroup of G means that ghg−1 ∈ H for any h ∈ H
and g ∈ G. It is also an equivalent definition of that xy ∈ H if and only if yx ∈ H for x, y ∈ G.

Proof. First we need to show that we can define an operation on G/H that makes it into a group.
This is done in the expected way: for xH, yH ∈ G/H define xH · yH = (x · y)H. To show that this
operation is well-defined, suppose that x0H = x1H and y0H = y1H are elements of G/H. Then of
course x1 ∈ x0H so that x1 = x0 · hx for some hx ∈ H. Similarly y1 ∈ y0H so that y1 = y0 · hy for
some hy ∈ H. Freely utilizing the associativity of the operation of G and suppressing the · by using
multiplication notation, we then have that

x1y1 = (x0hx)(y0hy)

(x1y1)y−1
0 = (x0hx)(y0hy)y−1

0

x1y1y
−1
0 = x0hx(y0hyy

−1
0 )

x1y1y
−1
0 = x0hxh1 (where h1 = y0hyy

−1
0 ∈ H since H is normal)

x1y1y
−1
0 = x0h2 (where h2 = hxh1 ∈ H since H is a group)

x1y1y
−1
0 x−1

0 = x0h2x
−1
0

x1y1y
−1
0 x−1

0 = h3 (where h3 = x0h2x
−1
0 ∈ H since H is normal)

Hence (x1y1)(y−1
0 x−1

0 ) = x1y1y
−1
0 x−1

0 ∈ H so that also (y−1
0 x−1

0 )(x1y1) ∈ H by the equivalent
definition of a normal subgroup. Therefore, for some h ∈ H, we have

y−1
0 x−1

0 x1y1 = (x−1
0 y−1

0 )(x1y1) = h

x−1
0 x1y1 = y0h

x1y1 = x0y0h

x1y1 = (x0y0)h

so that x1 · y1 ∈ (x0 · y0)H, which of course shows that (x1 · y1)H = (x0 · y0)H, and hence the
operation on G/H is well-defined.
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Now we show that G/H with this operation satisfies the group axioms. We first note that, for
x, y ∈ G, we have xH, yH ∈ G/H and x ·y ∈ G since G is a group so that xH ·yH = (x ·y)H ∈ G/H.
Hence the operation is closed in G/H. Next, clearly eH = H itself is the identity element for G/H
since we have eH · xH = (e · x)H = xH and xH · eH = (x · e)H = xH for any xH ∈ G/H.
We also have that the inverse element of xH is x−1H since xH · x−1H = (x · x−1)H = eH and
x−1H · xH = (x−1 · x)H = eH. Lastly, we have that

(xH · yH) · zH = (x · y)H · zH = ((x · y) · z)H = (x · (y · z))H
= xH · (y · z)H = xH · (yH · zH)

since of course the operation on G is associative. This shows that the operation on G/H is associative
as well, which completes the proof that G/H is a group.

To show that G/H is in fact a topological group, first it was shown in part (b) that one-point subsets
of G/H are closed in G/H since H is closed in G. From this is follows that G/H satisfies the T1

axiom since any finite subset of G/H is a finite union of one-point sets and so is also closed in G/H.

At this point we take a short digression and show that if f : G × G → G is continuous, then the
function h : G/H ×G/H → G/H defined by h(xH, yH) = f(x, y)H is also continuous. To see this,
we first claim that h ◦ (p× p) = p ◦ f , where the function p× p : G×G → G/H ×G/H is defined
as (p× p)(x, y) = (p(x), p(y)) as in Exercise 18.10. This is easy to show as we have

(h ◦ (p× p))(x, y) = h((p× p)(x, y)) = h(p(x), p(y)) = h(xH, yH)

= f(x, y)H = p(f(x, y)) = (p ◦ f)(x, y)

for any x, y ∈ G. Since both p and f are continuous, it follows that p ◦ f = h ◦ (p × p) is also
continuous by Theorem 18.2 part (c). We also have that p × p is an open quotient map by the
remarks in the text since p is an open quotient map by part (c).

At this point, we use Theorem 22.2 to show that h is continuous. As this can be confusing, we include
the following table, which shows how the sets and functions in the statement of Theorem 22.2 map
to the sets and functions we are working with:

Type Theorem 22.2 Ours
Set X G×G
Set Y G/H ×G/H
Set Z G/H

Function p : X → Y p× p
Function g : X → Z p ◦ f = h ◦ (p× p)
Function f : Y → Z h

Now we show that the conditions of the theorem are met. We have already shown that p × p is a
quotient map. Now let P = {(xH, yH)} be a one-point subset of G/H × G/H. Since p × p is a
quotient map, it is surjective so that (p× p)((p× p)−1(P )) = P by Exercise 2.1. Then clearly

(p ◦ f)((p× p)−1(P )) = (h ◦ (p× p))((p× p)−1(P ))

= h((p× p)((p× p)−1(P ))) = h(P )

= {h(xH, yH)} ,

which shows that p ◦ f is constant on the set (p × p)−1(P ). Thus p ◦ f induces the function h per
Theorem 22.2 since h ◦ (p × p) = p ◦ f as shown above. It then follows by the theorem that h is
continuous since we have shown above that p ◦ f is.
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Returning to the main problem, since G is a topological group the function f : G×G→ G defined
by f(x, y) = x · y−1 is continuous by Exercise TG.1. It then follows by what was just shown that
h : G/H ×G/H → G/H defined by

h(xH, yH) = xH · (yH)−1 = xH · y−1H = (x · y−1)H = f(x, y)H

is also continuous. This suffices to show that G/H is also a topological group as desired, again by
Exercise TG.1.

Exercise TG.6

The integers Z are a normal subgroup of (R,+). The quotient R/Z is a familiar topological group; what
is it?

Solution:

The quotient R/Z is the reals with addition modulo one. This is to say that two reals x and y
are considered equivalent (i.e. they are in the same equivalence class) if x − y ∈ Z. This is also
homeomorphic and isomorphic (with respect to the group) to the topological group (S1, ·) from
Exercise TG.2 part (d) by the map f : R/Z→ S1 defined by f(xZ) = ei2πx. We shall not show this
rigorously as doing so would be tedious, but it is not difficult to see intuitively.

Exercise TG.7

If A and B are subsets of G, let A · B denote the set of all points a · b for a ∈ A and b ∈ B. Let A−1

denote the set of all points a−1, for a ∈ A.

(a) A neighborhood V of the identity element e is said to be symmetric if V = V −1. If U is a
neighborhood of e, show that there is a symmetric neighborhood V of e such that V ·V ⊂ U . [Hint:
If W is a neighborhood of e, then W ·W−1 is symmetric.]

(b) Show that G is Hausdorff. In fact, show that if x 6= y, there is a neighborhood V of e such that
V · x and V · y are disjoint.

(c) Show that G satisfies the following separation axiom, which is called the regularity axiom : Given
a closed set A and a point x not in A, there exist disjoint open sets containing A and x, respectively.
[Hint: There is a neighborhood V of e such that V · x and V ·A are disjoint.]

(d) Let H be a subgroup of G that is closed in the topology of G; let p : G → G/H be the quotient
map. Show that G/H satisfies the regularity axiom. [Hint: Examine the proof of (c) when A is
saturated.]

Solution:

Lemma TG.7.1. Suppose that X and Y are topological spaces and f : X ×X → Y is continuous.
Also suppose that f(x, x) = y for some x ∈ X and y ∈ Y . Then, for any neighborhood V of y, there
is a neighborhood U of x such that f(U × U) ⊂ V .

Proof. Let V be any neighborhood of y = f(x, x) in Y . Then there is a neighborhood U ′ of (x, x)
in X ×X such that f(U ′) ⊂ V by Theorem 18.1 part (4). Now, since U ′ is an open set of X ×X
containing (x, x), there is a basis element B = U1×U2 of X×X such that (x, x) ∈ U1×U2 = B ⊂ U ′,
where of course U1 and U2 are open in X. Then, being a finite intersection of open sets, U = U1∩U2
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is also open in X and we have x ∈ U since x ∈ U1 and x ∈ U2. Hence U is a neighborhood of x in
X, and of course both U ⊂ U1 and U ⊂ U2.

Now consider any z ∈ f(U × U) so that there is an (x1, x2) ∈ U × U where f(x1, x2) = z. Then
x1 ∈ U ⊂ U1 and x2 ∈ U ⊂ U2 so that (x1, x2) ∈ U1 × U2 = B ⊂ U ′. Hence z = f(x1, x2) ∈ f(U ′)
so that also z ∈ V since f(U ′) ⊂ V . This shows the desired result that f(U × U) ⊂ V since z was
arbitrary.

Lemma TG.7.2. (x · y)−1 = y−1 · x−1 for any x and y in a group.

Proof. Let e be the identity element of the group. Then we have

(x · y)−1 · (x · y) = e (definition of the inverse)(
(x · y)−1 · x

)
· y = e (associativity of the operation)

(x · y)−1 · x = e · y−1

(x · y)−1 · x = y−1 (definition of the identity element)

(x · y)−1 = y−1 · x−1 ,

which shows the desired result.

Lemma TG.7.3. If G is a topological group and U is an open set of G then the sets α ·U and U ·α
are also open in G for any α ∈ G. Similarly, if C is a closed set of G then α · C and C · α are also
closed.

Proof. For α ∈ G, of course α · U denotes the set {α · x | x ∈ U}, and analogously U · α =
{x · α | x ∈ U}. The openness of α ·U and U ·α follow almost immediately from what was shown in
Exercise TG.4. It is trivial to show that α ·U = fα(U), where fα : G→ G is defined by fα(x) = α ·x
as in Exercise TG.4. We know from that exercise that fα is a homeomorphism so that α ·U = fα(U)
is open since U is. Analogously U · α = gα(U) is also open for the same reason, where gα(x) = x · α
as in Exercise TG.4. If C is a closed set of G then α ·C = fα(C) and C · α = gα(C) are also closed
since the homeomorphisms fα and gα also of course preserve closed sets.

Lemma TG.7.4. If G is a topological group with identity element e and U is a neighborhood of e,
then U · U−1 is a symmetric neighborhood of e.

Proof. First we show that U · U−1 is indeed a neighborhood of e. We claim that

U · U−1 =
⋃

α∈U−1

(U · α) ,

We have

x ∈ U · U−1 ⇔ ∃y ∈ U∃α ∈ U−1 (x = y · α)

⇔ ∃α ∈ U−1∃y ∈ U (x = y · α)

⇔ ∃α ∈ U−1 (x ∈ U · α)

⇔ x ∈
⋃

α∈U−1

(U · α)

which of course shows the desired result. Now, we know from Lemma TG.7.3 that each U · α is
open since U is open (being a neighborhood of e). Hence their union is open by the definition of a
topology, which shows that U · U−1 is in fact open. Also, since e ∈ U and e−1 = e (a well-known
property of the identity element in any group), we clearly have that e = e · e = e · e−1 ∈ U ·U−1 and
therefore U · U−1 is a neighborhood of e.
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To show that U · U−1 is symmetric, we have

z ∈ (U · U−1)−1 ⇔ ∃x ∈ U∃y ∈ U
(
z = (x · y−1)−1

)
⇔ ∃x ∈ U∃y ∈ U

(
z = (y−1)−1 · x−1

)
(by Lemma TG.7.2)

⇔ ∃x ∈ U∃y ∈ U
(
z = y · x−1

)
⇔ ∃y ∈ U∃x ∈ U

(
z = y · x−1

)
⇔ z ∈ U · U−1 ,

which shows that (U · U−1)−1 = U · U−1 so that U · U−1 is symmetric by definition.

Main Problem.

(a)

Proof. Suppose that U is any neighborhood of e. Since G is a topological group, we know that the
function f : G × G → G defined by f(x, y) = x · y is continuous. Then, since f(e, e) = e · e = e, it
follows from Lemma TG.7.1 that there is a neighborhood V ′ of e such that f(V ′ × V ′) ⊂ U . Now
we claim that f(V ′×V ′) = V ′ ·V ′. For any z ∈ f(V ′×V ′) we have that there is an (x, y) ∈ V ′×V
where f(x, y) = x · y = z. Since x, y ∈ V ′ and z = x · y, this shows that z ∈ V ′ · V ′ so that
f(V ′ × V ′) ⊂ V ′ · V ′. To show the other direction, for any z ∈ V ′ · V ′ we have that z = x · y for
some x, y ∈ V ′. Then (x, y) ∈ V ′ × V ′ and z = x · y = f(x, y) so that z ∈ f(V ′ × V ′), which shows
that f(V ′ × V ′) ⊃ V ′ · V ′. This shows the desired result that V ′ · V ′ = f(V ′ × V ′) ⊂ U .

Similarly the function g : G×G→ G defined by g(x, y) = x ·y−1 is also continuous by Exercise TG.1
since G is a topological group. Then, since V ′ is a neighborhood of e and g(e, e) = e ·e−1 = e ·e = e,
it follows again from Lemma TG.7.1 that there is a neighborhood W of e such that g(W ×W ) ⊂ V ′.
We have that W · W−1 = g(W × W ) by an argument analogous to that for f above so that
W ·W−1 = g(W ×W ) ⊂ V ′. Let V = W ·W−1 ⊂ V ′, which we know is a symmetric neighborhood
of e by Lemma TG.7.4 and is the neighborhood we seek.

So consider any z ∈ V · V so that z = x · y for some x, y ∈ V . Then also x, y ∈ V ′ since V ⊂ V ′.
From this it follows that z = x · y ∈ V ′ · V ′ so that also z ∈ U since V ′ · V ′ ⊂ U . This shows the
desired result that V · V ⊂ U since z was arbitrary, which completes the overall proof.

(b)

Proof. Suppose that x, y ∈ G and that x 6= y. Then there are neighborhoods U ′x of x and U ′y of y such
that y /∈ U ′x and x /∈ U ′y. This follows from Exercise 17.15 since G satisfies the T1 axiom on account
of it being a topological group. Then Ux = U ′x · x−1 and Uy = U ′y · y−1 are both neighborhoods of e
since they are open by Lemma TG.7.3 and we have that e = x · x−1 ∈ U ′x · x−1 = Ux since x ∈ U ′x,
and analogously e = y · y−1 ∈ U ′y · y−1 = Uy since y ∈ U ′y. Note that we also have that

z ∈ Uy · y ⇔ z ∈ (U ′y · y−1) · y
⇔ ∃y′ ∈ U ′y(z = (y′ · y−1) · y)

⇔ ∃y′ ∈ U ′y(z = y′ · (y−1 · y))

⇔ ∃y′ ∈ U ′y(z = y′ · e)
⇔ ∃y′ ∈ U ′y(z = y′)

⇔ z ∈ U ′y

so that clearly Uy · y = U ′y.
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Now, let U = Ux ∩ Uy, which is also obviously a neighborhood of e. It then follows from part (a)
that there is a symmetric neighborhood V of e such that V ·V ⊂ U . Suppose that V ·x and V ·y are
not disjoint so that there is a z ∈ V ·x where also z ∈ V · y. Then we have that z = vx ·x = vy · y for
some vx, vy ∈ V . It then follows that x = (v−1

x · vy) · y and, since v−1
x ∈ V −1 = V as V is symmetric,

we have v−1
x · vy ∈ V · V ⊂ U ⊂ Uy. Thus x = (v−1

x · vy) · y ∈ Uy · y = U ′y, but we know that x
cannot be in U ′y by its definition per the T1 axiom! This contradiction means that it must be that
V · x and V · y are disjoint, which shows the desired result.

From this the fact that G is Hausdorff readily follows. Clearly V · x is a neighborhood of x since it
is open by Lemma TG.7.3 and we have x = e · x ∈ V · x. Similarly V · y is a neighborhood of y. As
we have shown that these are disjoint, this suffices to show that G is a Hausdorff space.

(c)

Proof. A proof of this is similar to the proof of part (b). Since A is closed, we know that A · x−1 is
also closed by Lemma TG.7.3. Then G − A · x−1 is of course open. Moreover if e were in A · x−1

then we would have e = a · x−1 for some a ∈ A so that a = e · x = x, which is not possible since
we know that x /∈ A. So it must be that e /∈ A · x−1 so that e ∈ G− A · x−1 since of course e ∈ G.
Hence G−A · x−1 is a neighborhood of e, and thus there is a symmetric neighborhood V of e such
that V · V ⊂ G−A · x−1 by what was shown in part (a).

We claim that V · A and V · x are disjoint. To see this, suppose to the contrary that there is a
y ∈ V · A where also y ∈ V · x. Then y = va · a = vx · x for some va, vx ∈ V and a ∈ A. Then we
have

vx · x = va · a
v−1
a · vx · x = a

v−1
a · vx = a · x−1 .

Since V is symmetric we have that v−1
a ∈ V −1 = V so that v−1

a · vx ∈ V ·V ⊂ G−A ·x−1 and hence
v−1
a · vx /∈ A · x−1. However, clearly v−1

a · vx = a · x−1 so that v−1
a · vx ∈ A · x−1 since a ∈ A. This

contradiction can only mean that in fact V ·A and V · x are disjoint.

Now, for any a ∈ A, we have that a = e · a ∈ V ·A since e ∈ V , which shows that A is contained in
V ·A. Similar to what was done in the beginning of the proof of Lemma TG.7.4, it is easy to show
that

V ·A =
⋃
a∈A

V · a ,

which is open since each V · a is open by Lemma TG.7.3. Thus V · A is an open set containing A.
We also have that V ·x is a neighborhood of x since it is open by Lemma TG.7.3 and x = e ·x ∈ V ·x
since e ∈ V . Since we have already shown that V · A and V · x are disjoint, this shows the desired
result that G satisfies the regularity axiom.

(d)

Proof. Suppose that A is a closed subset of G/H and xH is an element of G/H not contained in A.
Then p−1(A) is a closed subset of G since p is a quotient map. Moreover p−1(A) cannot contain x
for, if it did, then we would have xH = p(x) ∈ A. So let V be a symmetric neighborhood of e such
that V · p−1(A) and V · x are disjoint, as shown to exist in part (c).

It was also shown in part (c) that V · p−1(A) is an open set in G containing p−1(A) and V · x is
a neighborhood of x in G. So, for any yH ∈ A we have that p(y) = yH ∈ A so that y ∈ p−1(A)
and hence also y ∈ V · p−1(A). Then of course yH = p(y) ∈ p(V · p−1(A)), which shows that
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A ⊂ p(V · p−1(A)) since yH was arbitrary. We also have that p(V · p−1(A)) is open in G/H since
V · p−1(A) is open in G and p is an open map by Exercise TG.5 part (c). Similarly, since x ∈ V · x,
we have that xH = p(x) ∈ p(V · x) and p(V · x) is open in G/H since p is an open map. Thus
p(V · x) is a neighborhood of xH in G/H.

Now we show that p(V · p−1(A)) and p(V · x) are disjoint subsets of G/H. Suppose to the contrary
that they are not so that there is a zH ∈ p(V · p−1(A)) where also zH ∈ p(V · x). Then we have
that there is a ya ∈ V · p−1(A) where z = p(ya) and likewise a yx ∈ V · x where z = p(yx). Thus
yaH = p(ya) = z = p(yx) = yxH so that yx ∈ yaH, and hence there is an h ∈ H where yx = ya · h.
Also since ya ∈ V · p−1(A) we have ya = va · a′ for some va ∈ V and a′ ∈ p−1(A). Putting this
together we have

yx = ya · h = va · a′ · h .

Since a′ ∈ p−1(A) we have that a′H = p(a′) ∈ A. Also clearly a′ · h ∈ a′H since h ∈ H. Therefore
a′ · h ∈

⋃
A = p−1(A). Hence we have that yx = va · (a′ · h) ∈ V · p−1(A). Since also yx ∈ V · x, this

violates the fact that V · p−1(A) and V · x are disjoint. This contradiction means that it must be
that in fact p(V · p−1(A)) and p(V · x) are disjoint, which completes the proof that G/H satisfies
the regularity axiom.
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