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Chapter 1 Set Theory and Logic

81 Fundamental Concepts
Exercise 1.1

Check the distributive laws for U and N and DeMorgan’s laws.

Solution:
Suppose that A, B, and C are sets. First we show that AN(BUC)=(ANB)U(ANC).

Proof. We show this as a series of logical equivalences:

reAN(BUC)exze ANzxeBUC
szrzeAN(xeBVzel)
S (rxeArzeB)V(ze Anzel)
sSreAnBvze AnC
sSzrxe(ANB)UANC),

which of course shows the desired result.
Next we show that AU(BNC)=(AUB)N(AUC).
Proof. We show this in the same way:

reAU(BNC)sxeAvee BNC
srxeAV(zeBAxel)
S (reAvezeB)AN(ze Avze ()
SreAUBAze AUC
szrxe(AUB)N(AUC),

which of course shows the desired result.
Now we show the first DeMorgan’s law that A — (BUC) = (A— B)N(A-C).
Proof. We show this in the same way:

re€A-(BUC)exzec ANz ¢ BUC
srxeAN-(xeBVzel)
srxeAN(x¢ BAx ¢ C)
S@eANzgB)AN(xeAnaz ¢ C)
SreA-BArzeA-C
srxe(A-B)NA-0),

which is the desired result.

Lastly we show that A— (BNC)=(A—-B)U((A—-C).
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Proof. Again we use a sequence of logical equivalences:

reA-(BNC)esxzecANx ¢ BNC
srcAN-(reBAzel)
scrceAN(x¢ BVva¢l)
S@eANz¢gB)V(zeAnz ¢ C)
SreA-BvrzeA-C
srxe(A-B)UA-0),

as desired. ]

Exercise 1.2

Determine which of the following statements are true for all sets A, B, C, and D. If a double implication
fails, determine whether one or the other of the possible implications holds. If an equality fails, determine
whether the statement becomes true if the “equals” symbol is replaced by one or the other of the inclusion
symbols C or D.

(a) ACBand ACC < AcC (BUC). (j) AcCand BC D= (Ax B)C (CxD).
(by ACBorACcC& AcC (BUC). (k) The converse of (j).

(c) AcBand AcC& AcC (BNnQO). (1) The converse of (j), assuming that A and B
(d ACBorACC& AcC (BNC). are nonempty.

(e) A—(A—B)=B. (m) (Ax B)U(C xD)=(AUC) x (BUD).
(f) A-(B—A)=A-B. (n) (AxB)N(CxD)=(ANC)x (BND).
(g) AN(B-C)=(ANB)—-(ANC). (0) Ax(B=C)=(AxB)—(Ax(C).

(h) AU(B-C)=(AUB)—-(AUCQ) (p) (A—B)x(C—D)=(AxC—-BxC)—AxD.
(i) (ANB)U(A—B)=A (@) (Ax B)=(CxD)=(A-C)x (B—-D).
Solution:

(a) We claim that A C B and A C C = A C (BUC) but that the converse is not generally true.

Proof. Suppose that A C B and A C C and consider any x € A. Then clearly also x € B since
A C B so that x € BUC. Since x was arbitrary, this shows that A C (B U C) as desired.

To show that the converse is not true, suppose that A = {1,2,3}, B = {1,2}, and C = {3,4}. Then
clearly A C {1,2,3,4} = BUC but it neither true that A C B (since 3 € A but 3¢ B) nor A C C
(since 1 € Abut 1¢ C). O

(b) We claim that A C Bor A C C = A C (BUC) but that the converse is not generally true.

Proof. Suppose that A C B or A C C and consider any x € A. If A C B then clearly x € B so that
x € BUC. If A C C then clearly x € C so that again x € BUC. Since x was arbitrary, this shows
that A C (BUC) as desired.

The counterexample that disproves the converse of part (a), also serves as a counterexample to the
converse here. Again this is because A C BUC but neither A C B nor A C C, which is to say that
A ¢ B and A ¢ C. Hence it is not true that A C Bor A C C. O
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(¢) We claim that this biconditional is true.

Proof. (=) Suppose that A C B and A C C and consider any « € A. Then clearly also € B and
x € C since both A C B and A C C. Hence z € BN C, which proves that A C BN C since x was
arbitrary.

(<) Now suppose that A € BN C and consider any € A. Then z € BN C as well so that z € B
and z € C. Since x was an arbitrary element of A, this of course shows that both A C Band A C C
as desired. 0

(d) We claim that only the converse is true here.

Proof. To show the converse, suppose that A C BN C. It was shown in part (¢) that this implies
that both A C B and A C C. Thus it is clearly true that A C Bor A C C.

As a counterexample to the forward implication, let A = {1}, B = {1,2}, and C = {3,4} so that
clearly A C B and hence A C B or A C C' is true. However we have that B and C are disjoint so
that BN C = @, therefore A ¢ @ = BN C since A # @. O

(e) We claim that A — (A — B) C B but that the other direction is not generally true.

Proof. First consider any © € A — (A — B) so that x € A but z ¢ A — B. Hence it is not true that
x € Aand x ¢ B. So it must be that x ¢ A or x € B. However, since we know that = € A, it has
to be that z € B. Thus A — (A — B) C B since = was arbitrary.

Now let A = {1,2} and B = {2,3}. Then we clearly have A— B = {1}, and thus A— (A — B) = {2}.
So clearly B is not a subset of A — (A — B) since 3€ Bbut 3¢ A— (A — B). O

(f) Here we claim that A — (B — A) D A — B but that the other direction is not generally true.

Proof. First suppose that x € A — B so that x € A but « ¢ B. Then it is certainly true that « ¢ B
or z € A so that, by logical equivalence, it is not true that z € B and « ¢ A. That is, it is not true
that € B — A, which is to say that x ¢ B — A. Since also « € A, it follows that x € A — (B — A),
which shows the desired result since x was arbitrary.

To show that the other direction does not hold consider the counterexample A = {1,2} and B =
{2,3}. Then B — A = {3} so that A — (B — A) = {1,2} = A. We also have that A — B = {1} so
that 2€ A — (B — A) but 2 ¢ A — B. This suffices to show that A — (B — A) ¢ A— B. O

(g) We claim that equality holds here, i.e. that AN (B—-C)=(ANB)—-(ANC).

Proof. (C) Suppose that © € AN (B —C) so that x € Aand 2 € B—C. Thus 2 € B but « ¢ C.
Since both z € A and = € B we have that © € AN B. Also since « ¢ C it clearly must be that
x ¢ ANC. Hence x € (AN B) — (AN ), which shows the forward direction since = was arbitrary.

(D) Now suppose that z € (AN B) — (ANC). Hence x € AN B but z ¢ AN C. From the former
of these we have that x € A and = € B, and from the latter it follows that either = ¢ A or = ¢ C.
Since we know that z € A, it must therefore be that z ¢ C. Hence z € B — C since x € B but
x ¢ C. Since also € A we have that € AN (B — C), which shows the desired result since = was
arbitrary. O

(h) Here we claim that AU (B — C) D (AU B) — (AU C) but that the forward direction is not
generally true.
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Proof. First consider any x € (AUB) — (AUC) so that x € AUB and « ¢ AUC. From the latter,
it follows that « ¢ A and x ¢ C since otherwise we would have z € AU C. From the former, we
have that € A or z € B so that it must be that « € B since x ¢ A. Therefore we have that « € B
and = ¢ C so that z € B — C. From this it obviously follows that © € AU (B — (), which shows
that AU (B —C) D (AUB) — (AU C) since x was arbitrary.

To show that the forward direction does not always hold, consider the sets A = {1,2}, B = {2, 3},
and C' = {2}. Then we clearly have that B — C = {3}, and hence AU (B — C) = {1,2,3}. On
the other hand, we have AU B = {1,2,3} and AU C = {1,2} so that (AU B) — (AU C) = {3}.
Hence, for example, 1 € AU(B —C) but 1 ¢ (AU B) — (AU C), which suffices to show that
AU(B-C)¢ (AUB) - (AUC) as desired. O

(i) We claim that equality holds here.

Proof. We show this with a chain of logical equivalences:

r€(ANB)U(A-B)erxrc ANBVzeA-B
& (reANzeB)V(zre ANz ¢ B)
szreAN(zxeBVaxa ¢ B)
< 2 € ANTrue
SzreA,

where we note that “True” denotes the fact that © € BV a ¢ B is always true by the excluded
middle property of logic. O

(j) We claim that this implication is true.

Proof. Suppose that A C C' and B C D. Consider any (x,y) € A X B so that x € A and y € B by
the definition of the cartesian product. Then also clearly z € C' and y € D since A C C' and B C D.
Hence (z,y) € C x D, which shows the result since the ordered pair (z,y) was arbitrary. O

(k) We claim that the converse of (j) is not always true.

Proof. Consider the following sets:

A=0o C={1}
B={1,2} D ={2}.

Then we have that A x B = & since there are no ordered pairs (z,y) such that = € A (since A = @).
Hence it is vacuously true that (A x B) C (C' x D). However, clearly it is not the case that B C D,
and so, even though A C C, it is not true that A C C and B C D. O

(1) We claim that the converse of (j) is true with the stipulation that A and B are both nonempty.

Proof. Suppose that (A x B) C (C x D). First consider any « € A. Then, since B # &, there is a
b € B. Then (z,b) € A x B so that clearly also (z,b) € C' x D. Hence x € C so that A C C since

x was arbitrary. An analogous argument shows that B C D since A is nonempty. Hence it is true
that A C C and B C D as desired. O

(m) Here we claim that (A x B)U(C' x D) C (AUC) x (BU D) but that the other direction is not
always true.
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Proof. First consider any (z,y) € (A x B)U(C x D) so that either (z,y) € Ax Bor (z,y) € C x D.
In the first case + € A and y € B so that clearly + € AUC and y € BU D. Hence (z,y) €
(AUC) x (BUD). In the second case we have € C' and y € D so that again z € AU C and
y € BUD are still both true. Hence of course (z,y) € (AU C) x (B U D) here also. This shows the
result in either case since (z,y) was an arbitrary ordered pair.

To show that the other direction does not always hold, consider A = B = {1} and C = D = {2}.
Then we clearly have AxB = {(1,1)} and CxD = {(2,2)} so that (AxB)U(CxD) = {(1,1),(2,2)}.
We also have AUC = BUD = {1,2} so that (AUC) x (BUD) ={(1,1),(1,2),(2,1),(2,2)}. This
clearly shows that (A x B)U (C x D) 2 (AUC) x (BU D) as desired. O

(n) We claim that the equality holds here.

Proof. We can show this by a series of logical equivalences:

(,y) € (AxB)N(C x D) & (z,y) € Ax BA(z,y) € C x D
S (xeANyeB)AN(zeCAyeD)
SxeANzeC)N(ye BAy € D)
sSreANCAyeBND
< (z,y) € (ANC) x (BN D)

as desired. 0
(o) We claim that equivalence holds here as well.

Proof. (C) First consider any (z,y) € A x (B — () so that x € A and y € B — C. From the latter
of these we have that y € B but y ¢ C. We clearly then have that (z,y) € A x B since € A and
y € B. Tt also has to be that (z,y) ¢ A X C since y ¢ C even though it is true that = inA. Therefore
(x,y) € (A x B) — (A x C) as desired.

(D) Now suppose that (z,y) € (A x B) — (A x C) so that (x,y) € Ax B but (z,y) ¢ (A x C). From
the former we have that © € A and y € B. It then must be that y ¢ C since (z,y) ¢ (A x C) but
we know that € A. Then we have y € B — C since y € B but y ¢ C. Since also z € A, it follows
that (x,y) € A x (B — C) as desired. O

(p) We claim the equivalence hold for this statement.

Proof. (C) Suppose that (z,y) € (A— B) x (C — D) so that xt € A— B and y € C — D. Then we
have that z € A, x ¢ B,y € C, and y ¢ D. So first, clearly (x,y) € A x C. Then, since = ¢ B,
we have that (z,y) ¢ B x C, and hence (z,y) € A x C — B x C. Since y ¢ D, we also have that
(z,y) ¢ Ax D, and thus (z,y) € (A x C — B x C) — A x D. This clearly shows the desired result
since (x,y) was arbitrary.

(D) Now suppose that (z,y) € (Ax C — B xC)— A x D so that (z,y) € Ax C — B x C but
(z,y) ¢ A x D. From the former we have that (z,y) € A x C and (x,y) ¢ B x C. Thus z € A and
y € C so that it has to be that = ¢ B since (z,y) ¢ B x C but we know that y € C. It also must be
that y ¢ D since (z,y) ¢ Ax D but x € A. Therefore we have that t € A,z ¢ B,y € C,andy ¢ D,
from which it readily follows that z € A— B and y € C'— D. Thus clearly (z,y) € (A—B) x (C— D),
which shows the desired result since (z,y) was arbitrary. O

(q) Here we claim that (A x B) — (C' x D) D (A — C) x (B — D) but that the forward direction is
not true in general.
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Proof. First consider any (x,y) € (A —C) x (B — D) so that x € A— C and y € B— D. Thus we
havez € A, 2 ¢ C,y € B, and y ¢ D. From this clearly (z,y) € A x B but (x,y) ¢ C' x D. Hence
(z,y) € (A x B) — (C x D), which clearly shows the desired result since (z,y) was arbitrary.

To show that the forward direction does not hold, consider A = {1,2}, B = {a, b}, C = {2, 3}, and
D = {b,c}. We then clearly have the following sets:

Ax B=A{(1,a),(1,b),(2,a),(2,b)} A-C={1}
C x D =1{(2,b),(2,¢),(3,b),(3,0)} B—-D={a}
(Ax B)— (C x D) = {(17a)’(1>b)’(2aa>} (A— C) X (B - D) = {(La)} :
This clearly shows that (A x B) — (C' x D) is not a subset of (A — C) x (B — D). O

Exercise 1.3

(a) Write the contrapositive and converse of the following statement: “If x < 0, then 22 — 2 > 0,” and
determine which (if any) of the three statements are true.

(b) Do the same for the statement “If z > 0, then 22 — 2 > 0.”

Solution:

(a) First we claim that the original statement is true.

Proof. Since x < 0 we clearly have that + — 1 < < 0 as well. Then, since the product of two
negative numbers is positive, we have that 22 — z = z(z — 1) > 0 as desired. O

The contrapositive of this is, “If 2 — 2 < 0, then 2 > 0.” This is of course also true by virtue of
the fact that the contrapositive is logically equivalent to the original implication.

Lastly, the converse of this statement is, “If 2 — 2 > 0, then z < 0.” We claim that this is not
generally true.

Proof. A simple counterexample of = 2 shows this. We have 22 —2 =22 -2 =4-2=2> 0, but
also clearly x = 2 > 0 as well so that x < 0 is clearly false. O

(b) First we claim that this statement is false.

Proof. As a counterexample, let z = 1/2. Then clearly z > 0, but we also have 22 — z = (1/2)? —
1/2=1/4—1/2= —1/4 <0 so that 2% — x > 0 is obviously not true. O

The contrapositive is then “If 22 — x < 0, then x < 0,” which is false since it is logically equivalent
to the original statement.

The converse is “If 22 — 2 > 0, then £ > 0,” which we claim is false.

Proof. As a counterexample, consider z = —1 so that 22 — 2 = (-1)2 — (-=1) = 1+1 =2 > 0.
However, we also clearly have x = —1 < 0 so that = > 0 is not true. O

Exercise 1.4

Let A and B be sets of real numbers. Write the negation of each of the following statements:

(a) For every a € A, it is true that a® € B.
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(b) For at least one a € A, it is true that a® € B.
(c) For every a € A, it is true that a® ¢ B.
(d) For at least one a ¢ A, it is true that a® € B.

Solution:

These are all basic logical negations using existential quantifiers:
(a) There is an a € A where a® ¢ B.

(b) For every a € A, a® ¢ B.

(c) There is an a € A where a? € B.

(d) For every a ¢ A, a® ¢ B.

Exercise 1.5

Let A be a nonempty collection of sets. Determine the truth of each of the following statements and of
their converses:

(a) v € Jyeq A=z € Afor at least one A € A.

(b) x € Upeq A= x € Aforevery Ac A

(c) ® €yeq A= v € Afor at least one A € A.

(d) x € MNpeq A=z € Aforevery Ac A

Solution:

(a) The statement on the right is the definition of the statement on the left so of course the implication
and its converse are true.

(b) The implication is generally false.

Proof. As a counterexample, consider A = {{1},{2}}. Then clearly |J,.4 A = {1,2} so that
1€ Ugea A, but 1is not in A for every A € A since 1 ¢ {2}. O

However, the converse is true.

Proof. Suppose that « € A for every A € A. Since A is nonempty there is an Ag € A. Then x € Aq
since Ag € A. Hence by definition = € (J, 4 A since z € Ag and Ag € A. O

(¢) The implication here is true.

Proof. Suppose that x € [, 4 A so that by definition 2 € A for every A € A. Since A is nonempty
there is an Ag € A so that in particular x € Ay. This shows the desired result since Ag € A. O

The converse is not generally true.

Proof. As a counterexample consider A = {{1,2},{2,3}}. Then 1 € {1,2} and {1,2} € A, but
1 & (N gea A since clearly (44 A = {2}. O

(d) The statement on the right is the definition of the statement on the left so of course the impli-
cation and its converse are true.
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Exercise 1.6

Write the contrapositive of each of the statements of Exercise 5.

Solution:

Again these involve simple logical negations of both sides of the implications:
(a) x ¢ Aforevery Ac A= x ¢ Uycn A

(b) z ¢ A for at least one A€ A= ¢ Uy g A

(c)x g Aforevery Ac A=a & (N cq A

(d) z ¢ A for at least one A€ A= x ¢ (|44 A

Exercise 1.7

Given sets A, B, and C, express each of the following sets in terms of A, B, and C, using the symbols
U, Nand —.

D={x|zcAand (zr€BorzeC},
E={z|(zxeAandz € B)orxzeC},
F={zcAand (zreB=z€()}.

Solution:

First, we obviously have

D=ANn(BUC)
E=(AnB)uC,

noting that D # FE generally though they appear similar. Regarding F we have the following
sequence of logical equivalences:

reFsreAN(zreB=z2e()
sreAN(x¢ BVzel)
srxeAN-(zxeBAz¢C)
sreAN-(reB-C)
szreANx¢B-C
sreA—(B-0)

so that of course F = A — (B - C).

Exercise 1.8

If a set A has two elements, show that P (A) has four elements. How many elements does P (A) have if
A has one element? Three elements? No elements? Why is P (A) called the power set of A.
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Solution:

We claim that if a finite set has n elements, then its power set has 2" elements, which is why it is
called the power set.

Proof. We show this by induction on the size of the set. For the base case start with the the empty
set in which n = 0. Clearly the only subset of @ is the trivial subset @ itself so that P (@) = {&}.
This has 1 = 2° = 27 element obviously, which shows the base case. Now suppose that the power
set of any set with n elements has 2" elements. Let A be a set with n + 1 elements, noting that this
is nonempty since n + 1 > 1 since n > 0. Hence there is an x € A. For any subset B C A, either
x ¢ B or x € B. In the first case B is a subset of A — {z} and in the latter B = {z} U C for some
C C A—{x}. Therefore P (A) has twice the number of elements of P (A — {z}), one half being just
the elements of A — {z} and the other being those elements with z added in. But A — {z} has n
elements since A has n + 1, and hence P (A — {z}) has 2™ elements by the induction hypothesis.
Thus P (A) has 2- 2" = 27! elements, which completes the induction. O

Using this, we can answer all of the specific questions. If a set has two elements, than its power
set has 22 = 4 elements. If it has one element, then its power set has 2! = 2 elements, namely
P ({z}) = {@,{z}}. If a set has three elements then its power set has 23 = 8 elements. Lastly, if a
set has no elements (i.e. it is the empty set), then its power set has 20 = 1 elements. As noted in
the proof we have P (@) = {o}.

Exercise 1.9

Formulate and prove DeMorgan’s laws for arbitrary unions and intersections.

Solution:

In following suppose that A is a set and B is a nonempty collection of sets. For arbitrary unions,
we claim that

A-|JB=(1A-B).

BeB BeB

Proof. The simplest way to show this is with a series of logically equivalent statements. For any x
we have that

reA-— UB@J:EA/\mgé UB
BeB BeB

< rxe AN-IB e B(x € B)
s rxe ANVB e B(xz ¢ B)
<VBeB(xe ANz ¢ B)
< VBeB(xeA—B)

S e ﬂ(A—B),
BeB

which of course shows the desired result. O

For intersections, we claim that
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Proof. Similarly, we show this with a series of logically equivalent statements. For any x we have

reA-— ﬂB@xGA/\xg{ ﬂB
BeB BeB

S ax e AN-VB e B(x € B)
< ze ANIB € B(x ¢ B)
< 3dBeB(xe ANz ¢ B)
< 3dBeB(xe A-B)
sze | JA-B),

BeB

which shows the desired result. O

Exercise 1.10

Let R denote the set of real numbers. For each of the following subsets of R x R, determine whether it
is equal to the cartesian product of two subsets of R.

Solution:
(a) This is equal to the set Z x R, which is trivial to prove.

(b) It is easy to show that this is equal to R x (0, 1], where of course (a,b] denotes the half-open
interval {x e R | a < x < b}.

(¢) We claim that this cannot be equal to the cartesian product of subsets of R.

Proof. Let A = {(x,y) | y > «} and suppose to the contrary that A = B x C' where B,C C R.
Since 1 > 0, we have that (0,1) € A. Then also 0 € B and 1 € C since A = B x C. We also have
that 1 € B and 2 € C since 2 > 1 so that (1,2) € A = B x C. Thus 1 € B and 1 € C so that
(1,1) € Bx C = A, but this cannot be since it is not true that 1 > 1. Hence we have a contradiction
so that A cannot be expressed as B x C. O

(d) Tt is trivial to show that this set is equal to (R — Z) x Z.

(e) We claim that this set cannot be expressed as the cartesian product of subsets of R.

Proof. Let A= {(z,y) | 2* + y* < 1} and suppose to the contrary that A = B x C where B,C C R.
We then have that (9/10)? 402 = 81/100+0 = 81/100 < 1 so that (9/10,0) € A = Bx C, and hence
9/10 € B and 0 € C. Also 02+ (9/10)2 = (9/10)2+ 02 = 81/100 < 1 so that (0,9/10) € A = B x C,
and hence 0 € B and 9/10 € C. Hence (9/10,9/10) € B x C = A since 9/10 is in both B and C.
However, we have (9/10)? + (9/10)? = 81/100 + 81/100 = 162/100 > 1 so that (9/10,9/10) cannot
be in A, so we have a contradiction. So it must be that A cannot be equal to B x C. O
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82 Functions

Exercise 2.1

Let f: A— B. Let Ay C A and By C B.

(a) Show that Ayg C f~!(f(Ap)) and that equality holds if f is injective.
(b) Show that f(f~1(By)) C By and that equality holds if f is surjective.

Solution:
(a)

Proof. Consider any x € Ag and let y = f(x) so that clearly y € f(Ap). Then, since f(x) =y €
f(Ap), it follows from the definition of the preimage that x € f~1(f(Ao)). Hence Ag C f~1(f(Aop))
as desired since x was arbitrary. Now suppose that f is also injective and consider this time any
z € f71(f(Ap)) so that y = f(x) € f(Ap) by the definition of a preimage. Then there is an 2’ € Ay
where f(z') = y = f(z) by the definition of an image. Since f injective though, it must be that
x =’ € Ag. This shows that f~1(f(A4g)) C Ao since z was arbitrary. The desired equality follows
since it was already shown that Ag C f=1(f(4o)) (whether or not f is injective). O

(b)

Proof. First suppose that y is any element of f(f~(By)) so that there is an € f~1(By) where
f(x) = y. Since x € f~(By), we then have that y = f(x) € By by the definition of a preimage.
Hence f(f~(By)) C By since y was arbitrary. Now suppose also that f is surjective and suppose
that y € By so that also clearly y € B since By C B. Since f is surjective, there is an z € A where
f(x) = y. We then have that = € f~1(By) since f(z) =y € By. Clearly theny = f(x) € f(f~1(Bo))
so that By C f(f~1(By)) since y was arbitrary. This shows equality as desired. O

Exercise 2.2

Let f: A— Bandlet A; C Aand B; C B for i =0 and i = 1. Show that f~' preserves inclusions,
unions, intersections, and differences of sets:

(a) Bo C Bi = f~1(Bo) C f~H(B).

(b) f7H(BoUB1) = f~"(Bo) U f (B1).

(c) f7H(BoNB1) = f~1(Bo)N f~(B).

(d) f7'(Bo—Bi1) = f""(Bo) = [ 1(B1):

Show that f preserves inclusions and unions only:

(e) Ag C Ay = f(Ao) C f(A1).

(f) f(AoU A1) = f(Ao) U f(A1).

(g) f(AgN A1) C f(Ap) N f(A1); show that equality holds if f injective.
(h) f(Ao — A1) D f(Ao) — f(A1); show that equality holds if f injective.

Solution:

(a)
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Proof. Suppose that By C B; and consider any x € f~!(Bg). Then by the definition of a preimage,
we have f(z) € By so that also f(z) € By since By C By. This shows that x € f~1(Bj) again by
the definition of a preimage. Thus f~1(Bg) C f~1(B1) since z was arbitrary as desired. O

(b)
Proof. We can show this easily using a string of biconditionals. For any x € A we have
x € fﬁl(B() U Bl) 54 f(l’) € BgU B,
< f(x) € By V f(x) € By
sref 1 (By)Vvare fH(B)
sze f[THBo)U fH(B),

which shows the desired result. O

(c)
Proof. We can show this in a very similar manner to what was done in part (b). We have
x € f_l(BO N Bl) = f(l’) € BN By
& f(z) € Bo A f(x) € By
szef Y B) Az e f~HB)
sxe fTHBo)N fH(B),

for any z € A. O

(d)
Proof. This is also shown similarly. For x € A we have
S fﬁl(Bo — Bl) = f(I) c BQ — Bl
< f(z) € BoA f(x) ¢ By
szef'(Bo)ra g fTH(B)
=T e fﬁl(Bo) — fﬁl(Bl) .

(¢)

Proof. Suppose that Ay C A; and consider any y € f(Ag). Then there is an x € Ay where y = f(x)
by the definition of an image set. Then also x € A; since Ag C A;, from which it follows that
y = f(z) € f(A1). Therefore f(Ag) C f(A1) as desired since y was arbitrary. O

(f)
Proof. We can show this easily using a string of biconditionals. For any z € A we have
ye f(AgUA) & Fz(z e AgUA Ny = f(x))
< Jzj(z € Ag Ve e Ar) Ny = f(z)]
< Jzj(x € Aghy = f(z)V(z € AL ANy = f(2))]
S dx(zx e Ag ANy = f(x)VIz(x € Ay ANy = f(x))
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S ye f(Ao) Vy € f(Ar)
Sy € f(Ao) U f(A1),

which shows the desired result. ]

(2)

Proof. Consider any y € f(Aop N A1) so that there is an x € Ay N A; where y = f(z). Hence of
course ¢ € Ag and & € A;. Since also y = f(z), this suffices to show that y € f(A4y) and y € f(A4;1),
and therefore y € f(Ag) N f(A1) as desired.

Now suppose that f is injective and consider any y € f(Ao)Nf(A1). Theny € f(Ap) and y € f(41),
from which it follows that there is an g € Ag where y = f(z¢), and an z; € A; wherey = f(z1). We
then have f(xg) =y = f(x1) so that o = x; since f is injective. Hence 29 € Ay and o = 21 € Ay,
so of course xg € Ag N A;. Since also y = f(xg), this shows by definition that y € f(Ag N Ay).
Therefore f(Ag) N f(A1) C f(Ao N Ay) since y was arbitrary, which shows the desired equivalence
since the other direction was already shown. O

(h)

Proof. Consider any y € f(Ao) — f(A1) so that y € f(Ap) and y ¢ f(A1). Then there is an = € Ay
where y = f(x). We also have that there is no 2’ € A; such that y = f(z’). Since we know that
y = f(x) it then has to be that x ¢ Ay. Hence x € Ay — Ay, so that y € f(Ap — A1) since of course
y = f(x). This shows that f(Ag — A1) D f(Ao) — f(A1) as desired since y was arbitrary.

Now suppose that f is injective and consider any y € f(Ag — A1). Then there is an z € Ay — A,
where y = f(z) by the definition of an image set. Then x € Ag but x ¢ A;. It then follows that
y € f(Ap) since y = f(x) and z € Ay. Consider any 2’ € A;. Then it cannot be that y = f(z'),
because if this were the case then f(z) =y = f(2’) so that x = 2’ since f is injective. But we know
that 2’ = # ¢ A, which would present a contradiction. So it must be that there is no 2/ € A;
where y = f(z'), which suffices to show that y ¢ f(A;). Therefore y € f(Ap) — (A1) so that
f(Apg— A1) C f(Ap)— f(A;) since y was arbitrary. This of course shows equivalence as desired. [

Exercise 2.3

Show that (b), (¢), (f), and (g) of Exercise 2 hold for arbitrary unions and intersections.

Solution:

In what follows suppose that f: A — B and that A and B are nonempty collections of subsets of A
and B, respectively. This is to say that A’ C A for all A’ € A and B’ C B for all B’ € B.

First we show that part in Exercise 2.2 part (b) holds for arbitrary unions, i.e. that
f*l ( U B/) _ U ffl(B/)'
B'eB B'eB
Proof. As before, we again show this with a string of biconditional assertions:

xefl(U B/><:>f(x)€ U B’

B'eB B'eB
& 3B’ € B(f(z) € B')
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< 3AB € B(x € f1(B))
sze |J (B

B'eB
as desired.

Next we show Exercise 2.2 part (c¢) for arbitrary intersections, that is
() o
B'eB B'eB
Proof. We show this with a string of bijections again:
xef‘1<ﬂ B’) & flxye () B
B'eB B'eB
& VB € B(f(x) € B)
& VB e B(xc f~4(B))

sze () 148,

B’eB
which shows the desired result.

Now we show Exercise 2.2 part (f) for arbitrary unions, that is that
f( U A') = U r().
A'€eA A’€eA
Proof. Again we utilize a string of biconditionals:

yef(U A’>@3m[x€ U ANy = f(z)

ATEA A€ A
& Jr[FA e A(x e A )Ny = f(x)]

< 3JA e Aly € f(A)]
sye |J f@),

A'cA
from which the result follows immediately.
Lastly, we show Exercise 2.2 part (g) for arbitrary intersections, which is that
f( N A’) c () rA,
AeA AleA

where equality holds if f is injective.
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Proof. First suppose that y € f (N 4c4 A’) so that there is an @ € [ 4, 4 A’ where y = f(z). Then
x € A for every A’ € A. So, for any such A’ € A, we have that x € A" and y = f(z) so that
y € f(A’). Since A’ was arbitrary, this shows that y € (4.4 f(A"), which shows the desired result
since y was arbitrary.

Now suppose that f is injective and let y € () 4c4 f(A’). Then y € f(A’) for every A" € A. So,
for any such Ag € A we have that y € f(Ag) so that there is a zyp € Ay where y = f(zo). Suppose
for the moment that zo & (1,4 A’ so that there is an A; € A where zg ¢ A;. However, since
A; € A we have that y € f(4;1), and hence there is an 21 € Ay where y = f(x1). But then we
have f(z¢) =y = f(z1) so that xg = x; since f is injective, and so we have that both 2y ¢ A; and
ro = x1 € Ay. As this is a contradiction, it has to be that xo € [, 4 A’. Since also y = f(z¢), this
shows that y € f (Mareq 4’). This shows that f (NyeaA) D Narea f(A) since y was arbitrary,
which in turns proves the desired equivalence. O

Exercise 2.4

Let f:A— Bandg: B — C.

(a) If Cy C O, show that (go f)~1(Co) = f~L(g71(Co)).

(b) If f and g are injective, show that g o f is injective.

(¢) If go f is injective, what can you say about the injectivity of f and g?
(d) If f and g are surjective, show that g o f is surjective.

(e) If go f is surjective, what can you say about the surjectivity of f and g7

(f) Summarize your answers to (b)-(e) in the form of a theorem.

Solution:
(a)
Proof. Suppose that Cy C C. We can show this with a string of biconditionals. For any x, we have
z € (go f)7(Co) & (go f)(z) € Co
< g(f(x)) € Co
& f(z) € g71(Co)
szef g (),

which of course shows the desired result. O

(b)

Proof. Suppose that z,y € A and x # y. Then, since f is injective, it has to be that f(x) # f(y)
by the contrapositive of the definition of an injection. Then again (go f)(z) = g(f(x)) # g(f(y)) =
(go f)(y) since f(z) # f(y) and g is injective. This shows that go f is injective by the contrapositive
of the definition. O

(¢) Here we claim that if g o f is injective, then f must be injective but g may not be.
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Proof. Suppose that g o f is injective but that f is not. Then there are z,y € A where x # y but
f(z) = f(y). Then we have

(go f)(x)=g(f(x)) =9(f(y) = (90 f)Y),

which contradicts the fact that g o f is injective since x # y. So it must be that f is injective.

To show that g need not be injective, consider the sets
A={1,2} B={1,2,3} C ={a,b}
and the function sets

f= {(1a1)7(2v2)} g:{(lva)a(va)’(?)?b)} :

It is easy to see that f : A — B is injective as is the composition g o f = {(1,a), (2,b)}, but that
g: B — C is not since g(2) = b = g(3). O

(d)

Proof. Suppose that f and g are surjective and consider any z € C. Then there is a y € B where
z = ¢(y) since g is surjective. Since f is also surjective, there is then an z € A where y = f(z).
Then we have

(g0 f)(x) =g(f(x)) =g(y) ==,
which shows that g o f is surjective as desired since z was arbitrary. O
(e) We claim that if g o f is surjective, then g must be surjective, but f may not be.

Proof. Suppose that g o f is surjective and consider any z € C so that there is an z € A where
(go f)(x) = z. Then we have that g(f(z)) = z so that y = f(z) is an element of B where g(y) = z.
This shows that g is surjective since z was arbitrary.

To show that f need not be surjective we can use the same example sets A, B, C' and functions f, g
used in part (c). It is easy to see there that g o f and g are surjective but f is not since there is no
element of A that maps to 3 € B. O

(f) We can summarize these facts in the following theorem, whose proof is of course found in the
previous parts:

Theorem 2.4.1. Suppose that f: A — B and g: B — C. We assert the following:

(1) If f and g are injective then go [ is injective.
(2) If go f is injective then f is also injective.
(8) If f and g are surjective then g o f is surjective.

(4) If g o f is surjective then g is also surjective.

Exercise 2.5

In general, let us denote the identity function for a set C by ic. That is, define i : C — C' to be the
function given by the rule i¢(xz) = « for all x € C. Given f: A — B, we say that g : B — A is a left
inverse for f if go f =i4; and we say that h: B — A is a right inverse for f if foh =1ip.
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(a) Show that if f has a left inverse, f is injective; and if f has a right inverse, f is surjective.
(b) Give an example of a function that has a left inverse but no right inverse.
(c) Give an example of a function that has a right inverse but no left inverse.
(d)

)

(e) Show that if f has both a left inverse g and a right inverse h, then f is bijective and g = h = f~ 1.

Can a function have more than one left inverse? More than one right inverse?

Solution:

In what follows we suppose that f: A — B.
(a)

Proof. First suppose that f has a left inverse g : B — A so that go f = i4. Consider any x,y € A
where f(z) = f(y). Then we have

r=ia(z)= (g0 f)(z)=9g(f(z)) =9(f(y) = (90 f)y) =ialy) =y,

which shows that f is injective by definition.
Now suppose that f has a right inverse h : B — A so that f o h = ig. Consider any y € B so that

y=1ip(y) = (foh)(y) = f(h(y)).

Then x = h(y) is an element of A such that f(z) = y, which shows that f must be surjective since
y was arbitrary. O

(b) Consider the sets
A=1{1,2} B = {a,b,c}

and the function f = {(1,a),(2,b)}. Define the function g : B — A by g = {(a, 1), (b,2), (¢,2)}. It
is easy to see that this is a left inverse of f since we have

(g0 f)(1) =g(f(1)) = g(a) =1 (90 )(2) =9g(f(2)) = g(b) =2

so that go f =i4.

Also note that clearly f is not surjective since there is no element of A that maps to ¢ € B. This
suffices to show that f cannot have a right inverse since, if it did, then it would have to be surjective

by part (a).
(c) Now define the sets

A={1,2,3} B = {a,b}

and the function f = {(1,a),(2,b),(3,a)}. Define the function h : B — A by h = {(a,1),(b,2)}.
Then we have

(f e h)(a) = f(h(a)) = f(1) = a (f o h)(b) = f(h(b)) = f(2) = b

so that clearly f o h = ip, and hence h is a right inverse of f.

Note, however, that f is not injective since f(1) = a = f(3). This suffices to show that f cannot
have a left inverse since, if it did, it would be injective by part (a).

(d) We claim that a function can have more than one right or left inverse.
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Proof. To show that a function can have more than one left inverse consider the example constructed
in part (b). Recall that this consists of the sets

A=1{1,2} B ={a,b,c}

and the function f = {(1,a),(2,b)}. It was shown there that the function g1 = {(a,1), (b,2), (¢, 2)}
is a left inverse. Let go = {(a,1),(b,2),(c,1)} so that clearly g1 # g2 since g1(c) = 2 # 1 = ga(c).
It is trivial to show that go is also a left inverse of f, which shows that more than one left inverse
exists for this f.

To show that a function can have more than one right inverse, consider the example in part (c),
which are the sets

A=1{1,2,3} B ={a,b}

and the function f = {(1,a),(2,b),(3,a)}. It was shown there that the function h; = {(a, 1), (b,2)}
is a right inverse. Let ho = {(a,3),(b,2)} so that clearly hy # ho since hi(a) = 1 # 3 = ha(a).
However, it is trivial to show that hy is also a right inverse of f, from which the desired result
follows. O

(e) Note that what follows proves Lemma 2.1 in the text, which is not proven there.
Proof. Suppose that f has left inverse g and right inverse h. Then f must be both injective (since
it has a left inverse) and surjective (since it has a right inverse) so that it is bijective by definition.

Then of course the function f=!: B — A exists. Consider any y € B and set * = f~1(y) so that
y = f(x). Then we have that

since g is a left inverse of f. We also have
f(hy)) = (foh)(y) =in(y) =y
so that
h(y) = fH(f(y) = fHy) ==,

This shows that * = f~(y) = g(y) = h(y), which in turn shows that f~! = g = h as desired since
y was arbitrary. O

Exercise 2.6

Let f: R — R be the function f(x) = 2® — 2. By restricting the domain and range of f appropriately,
obtain from f a bijective function g. Draw the graphs of g and g~!. (There are several possible choices
for g.)

Solution:

Define the subsets of the reals A = [1,00) and B = [0,00). We claim that the function g : A — B
defined by g(z) = f(z) = 2% — z for all z € A is bijective.

Proof. First we will show that B can even be a range for g, i.e. we must show that g(z) € B for
every x € A, as this is not necessarily obvious. So for any x € A we have that > 1, and thus
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22 > 1 as well. Then we have z2—1 > 0 so that the product :L’(x2 —1) > 0 since of course x > 1 > 0.
Therefore g(x) = f(z) = 23 — 2 = z(2* — 1) > 0 so that g(z) € B.

Next we show that g is monotonically increasing, from which injectivity follows. Suppose that
z,y € A where x < y. Since we have xz,y > 1 > 0, it follows that 22 < %2, and therefore
22 —1 < y? — 1. Thus we have

<y

z(z? —1) <y@® -1) <yly?*-1)

mg—x<y3—y

9(z) < g(y)

since both z, > 1 > 0 and 22 — 1,42 — 1 > 0. This shows that ¢ is monotonically increasing. It
follows that g is injective because, if we consider x,y € A where x # y, then it has to be that either
x < yorax >y Inthe former case we have g(z) < ¢(y) and in the latter g(z) > g(y) so that

g(x) # g(y) either way.

We show that g is surjective in a roundabout way that depends on calculus since g is cubic and so
does not yield a simple algebraic inverse function. Consider any y € B so that of course y > 0. If
y = 0 then clearly ¢g(1) = 0 = y, so assume that y > 0. Let ag = max {2,y} so that of course there
is a real a such that a > ag since the reals are unbounded. Then we of course have a > ag > 2 >0
so that a € A. We also have

a®>>at>22=4>2

a?—1>1
a(a® —1)>a
a®—a>a

gla) >a>ap>y.

Then we have that g(1) = 0 < y < g(a), and that of course 1 < 2 < ag < a. It then follows from
the intermediate value theorem that there is an = € (1,a) such that f(x) = y since clearly g is
continuous by elementary calculus. We note that of course 1 < x so that x € A. This shows that g
is surjective since y was arbitrary, which in turn completes the proof that g is a bijection. O

1

As requested, below are graphs of g and g~* over some subset of their infinite domains and ranges:

1,000 10

500

| | | |
2 4 6 8 10 0 200 400 600 800 1,000

One can observe that ¢ (and its inverse for that matter) is monotonically increasing as shown.
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83 Relations

Exercise 3.1

Define two points (zg,y0) and (21, y1) of the plane to be equivalent if yo — 23 = y; — 3. Check that this
is an equivalence relation and describe the equivalence classes.

Solution:

First we show that this relation, which we shall denote with ~, is an equivalence relation.

Proof. In what follows, suppose that (2o, o), (21,¥1), and (z2,y2) are all points in the plane.
(Reflexivity) Of course we have yo — 23 = yo — 22, and hence (20, yo) ~ (%0, %0)-

(Symmetry) Suppose that (z9,%0) ~ (21,y1). Then we have yo — 22 = y1 — 2% so that of course
y1 — o2 = y; — 22 since numerical equality is symmetric, and so (z1,%1) ~ (20, y0) as well.

Transitivity) Suppose that (zo, o) ~ (z1,%1) and (21, y1) ~ (22,¥2). Then yg — 22 = y1 — 27 and
0 1

Y1 — 2% = yo — a3 so that of course yo — 23 = yo — 22 since numerical equality is transitive. Therefore

(z0,y0) ~ (22,y2), which shows transitivity.

This suffices to show that ~ is an equivalence relation as we set out to show. O

Each equivalence class formed by this relation is the parabola y = 2 shifted up or down on the
y-axis. This is easy to see since two points (g, o) and (z1,%1) are in the same class if yo — 2% and
y1 — z% have the same value, say c. Then yo — 23 = ¢ so that yo = 23 + ¢, which is clearly such a
parabola, and similarly y; = 27 + c.

Exercise 3.2

Let C be a relation on a set A. If Ay C A, define the restriction of C to Ay to be the relation
C N (A4p x Ap). We also note that clearly Cy C C as well. Show that the restriction of an equivalence
relation is an equivalence relation.

Solution:

Proof. Define C, A, and Ay as above and suppose that C' is an equivalence relation. Let Cy =
CN(Ag x Ap) be the restriction of C' to Ay, noting that this is in fact a relation on Ag since clearly
Co C Ag X Ag. Now we show that Cy satisfies the three properties of an equivalence relation.

(Reflexivity) Consider any a € Ag so that of course (a,a) € Ag X Ag. Since Ay C A we also have
that a € A. Hence aCa since C is an equivalence relation on A and is therefore reflexive. Thus
(a,a) € CN(Ag x Ag) = Cp, which shows that aCpa so that Cy is reflexive since a was arbitrary.

(Symmetry) Suppose that a,b € Ay and that aCyb. Then of course (b,a) € Ay x Ay and bCa since
Co C C. From this it follows that (b,a) € C' N (Ag x Ag) = Cp so that bCya. This of course shows
that Cy is symmetric.

(Transitivity) Now consider a,b, ¢ € Ag and suppose that both aCyb and bCyc. Then we have aCb
and bC'c since Cy C C. Since C' is an equivalence relation and therefore transitive, it follows that
aC'e, and since also clearly (a,c) € Ag x Ag, we have (a,c) € C'N(Ag x Ag) = Cp so that aCye. This
shows that Cy is transitive. O

Exercise 3.3

¢

Here is a “proof” that every relation C that is both symmetric and transitive is also reflexive: “Since
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C is symmetric, aCb implies bCa. Since C' is transitive, aCb and bCa together imply aCa, as desired.”
Find the flaw in this argument.

Solution:

Suppose that C is a relation on the set A. This argument is perfectly valid for any a,b € A such
that aCb, which is to say that we can conclude that aCa in this case (and by the same argument
bCbh). However, reflexivity requires aCa to hold for every a € A. So if there is no b € A such that
aCb then the above argument cannot be applied and we cannot conclude that aCa. In this case the
element a is effectively not involved in the relation at all.

This is perhaps best illustrated with an example: suppose that A = {1,2,3,4} and
C= {(17 1)’ (27 2)7 (3’ 3)5 (17 2)’ (2a 1)7 (2a 3); (37 2)a (17 3)7 (3, 1)} .

It is easy to verify that C' is both symmetric and transitive on A but it is clearly not reflexive since
(4,4) ¢ C. One can also observe how 4 is not involved in the relation at all and, if it were, it would
have to be that (4,4) € C if C were to remain symmetric and transitive.

Exercise 3.4

Let f: A — B be a surjective function. Let us define a relation on A by setting ag ~ a; if

flao) = f(a1).

(a) Show that this is an equivalence relation.

(b) Let A* be the set of equivalence classes. Show that there is a bijective correspondence of A* with
B.

Solution:
(a)

Proof. We show the three properties necessary for ~ to be an equivalence relation:

(Reflexivity) Consider any a € A so that of course f(a) = f(a) since f is a function. Hence a ~ a
so that ~ is reflexive since a was arbitrary.

(Symmetry) Consider a,b € A and suppose that a ~ b. Then by definition f(a) = f(b) so that
obviously also f(b) = f(a) since equality is symmetric. So of course b ~ a, which shows that ~ is
symmetric.

(Transitivity) Consider a, b, c € A and suppose that a ~ b and b ~ ¢. Then by definition f(a) = f(b)
and f(b) = f(c) so that of course f(a) = f(b) = f(c¢), and hence a ~ c¢. This shows that ~ is
transitive. O

(b)

Proof. Define the function g : A* — B as follows. For any equivalence class C' € A*, we know that
C is nonempty since A* is a partition of A. Hence there is an a € C, so set g(C) = f(a), noting
that clearly g(C) = f(a) € B so that B can be the range of g.

To show that g is injective, consider two equivalence classes C' and D where g(C) = g(D). Then
there are elements ¢ € C' and d € D where f(c) = g(C) = g(D) = f(d). This shows that ¢ ~ d
so that they must be in the same equivalence class. Thus d € C since ¢ € C, but also d € D so
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that C' and D are not disjoint. Hence it must be that C' = D by Lemma 3.1, which shows that g is
injective.

To show that g is surjective, consider any b € B. Since f is surjective, there is an a € A such that
f(a) = b. Since A* is a partition, a must belong to an equivalence class C € A*. Then there is an
element ¢ € C such that g(C) = f(c) by the definition of g. Since a and ¢ are both in the same
equivalence class C, we have that a ~ ¢ so that ¢g(C) = f(¢) = f(a) = b. This shows that ¢ is
surjective since b € B was arbitrary.

Therefore we have shown that g is both injective and surjective, and so is a bijection by definition,
as desired. 0

Exercise 3.5

Let S and S’ be the following subsets of the plane:

S={(z,y)|ly=2+1land 0 <z <2},
S"={(x,y) | y— x is an integer} .
(a) Show that S’ is an equivalence relation on the real line and S’ O S. Describe the equivalence classes
of .

(b) Show that given any collection of equivalence relations on a set A, their intersection is an equivalence
relation on A.

(¢) Describe the equivalence relation T on the real line that is the intersection of all equivalence relations
on the real line that contain S. Describe the equivalence classes of T

Solution:

(a)

Proof. First note that S C R xR and so is a relation on R. We show that S’ has the three properties
required of an equivalence relation.

(Reflexivity) Consider any = € R so that clearly + — 2 = 0 is an integer. Hence (z,z) € S’ by
definition. This shows that S’ is reflexive since x was arbitrary.

(Symmetry) Suppose that z,y € R and 5’y. Then n = y—x is an integer so that t —y = —(y—z) =
—n is also clearly an integer. Therefore yS’z as well, which shows that S’ is symmetric.

(Transitivity) Consider x,y,z € R and suppose that both xS’y and yS’2. Then n = y — x and
m = z — y are both integers. We then have

smr=z—aty—y=(-y+-a)=mn,

which is clearly an integer since m and n are. Hence x5’z so that S’ is transitive.

It is easy to show that S’ D S. Consider any (x,y) € S so that 0 < z < 2 and y =  + 1. Then
y—a = (z+1) —x =1, which is of course an integer. Hence (z,y) € S’, and thus S’ D S since
(x,y) was arbitrary. O

The equivalence class C' containing = € R is the countable set C' = {x + n | n € Z}. While perhaps
not immediately obvious, it is almost trivial to show:

yeCe&neZly=z+n)eInecZly—z=n)
s oSy e yS'e
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& gy is in the equivalence class determined by x

since S’ is symmetric.
(b)

Proof. Let A* be a collection of equivalence relations on A so that we must show that C' = (4. D
is also an equivalence relation on A. First, suppose that any (z,y) € C and consider any D € A*
so that (z,y) € D. Then also (x,y) € A x A since D is a relation on A so that D C A x A. This
shows that C' C A x A since (z,y) was arbitrary, and so C is a relation on A. Now we show the
three required properties of an equivalence relation:

(Reflexivity) Consider any « € A so that (x,2) € D for every D € A* since each D is an equivalence
relation and so is reflexive. It then follows that (z,2) (4. D = C, which shows that C' is reflexive.

(Symmetric) Suppose that (z,y) € C and consider any D € A* so that also (x,y) € D. Then also
(y,z) € D since D is an equivalence relation and so is symmetric. Since D was arbitrary, this shows
that (y,2) € (pea~ D = C so that C' is symmetric.

(Transitivity) Suppose that (z,y) € C and (y,z) € C. For any D € A* we then have that both
(z,y) € D and (y,2) € D. It then follows that (z,z) € D since D is an equivalence relation and so

is transitive. Since D was arbitrary, we have that (z,2) € ((pc4. D = C so that C' is transitive as
desired. O

(¢) First we note that S itself is not an equivalence relation on R since it is not reflexive. In fact
(x,z) ¢ S for any x € R since it is never true that © = x + 1. Now define the following subsets of
the plane:

S1=A{(z,y) |y ==} Si={(r,y)|ly=2+2and 0 <z <1}
So=8={(z,y)|ly=zr+1land 0 <z <2} Ss={(z,y) |ly=r—2and 2 < x < 3} .
Ss={(z,y)|ly=r—1land 1 <z <3}

We then claim that the intersection we seek is T = Uie i

5} S;. An illustration of this set in the
plane is shown below:

.....

Ss S

Proof. Let S* denote the collection of all equivalence relations on R that contain S so that we must
show that T' = [z g R.

(C) Consider any (z,y) € T and any R € S* so that R is an equivalence relation on R that contains
S. We then have the following cases:

Case: (x,y) € S1. Then of course y = z so that (z,y) = (z,z) € R since it is an equivalence relation
and thus reflexive.

Case: (z,y) € So = S. Then of course (x,y) € R since R contains S.

Case: (x,y) € S3. Then we have that y =z — 1 with 1 < z < 3, from which it follows that z = y+1
and 0 < y =« — 1 < 2. Therefore (y,x) € S so that (y,z) € R since R contains S. We then have
that (x,y) € R as well since R is an equivalence relation and therefore symmetric.
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Case: (z,y) € Sy. Then y =2z +2 with 0 <z < 1. Let z = = + 1 so that (z,z) € S = Sy since we
also have 0 < z < 1 < 2. We then know that (z,z) € R since R contains S. We also then have that
y=z+2=(x+1)+1l=z+1withO<l<z=2x+1<2since 0 <z <1 Thus (z,y) €S =25
so that also (z,y) € R. Since R is an equivalence relation and therefore transitive, we have that
(z,y) € R as well.

Case: (z,y) € S5. Then we have y = x — 2 and 2 < x < 3. It then follows that z = y + 2 and
0<y=x—2<1sothat (y,z) € S4. Then of course (y,z) € R by the previous case so that also
(z,y) € R since R is an equivalence relation and therefore symmetric.

Thus in every case (z,y) € R so that also (z,y) € [\zcg- R since R was arbitrary. It then follows
that T' C (peg~ R since (x,y) was arbitrary.

(D) All we really need to show is that T' is an equivalence relation on R that contains S. From this
it follows that T € S* so that of course T' D (e g- R First we note that clearly 7' C R? so that it
is a relation on R. Also clearly it contains S since S = Sy C T. Now we show that it has the three
properties that an equivalence relation require.

(Reflexivity) For any « € R clearly (z,x) € S; C T so that T is reflexive.
(Symmetry) Suppose that Ty so that (z,y) € T. We then have the following cases:

Case: (z,y) € S1. Then of course y = z so (y,z) = (z,z) = (x,y) € S, C T.
Case: (z,y) € S9=5. Theny=z+land0<z <2sothatz =y—landl<y=z+1<3.
Hence (y,z) € S3 C T

Case: (x,y) € S3. Then we have that y = . — 1 with 1 < z < 3, from which it follows that z = y+1
and 0 < y =2 — 1 < 2. Therefore (y,z) € S =S5, CT.

Case: (z,y) € Sg. Theny =2+ 2 with 0 <z < 1sothat x =y —2and 2 <y=1x+2 < 3. Hence
(y,z) € S5 CT.

Case: (z,y) € Ss5. Thenwehavey =2z —2and 2 <z <3sothatz=y+2and0<y=z-2<1.
Hence (y,z) € Sy C T.

So in all cases (y,z) € T, which shows that T is symmetric.

(Transitivity) Now suppose that 2Ty and yTz. If x = y then of course we have (z,2) = (y,2) € T.
Similarly if y = z then (z,2) = (z,y) € T. So assume that  # y and y # z so that it can neither
be that (z,y) € S1 nor (y,z) € S;. Thus there are four sets (i.e. S; where i € {2,3,4,5}) that (z,y)
and (y, z) can be in, which results in sixteen different possibilities, though not all are possible:

Case: (z,y) € S3. Theny=z+1land 0 <z <2sothat l <y=2+1<3.
Case: (y,z) € S3. Thenalsoz=y+land0<y<2sothat z=y+1=(x+1)+1=2+2
and y = z+ 1 < 2 means that © < 1. Hence z =z +2 and 0 < z < 1 so that (x,2) € Sy C T.
Case: (y,z) € S3. Thenz=y—landl1<y<3sothat z=y—-1=(z+1)—1=uz, and
hence (z,2) = (z,z) € S; C T.
Case: (y,z) € Sy. This case is not possible because 1 < y < 3 so that it cannot be that
0 < y < 1 and hence (y, z) cannot be in Sj.
Case: (y,z) € S5. Thenz=y—-2and2<y<3sothat z=y—-2=(x+1)—-2=z—-1
and 2 <y=2x+1 < 3 means that 1 <2 <2< 3. Hence z=x —1and 1 < x < 3 so that
(x,2) € SgCT.

Case: (z,y) € S3. Theny=z—1land 1<z <3sothat 0 <y=2-—1<2.
Case: (y,z) € S3. Then z =y+land 0 <y <2sothat z=y+1=(r—1)+1=2z and
hence (z,2) = (z,z) € S; C T.
Case: (y,2) € S3. Thenz=y—landl<y<3sothat z=y—1=(zx—1)—1=2—2and
1 <y=2—1and hence 2 < z. Therefore z =2 — 2 and 2 < x < 3 so that (z,z) € S5 C T.
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Case: (y,2) € S4. Thenz=y+2and0<y<lsothat z=y+2=(zx—-1)+2=2+1and
y=x—1<1and hence x < 2. Thusz=2+1and 0 <1<z <2so that (z,2) € So C T.

Case: (y,z) € Ss. This is case is not possible because y < 2 so that it cannot be that
2 <y < 3, and hence (y, z) cannot be in Ss.

Case: (z,y) €Ss. Theny=z+2and0<z<lsothat2<y=2x+4+2<3.

Case: (y,z) € S2. This case is also impossible because 2 < y so that it cannot be that
0 < y < 2, and hence (y, z) cannot be in Ss.
Case: (y,2) €S3. Thenz=y—landl<y<3sothat z=y—1=(x+2)—1=xz+1 and
y=x+2<3sothat <1<2 Thusz==z+1and 0 <z < 2sothat (z,2) € So CT.
Case: (y,z) € S4. This case is not possible because again 2 < y so that it cannot be that
0 <y < 1, and hence (y, z) cannot be in Sj.
Case: (y,z) € S5. Then z=y—2and 0<y<lsothat z=y—-2=(r+2)—2=uz and
hence (z,z) = (z,z) € S; C T.

Case: (z,y) € S5. Theny=z—-2and2<z<3sothat 0 <y=2-2<1.
Case: (y,2) € S3. Thenz=y+land0<y<2sothat z=y+1=(zx—-2)+1=2—1and
0<y=x—2sothat 1 <2 < z. Therefore z =2 —1and 1 < z < 3 so that (z,z) € S3 CT.
Case: (y,2) € S3. This case is not possible because y < 1 so that it cannot be that 1 < y < 3,
and hence (y, z) cannot be in Ss.

Case: (y,z) € Sy. Then z=y+2and 0 <y < 1sothat z=y+2 = (x —2) + 2 and hence
(z,2) = (z,z) € S; CT.
Case: (y,z) € Ss. This case is also not possible because again y < 1 so that it cannot be that
2 <y < 3, and hence (y, z) cannot be in S.

Thus in every case that is actually possible we have that (z, z) € T, which shows that T is transitive.

Therefore T' is an equivalence relation that contains S so that 7" D (g R as discussed above,
which of course completes the proof that T' = [, g. R. O

As far as the equivalence classes formed by T are concerned, refer to the illustration above. Consider
the equivalence class C' contains € R. If x < 0 or > 3 then C = {z} because there is no other y
for which yT'x except y = z. So suppose that 0 < x < 3. If x is an integer so that x =1 or x = 2,
then C' = {1,2}. If z is not an integer, then C always has three elements. We have that

{z,z+1,2+2} O0<z<l1
C=s{z—-lLzz+1} l<z<2.
{r—2,z—1,2} 2<x<3

These facts can be deduced by examining where the vertical line intersecting the x-axis at x intersects
the graph of T

Exercise 3.6

Define a relation on the plane by setting

(w0, 90) < (z1,91)

if either yo — x% <y — a:% or Yo — a:% =1y — m% and xg < x1. Show that this is an order relation on the
plane, and describe it geometrically.
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Solution:

First we show that < is an order relation on the plane.

Proof. As clearly < is a relation on the plane, we need only show that it has the three required
properties of an order relation:

(Comparability) Consider distinct (2, yo) and (21, y1) in the plane so that either x¢ # 21 or yg # y1.
Obviously if yo — 23 < y1 — 22 (or y; — 23 < yo — x3) then of course (zg,y0) < (w1,91) (or
(r1,71) < (20,%0)) so we are done. So assume that yo — 22 = y; — 23. It it were the case that
xo = x1 it would have to be that yg # y1, but we would have

2 2 2
Yo —Tg=Y1—T] =Y1— X

Yo = Y1,

which is a contradiction. So it must be that xg # x1. So either xg < x1 and so (xg,yo) < (20, yo) Or
x1 < xo and so (x1,y1) < (xo,yo). This shows that < is comparable in the plane.

(Nonreflexivity) Consider (z,y) in the plane so that obviously y — 22 = y — x2. As we also have
that = z, it is not the case that < x so that it is not true that (x,y) < (z,y).

(Transitivity) Suppose that (zo,y0) < (21,%1) and (21,y1) < (2,y2). We then have the following:

Case: yo — x% <y — x%
Case: y; — 2?2 < yo —23. Then of course yo — 22 < y1 — % < yo — 3 so that (zg,y0) < (72, y2).
Case: y; — :E% = Yo — x% and z1; < z3. Then we have yy — 33% <y — x% = Yo — :E% so that again
(z0,90) < (72,Y2).

Case: yo — 73 = y1 — 2% and 7y < 1.

Case: y1 — 23 < yo — x3. Then yo — 23 = y1 — 23 < y2 — 3 so that (xo,y0) < (2, y2)-

Case: yl—x%:yg—xg and 1 < s. Thenyo—x(%:yl—x%:yg—x% and xg < 1 < T3y SO

that (zo,y0) < (z2,Y2).
Thus in all cases (zg,yo) < (22,y2), which shows that < is transitive in the plane. O

Geometrically, we refer back to Exercise 3.1 and consider a parabola y = z? shifted up or down on
the y-axis be some amount c¢. Then y = 2% + ¢ so that y — 22 = ¢, and hence every (x,y) point
on the parabola has the same value for y — 22, namely c. Therefore if two distinct points (g, o)
and (z1,y1) lie on the different parabolas then yo — x3 and y; — 27 will have different values, say c
and d, respectively. Then clearly if (x1,y;) is on a higher parabola on the y-axis then ¢ < d so that
Yo — 23 = ¢ < d = y; — a7 so that (xg,y0) < (z1,y1) in our order. If the points lie on the same
parabola then yo — 23 = y; — 2% and whichever points is further to the right will be larger in our
order since then, for example, zo < x1 so that (zo,y0) < (z1,y1).

Exercise 3.7

Show that the restriction of an order relation is an order relation.

Solution:

Proof. Suppose that A is a set with order relation <. Also let Ay be a subset of A so that <=<
N(Ap x Ap) is the restriction of < to Ag. Clearly <C Ag x Ag so that it s a relation on Ay. So we
must show that < satisfies the three properties of an order relation:
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(Comparability) Consider any z,y € Ag so that also z,y € A since Ag C A. Then z and y are
comparable in < since it is an order. So, without loss of generality, we can assume that z < y and
so (z,y) €<. Since clearly also (x,y) € Ag x Ay, it follows that (z,y) €< N(Ag x Ag) == and hence
x < y. This shows that = and y are comparable in <.

(Nonreflexivity) Suppose that € Ay so that also € A since Ay C A. Then it cannot be true that
x < x since A is an order and so is nonreflexive. Thus (z, z) ¢< so that also (z,z) ¢< N(AgxAg) ==.
Hence it is not true that x < = so that < is also nonreflexive since = was arbitrary.

(Transitivity) Suppose that z < y and y < z. Then of course (z,y) € Ay x Ap and (z,y) €<,
and similarly (y,z) € Ag x Ap and (y,z) €<. Hence z < y and y < z so that < z since < is
an order and therefore transitive. Thus (z,z) €< so that (z,z) €< N(Ag X Ag) == since clearly
(z,2) € Ag X Ag. So then z < z, which shows that < is transitive. O

Exercise 3.8

Check that the relation defined in Example 7 is an order relation.

Solution:

Recall that Example 7 is the relation on C on the real line such that zCy if 2% < y? or 22 = y? and
x <.

Proof. We show that this satisfies the three properties of an order:

(Comparability) Suppose that = and y are distinct real numbers. If 22 < y? (or y? < 2?) then of
course zCy (or yCz) so we are done. So assume that 2 = y2. Since we know that z # y, it has to
be that y = —x so that still 2 = y2. This also implies that z,y # 0 since otherwise we would have
0=y=—-2=0=z. Ifz >0thenwehavey = —x <0 < z. Ifx < 0thenwe have z <0 < —z = y.
Hence either way 2 = y? but = < y (or y < z) so that xC (or yCz). This shows that z and y are
comparable in C.

2 _

(Nonreflexivity) Suppose that € R so that of course 22 = 22. However clearly it is not the case
that x < z so that it cannot be that xCx in this relation.
(Transitivity) Suppose that zCy and yCz. We then have the following cases:
Case: 22 < y°.
Case: y? < z2. Then clearly 22 < y? < 22 so that zCx.
Case: y?> = 22 and y < z. Then z? < y? = 22 so that again zCz.
Case: 22 =y? and z < y.
Case: y? < z2. Then we have 22 = y? < 22 so that zCz.
Case: y?> = 22 and y < z. Then 22 =y~ 22 and = < y < z so that again 2Cz.
Hence in all cases zC'z so that C is also transitive. O

We note that this order relation differs from the normal order on R. For example if z = —2 and

y = 1 then clearly z < y in the normal order. However, we have that y?> = 12 =1 < 4 = (-2)? = 22

so that yCx.

Exercise 3.9

Check that the dictionary order is an order relation.
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Solution:

Suppose that A and B are two sets with order relations <4 and <p. Recall that the dictionary
order < on A X B is defined by

a1 X by < ag X by
if a1 <4 ao or if a3 = a9 and by <p bs.
Proof. Clearly < is a relation on A X B so we just need to show the three properties of an order

relation:

(Comparability) Consider distinct points a3 X by and as X by in A X B so that a; # as or by # by.
If a; # ag then they are comparable in <4 (since it is an order relation) so that, without loss
of generality, we can assume that a1 <4 as. Then of course a; X by < as X by by definition. So
assume that a; = ag so that it must be that b; # by. Then by and by are comparable in <pg since
it is an order relation. So without loss of generality we can assume that b <p bs. Then of course
ap X by < ag X by since also a; = ag. Thus either way a; x b; and as X by are comparable in <.

(Nonreflexivity) Suppose that a x b is any element of A x B. Since <p is an order relation, it is
nonreflexive so that it is not true that b <p b. Since of course a = a, it follows that it cannot be
that a X b < a x b since it would have to be that b <p b. Hence < is nonreflexive since a x b was
arbitrary.

(Transitivity) Suppose that a; X by < az X ba and a2 X by < az x bs. We then have the following
cases:

Case: a1 <4 as.

Case: ag <4 a3z. Then a1 <4 as and as <4 a3 so that a1 <4 as since <4 is transitive. Thus
by definition a; x by < ag X bs.

Case: as = a3 and by <p b3. Then a1 <4 as = a3 so that a; x by < az X bz by definition.
Case: a; = ap and by <pg bs.
Case: as <4 az. Then ay = as <4 az so that by definition a; X by < az X bs.

Case: a2 = a3 and by <p b3. Then a1 = a2 = a3 and by <p by and by <p b3 so that b; <p bs
since <p is transitive. Therefore again a; x by < a3 X bz by definition.

Thus in all cases a1 X by < ag x bz, which shows that < is transitive. O

Exercise 3.10

(a) Show that the map f: (—1,1) — R of Example 9 is order preserving.

(b) Show that the equation g(y) = 2y/[1 + (1 + 4y?)'/?] defines a function g : R — (—1,1) that is both
a left and right inverse for f.

Solution:
(a) Recall that f from Example 3.9 is defined by

for z € (—1,1). We show that f preserves order.
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Proof. Suppose that z,y € (—1,1) and that < y. Now, since —1 < 2 < 1, we have 0 < |z| < 1 so
that

2? = |z = || |z| < |z - 1= |z| < 1.
Hence 0 < 1 — 22 so that also 0 < 1/(1 — 2?) as well. By the same argument 0 < 1 — y? so that
0 < 1/(1 —y?). We then have the following cases:
Case: > 0. Then also y > 0 since y > x > 0. Thus

P =z-c<z-y<y-y=y> (since z <y, x > 0, and y > 0)

- —y
1—2? >1—9¢?
1 1

> —F.
1—9y2 " 1—22
From this it follows that

f@) = m < iom <1 =W

since x < y and 1/(1 — 2?) and 1/(1 — y?) are both positive.
Case: © < 0. Then f(x) = 2/(1 — 2?) < 0 since < 0 and 1/(1 — 2?) > 0.

Case: y < 0. Then we have that —z > —y > 0 so that f(—y) < f(—z) by the previous case.
But we have f(—z) = —2/(1—(—2)?) = —x/(1 —2?) = — f(z), and similarly f(—y) = —f(y).
Hence —f(y) = f(—y) < f(—z) = —f(x) so that f(y) > f().

Case: y > 0. Then f(y) = y/(1 —y*) > 0 since y > 0 and 1/(1 — y*) > 0. Hence
f(x) <0< f(y).

Therefore in all cases we have f(x) < f(y), which shows that f preserves order. O
(b)
Proof. First we need to show that g is even a function from R to (—1,1). We note that

y> >0

492 >0

1+42>1>0
V14+4y2 >0
1+vV/144y42>1>0

so that g(y) is well-defined for all y € R since the denominator of ¢g(y) is always nonzero. Now, if
y = 0 then clearly |g(y)| = |g(0)| = |0] = 0 < 1. So in what follows assume that y # 0 so that |y| > 0
and y? > 0. Then we have
1>0
1+4y% >4y >0
VI+dy? > /dy? =2y

1+ vV1+4y?2>142yl>2]y| >0
1

1
R > e —
20yl T 141+ 492
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] 1 ] _ 2y — 1oy
2 T 14+ 1T+ 42 |14 /1 + 42

so that —1 < g(y) < 1 and hence g(y) € (—1,1). Thus g is in fact a well-defined function from R
into (—1,1).

To show that g is a left inverse of f consider any x € (—1,1). First we have

m¢1+ do? \/(1—w2)2+4x2
(1—a2)?

(1—22)2

1 =222t 4422 14222 42t
A () Rl VA ()
(1+a?)? 1+a?
(1—22)2 1—2a2

so that
o - - 2f(x) _2z/(1—2?)
oD =N = ey~ 1y B
- 2z . 2z
C(1-a?) (1++2) T 1-a22+1+a2
2z
-2

which shows that g o f = i(_; ;) since  was arbitrary so that g is a left inverse of f.

Now consider any y € R. Then we first have

14+ +/1+44y? (14 /1 +4y?)?
B 4y2 7 4y2
L2/ Ay 14 4y? 2+ 4y 4+ 20/1 + 4y
_ 2y°
1422+ 1+ 42

so that

(foa)) = floly) = 20 _ 2w/(+V1+4%)

11— 2 2
oW’ -
_ 2y
5y [ 14252 +4/1+4y2 —2y2
(1+\/1+4y ) < 1+2y2+\/l+4y2
_ 2y
CRTRT) 1+4/1+4y2
(14 V1+4y?) <1+2y2+\/1+4y2>
_ 2y _ 2y
T 142y/14ge4lt4y? | 24+4y2+424/ 1442
14+2y244/144y2 14+2y244/14+4y2
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2y 2y

N 9 14+2y2++4/1+4y2 B 7 -
14+2y2+4/1+4y2
which shows that f o g =g since y was arbitrary so that g is also a right inverse of f. O

Note that what was shown implies that f is bijective and that g is its inverse, by Exercise 2.5
part (e).

Exercise 3.11

Show that an element in an ordered set has at most one immediate successor and at most one immediate
predecessor. Show that a subset of an ordered set has at most one smallest element and at most one
largest element.

Solution:

Lemma 3.11.1. Suppose that A is a set with order < and that a and b are two elements of A.
Then a < b if and only if it is not true that b < a.

Proof. (=) Suppose that a < b. If it were the case that a = b then we would have a < b = a, which
would violate the nonreflexivity property of the order. If it were the case that b < a then we would
have a < b and b < a so that a < a by the transitive property of the order. This again violates
nonreflexivity. Hence neither ¢ = b nor b < a so that it is not true that b < a.

(<) Now suppose that it is not true that b < a. Then neither b = a nor b < a. Since b # a, it must
be that either a < b or b < a by the comparability property. However, we know that cannot be that
b < a, so it must be that a < b. O]

Main Problem.

Proof. In what follows Suppose that A is a set with order <.

First let a be an element of A and suppose that b; and by are both immediate successors of a, which
of course means that a < by,bs. Then by definition the open intervals (a,b;) and (a,bs) are both
empty. Now, suppose that b; and by are distinct so that they must be comparable since < is an
order. Without loss of generality we can assume that by < by, but then we have a < by < by so that
b1 € (a,bs). This is a contradiction since we know that (a,bs2) is empty, so it has to be that by = bs.
This of course shows that the immediate successor is unique. An analogous argument shows that
the immediate predecessor, if it exists, is also unique.

Now suppose that Ag is a subset of A with smallest elements a; and as. If a; and as were to be
distinct then they must be comparable so that we can assume a; < ay. However, then it is not true
that as < a; by Lemma 3.11.1, but this means that as cannot be a smallest element of Aj since
ay € Ag. As this is a contradiction, it must be that a; = ao, which shows that the smallest element
is unique if there is one. An analogous argument shows any largest element is also unique. O

Exercise 3.12

Let Z, denote the set of positive integers. Consider the following order relations on Z, x Z.

(i) The dictionary order.
(ii) (xo,y0) < (x1,y1) if either zg — yo < &1 —y1 or g — Yo = 1 — y1 and yo < Y1.
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(iil) (xo,y0) < (x1,y1) if either g + yo < x1 + y1 Or g + Yo = x1 + y1 and yo < y1.

In these order relations, which elements have immediate predecessors? Does the set have a smallest
element? Show that the three order types are different.

Solution:

Lemma 3.12.1. If A and B are ordered sets and A has a smallest element but B does not, then A
and B do not have the same order type.

Proof. This may seem fairly obvious but we show it formally anyway. Suppose that <4 and <p are
the orders on A and B, respectively. Let a be the smallest element of A and suppose to the contrary
that they do have the same order type. Then there is a bijection f : A — B that preserves order,
noting that f~! is also then a bijection. Now, since B has no smallest element, there must be a
b€ B where b <p f(a). Setting a’ = f~1(b) so that f(a’) = b we have that f(a’) =b <p f(a), and
hence it has to be that a’ <4 a since otherwise we’d have a <4 a’ so that f(a) <p f(a’). However,
a’ < a means that it is not true that ¢ < o’ by Lemma 3.11.1, which contradicts the fact that a is

the smallest element of A. Therefore it must be that no such f exists so that A and B have different
order types.

O
Main Problem.

The figure below illustrates the dictionary order of part (i):

We claim that every point has an immediate predecessor except points in the subset

A={(z,y) |ly=1}.

We also claim that (1, 1) is the smallest element in Z, x Z, with this order.

Proof. First consider any point (z1,y1) € Z4 X Zy where (x1,y1) ¢ A so that yo # 1. It then
follows that y; > 1 since 1 is the smallest positive integer. Then set g = z; and yg = y1 — 1
so that clearly (xo,y0) € Z4 X Z4 since yo > 0 because y; > 1. Clearly also g = 27 and
Yo < y1 so that (xo,y0) < (x1,y1) in the dictionary order. We claim that (zg,yo) is the immediate
predecessor of (x1,y1). So suppose to the contrary that there is an (z3,y2) € Z4 x Z4 such that
(z0,y0) < (x2,y2) < (x1,y1). It cannot be that xy < x5 since then we would have x; = x¢ < x2 so
that (z1,y1) < (22,y2), which by Lemma 3.11.1 contradicts the fact that (zq,y2) < (z1,y1). So it
has to be that xg = z2 and yo < yo. Since then xo = g = 1, it must also be that ys < y; since
(22,y2) < (x1,y1). But then we have yg < y2 < y1 = yo + 1, which is not possible since y; = yo + 1
is the immediate successor of 4y in Z so that there can be no integers between them. So it must be

that no (xa,ys2) exists so that (xo,yo) is the immediate predecessor of (z1,y1). Thus every element
not in A has an immediate predecessor.
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Now consider any (z1,y1) € 4 so that y; = 1, and consider any point (zg,yo) < (z1,y1). It cannot
be that g = x1 since then we would have yy < y; = 1, which is not possible since 1 is the smallest
positive integer. So it must be that o < z;. Then let x5 = ¢ and y2 = yo + 1 so that clearly
(z2,y2) € Z4 X Zy since y+ 1 is always still a positive integer if y is. Then we have that xg = x5 and
Yo < yo+1 = y2, and hence (zg,yo) < (z2,y2). We also have o = xo < 1 so that (z2,y2) < (z1,91)-
Therefore (xg,yo) < (z2,y2) < (x1,y1), which shows that (x,yo) is not the immediate predecessor
of (z1,y1). This shows that (x1,y;) has no immediate predecessor since (zg,yo) < (x1,y1) was
arbitrary. Since (x1,y1) € A was arbitrary, this completes the proof that every element in Z, X Z
has an immediate predecessor except those in A.

It is easy to prove that (1,1) is the smallest element in the dictionary order. Consider any (zg, o) €
Z4 x Z4 and suppose that (xg,y0) < (1,1). It cannot be that zy < 1 since 1 is the smallest positive
integer. So then zyp = 1 and yp < 1, but this is also not possible, again since 1 is the smallest
positive integer. Thus it cannot be that (xo,y0) < (1,1), so it must be that (1,1) < (xo,y0) by
Lemma 3.11.1. This shows that (1,1) is the smallest element since (z, yo) was arbitrary. O

Below is shown an illustration for the order in part (ii):

We claim that every element has an immediate predecessor except those in the subset
A={(z,y)|z=Tory=1}.
We also claim that the set Z; x Z; has no smallest element in this order.

Proof. First consider any (z1,y1) ¢ A so that z1 # 1 and y; # 1. Then it has to be that z1,y; > 1.
So set (zg,y0) = (1 — 1,y1 — 1) so that clearly still (zo,y0) € Z4+ X Z4. Then xg —yo = (x1 — 1) —
(1 —1)=a1—1—y1 +1=2z1 —y1. We also have yg = y1 — 1 < y1 so that (zg,y0) < (z1,y1). Now
suppose that there is an (z2,y2) € Z4 x Z4 where (z0,y0) < (z2,y2) < (x1,y1). It cannot be that
Xo—Yo < T2—Yy2 since then we would have 21 —y; = o—yo < Z2—y2 so that (z1,y1) < (22,y2), which
we know cannot be the case since (z2,¥y2) < (£1,y1). So it must be that 3 —y2 = xo —yo = 21 — 11
and yo < yo, but then we must have yo < y2 < y1 = yo + 1, noting that yo < y; because
o —y2 =21 — y1 and (za,y2) < (z1,y1). However, this is not possible since of course yg + 1 is the
immediate successor of yp in Zy. So then it has to be that no such (zs,ys2) exists so that (xo,yo)
is the immediate predecessor of (z1,y1). This shows that every point not in A has an immediate
predecessor since (x1,y1) was arbitrary.

Now suppose that (z1,y1) € A so that 1 =1 or y; = 1, and consider any (zg, yo) < (z1,y1)-

Case: 1 = 1. Suppose that xo — yo = 1 — y1 and yg < y1. Then we would have —yy > —y; and
xo—Yo=21—y1 =0—y1 = —y1 < —yp so that o < 0 (by adding yo to both sides), which is not
possible.

Case: y; = 1. It clearly cannot be that case that o — yo = =1 — y1 and yg < y; since then
Yo < y1 = 1, which is not possible.
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So in either case it must be that zo — yo < 1 — y1 since (zo,y0) < (z1,y1). So set the point
(z2,y2) = (o + 1,y0 + 1), which is clearly still an element of Z, x Z,. We then have xo — yo =
(ko+1)—(yo+1) =20+ 1—yo—1=20—yo < 1 —y1 so that (z2,y2) < (z1,y1). We also have
o — Yo = T2 — Y2 and yo < yo + 1 = y2 so that also (zo,y0) < (z2,y2). Hence (zg,yo) < (z2,92) <
(z1,y1) so that (xg,yo) is not the immediate predecessor of (x1,y1). Since (zg,y0) < (x1,y1) was
arbitrary, this shows that (z1,y1) has no immediate predecessor at all. Since (z1,y1) € A was
arbitrary, this shows that no element of A has an immediate predecessor.

To show that Z, in this order has no smallest element, consider absolutely any (z1,y1) € Zy X Z .
Let (zo,y0) = (21,41 + 1) so that of course (xg,y0) € Z4 X Zy. We then have that zo — yo =
x1—(y1+1)=(z1 —y1) — 1 < x1 —y1 so that (zo,y0) < (x1,y1). Then of course is it not true that
(z1,91) < (z0,y0) by Lemma 3.11.1 so that (z1,y1) cannot be the smallest element. Then, since
(z1,y1) was arbitrary, this shows that Z; x Z4 has no smallest element in this order. O

An illustration of the order of part (iii) is shown below:

We claim that every element has an immediate predecessor except for (1, 1), which is the smallest
element.

Proof. First we show that (xg,y9) = (1,1) is the smallest element, from which it follows that it
cannot have an immediate predecessor since it has no predecessors at all. Consider any (z1,%1)
in Zy x Zy. If (x1,91) = (1,1) then of course (zg,y0) = (1,1) < (z1,y1) is true, so assume that
(z1,y1) # (1,1) so that either 1 # 1 or y; # 1. If &1 # 1 then it has to be that 1 > 1 so
that x0 +yo = 1+ 1 < 1+ y; < x1 + y1, and hence (xg,y0) < (z1,y1). If y1 # 1 then y; > 1
so that again o +yo = 14+ 1 < x; +1 < x1 + y1, and hence (zg,y0) < (x1,y1). Thus in every
case (xo,90) < (21,y1), which shows that (xo,y0) = (1,1) is the smallest element since (z1,y;) was
arbitrary.

Now we show that every other element of Z has an immediate predecessor in this order. So consider
any (x1,y1) € Zy4 X Zy where (x1,y1) # (1,1). Hence either 21 # 1 or y; # 1.

Case: y; = 1. Then it has to be that 21 # 1 so that x; > 1. We claim that (zg,y0) = (1,21 — 1) is
the immediate predecessor of (x1,y1). First we note that clearly (xo,y0) € Z4 X Z4 since z7 > 1.
We also have that o +yo =1+ 21 — 1 =21 < 1 + y1 since 0 < 1 = yq, and so (zo,y0) < (z1,y1)-
Now suppose that there is a point (z2,y2) € Z4 X Z where (zg, yo) < (z2,y2) < (z1,y1). It cannot
be that 1 +vy1 = x2+ys and y; < y2 because then we would have yo < y; = 1, which is not possible
since ya € Zy. So it must be that zo + yo < 21 + y1 = 21 + 1 since (z2,y2) < (z1,y1). Now, since
also (x0,90) < (z2,¥2), it must be that xg + yo < 22 + y2, but then we have 21 = 1+ (1 — 1) =
2o+ Yo < 2 + y2 < w1 + 1, which is impossible. So it has to be that no such (z3,ys2) exists so that
(20, ¥o) is the immediate predecessor of (z1,y1).

Case: y1 # 1. Then it has to be that y; > 1 so that the point (zg,yo) = (z1 + 1,51 — 1) is still an
element of Z; x Zy. We show that (xo,yo) is the immediate predecessor of (z1,y1). First we have
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that xo +yo = (x1+ 1)+ (y1 — 1) =21 +y1 and yo = y1 — 1 < y1 so that (xg,yo) < (z1,y1). Now
suppose that there a point (x2,y2) € Zy X Zy where (xg,yo) < (2,y2) < (x1,y1). Then it has to be
that zo+yo < Z2+y2 < x1+y; so that we have 14y = (x14+1)+(y1—1) = zo+yo < xot+y2 < 21411
so that xg + yg = x2 + y2 = ©1 + y1. But then we must have y; — 1 = yg < y2 < y1, which is not
possible since y; — 1 is the immediate predecessor of y; in Zy. So no such (x2,y2) can exists, and
hence (xg,yo) is the immediate predecessor of (z1,y1).

This in all cases (1, y1) has an immediate predecessor, which shows the desired result since (1, y1) #
(1,1) was arbitrary. O

Now we show that all three orders have different order types.

Proof. Tt follows immediately from Lemma 3.12.1 that order (i) and order (ii) do not have the same
order type since (i) has a smallest element while (ii) does not. Similarly order (iii) and order (ii)
cannot have the same order type for the same reason. So all that remains to be shown is that orders
(i) and (iii) have different order types.

So denote order (i) with < and order (iii) with < and suppose to the contrary that they do have the
same order type. Then there is a bijection f : Z; X Zy — Z4 X Z that preserves order, supposing
that the domain has the dictionary order < and the range has the order <. Then of course f~! is
also a bijection that preserves order. It was shown above that Z, x Z, with < has countably many
elements with no immediate predecessor, whereas Z, x Z with < has only a single such element,
namely the smallest element (1,1).

Thus we can choose an element (x1,y1) of Zy x Z, that has no immediate predecessor in < but
also such that f(z1,y1) # (1,1) so that f(z1,y1) does have an immediate predecessor in <. So
let (ug,vo) be the immediate predecessor of f(x1,y1) in < and set (xq,v0) = f~*(ug,v0) so that
(uo,v0) = f(x0,y0). Then of course (zo,y0) < (z1,y1) since f(zo,v0) = (uo,v0) < f(z1,y1) and f
preserves order. But since (z1,y;) has no immediate predecessor in <, there is a point (z3,ys2) such
that (zo,%0) < (22,y2) < (z1,y1). We then have that (ug,vo) = f(zo,v0) < f(x2,y2) < f(x1,91)
since f preserves order, which is a contradiction since (ug,vg) is the immediate predecessor of
f(x1,91). So it must be that no such order-preserving f exists and hence the two orders do not have
the same order type. O

Exercise 3.13

Prove the following:

Theorem. If an ordered set A has the least upper bound property, then it has the greatest lower bound
property.

Solution:

Proof. Suppose that Ag is any nonempty subset of A that is bounded below so that b is a lower
bound of Ay. Let By be the set of lower bounds of Ay so that By is nonempty since b € By. Since
Ap is nonempty there is an a € Ag. Now, for any = € By we have that x is a lower bound of Ay so
that x < a, which shows that a is an upper bound of By. Hence By is a nonempty subset of A that
is bounded above, and so has a least upper bound ¢ since A has the least upper bound property.
We claim that ¢ is also the greatest lower bound of Ag.

Consider any = € Ay and any y € By. Then y is a lower bound of Ag so that y < x since x € Ay.
Since y € By was arbitrary, this shows that z is an upper bound of By. Thus we have ¢ < x since
c is the least upper bound of By. Since z € Ay was arbitrary, this shows that ¢ is a lower bound of
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Agp. If y is any other lower bound then y € By so that y < ¢ since c¢ is an upper bound of By. Since
y was an arbitrary lower bound, this shows that in fact ¢ is the greatest lower bound of Ag. Hence
A also has the greatest lower bound property since the nonempty subset Ay was arbitrary. O

Exercise 3.14
If C is a relation on a set A, define a new relation D on A by letting (b,a) € D if (a,b) € C.
(a) Show that C' is symmetric if and only if C = D.

(b) Show that if C is an order relation, D is also an order relation.

(c) Prove the converse of the theorem in Exercise 13.

Solution:
(a)
Proof. (=) Suppose that C' is symmetric. Then we simply have

(a,b) e C < (b,a) € C (since C' is symmetric)
< (a,b) € D, (by definition)

which shows that C = D.

(<) Now suppose that C = D and consider any (a,b) € C. Then (b,a) € D by definition. Hence
also (b,a) € C since C = D, which shows that C' is symmetric. O

(b)

Proof. Suppose that C' is an order relation. Since clearly D is a relation on A, we need only show
that it has the three required properties:

(Comparability) Consider any distinct a,b € A so that aCb or bCa since C has comparability. Hence
either bDa or aDb, respectively, by definition so that a and b are comparable in D as well.

(Nonreflexivity) Consider any a € A. Then (a,a) ¢ C since it is nonreflexive, thus also (a,a) ¢ D
since, if it were, it would also be that (a,a) € C by definition. Hence D is also nonreflexive since a
was arbitrary.

(Transitivity) Suppose that aDb and bDc. Then by definition we have bCa and ¢Cb. That is, ¢cCb
and bCa so that ¢cCa since C' is transitive. Therefore aDc by definition, which shows that D is also
transitive. O

(c) The converse follows from an argument directly analogous to the proof of Exercise 3.13, which
we give here for completeness.

Proof. Suppose that A has the greatest lower bound property and that Ay is any nonempty subset
of A that is bounded above so that b is an upper lower bound of Ay. Let By be the set of upper
bounds of Ay so that By is nonempty since b € By. Since Aj is nonempty there is an a € Ay. Now,
for any = € By we have that x is an upper bound of Ag so that a < x, which shows that a is a lower
bound of By. Hence By is a nonempty subset of A that is bounded below, and so has a greatest
lower bound ¢ since A has the greatest lower bound property. We claim that c is also the least upper
bound of Ajg.

Consider any x € Ay and any y € By. Then y is an upper bound of Ay so that x < y since z € Aj.
Since y € By was arbitrary, this shows that z is a lower bound of By. Thus we have x < ¢ since ¢ is
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the greatest lower bound of By. Since z € Ay was arbitrary, this shows that ¢ is an upper bound of
Ap. If y is any other upper bound then y € By so that ¢ < y since c¢ is a lower bound of Bj. Since
y was an arbitrary upper bound, this shows that in fact ¢ is the lest upper bound of Ay. Hence A
also has the lest upper bound property since the nonempty subset Ay was arbitrary. O

Exercise 3.15
Assume that the real line has the least upper bound property.
(a) Show that the sets
0,1 ={z]0<z<1},
0,1)={z|0< 2z <1}

have the least upper bound property.

(b) Does [0,1] x [0,1] in the dictionary order have the least upper bound property? What about
[0,1] x [0,1)? What about [0,1) x [0,1]?

Solution:

(a) We show this for both sets simultaneously as their proofs are nearly identical. We note the minor
differences in parentheses.

Proof. Let A = [0,1] (or A = [0,1)) and consider any nonempty subset Ay of A that is bounded
above in A. So suppose that b is an upper bound of Ap in A so that 0 <b <1 (or 0 <b < 1). Now,
of course Ag has a least upper bound ¢ in R since it is also a nonempty subset of R that is bounded
above. Obviously ¢ < b since it is the least upper bound. For any x € Ag we of course have that
x € Asothat 0 <z <1 (or0 <z <1), and clearly x < ¢ since it is an upper bound of Ay. Thus
wehave 0 <z <c<b<1(or0<ax<c<b<1)sothat c € A. Hence Ay has a least upper bound
in A as desired. O

(b) First we claim that both [0,1] x [0, 1] and [0, 1) x [0, 1] have the least upper bound property. We
show this for both sets simultaneously as their proofs are identical.

Proof. Let X =[0,1] x [0,1] (or X =[0,1) x [0, 1]). Suppose that A is a nonempty subset of X that
is bounded above, and that 1 x y; is an upper bound of A in X. Then of course we have z; € [0, 1]
(or 1 € [0,1)). Define A, = {z |z x y € A} so that clearly A, C [0,1] (or A, C [0,1)). It then
follows that x < z; for any z € A, since x; X y; is an upper bound of A in the dictionary order.
Also clearly A, is nonempty since A is. Thus A, is a nonempty subset of [0,1] (or [0,1)) that is
bounded above (by z1) so that it has a least upper bound a by what was shown in part (a).

Now, if a ¢ A, then set b = 0. Otherwise define A, = {y | a x y € A}. Then, since a € A,, there is
ay € [0,1] where a x y € A, which shows that y € A, and hence A, # &. We also clearly have that
A, C [0,1] so that A, is bounded above by 1. Then A, has a least upper bound b, again by what
was shown in part (a). In either case we assert that a x b is the least upper bound of A in X in the
dictionary order.

First, it is obvious that a x b € X based on how a and b were defined. Consider any x x y € A
so that x € A, and hence x < a since a is the least upper bound of A,. If x < a then of course
T Xy < axb, soassume that x+ = a. Then a = z € A, so that b was defined as the least upper
bound of A,. Then we have that y € A, since x xy = a xy € A, and thus y < b since b is the least
upper bound of A,. This shows that  x y < a x b so that we have shown that a x b is an upper
bound of A since x X y was arbitrary.
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To show that it is the least upper bound consider any zg X yo € X where zg X yg < a xb. If zp < a
then there must be an z € A, where g < x since g cannot be an upper bound of A, since xg < a
and a is the least upper bound of A,. Then, since z € A, there is a y € [0,1] where x x y € A.
Hence xg X yo < x Xy since xg < x so that zg X yo is not an upper bound of A. On the other hand if
o = a we must have yy < b so that it cannot be that b = 0, and hence it must be that a € A,. Then
there must be a y € A, where yy < y since yo cannot be an upper bound of A, since yo < b and b
is the least upper bound of A,. Hence a x y € A, £y = a, and yp < y so that zo X yo < a Xy € A,
which shows that zy X yg is not an upper bound of A. Thus in either case xy X yg is not an upper
bound of A, which shows that a x b is the least upper bound since zo X 9y < a X b was arbitrary.

This of course completes the proof that A has a least upper bound, which shows that X has the
least upper bound property since A was an arbitrary nonempty subset. O

We also claim that [0, 1] x [0,1) does not have the least upper bound property.

Proof. Let X =1[0,1] x [0,1). Consider the set A = {0} x [0, 1), which is clearly a nonempty subset
of X. This subset also obviously has an upper bound in X in the dictionary order, for example the
point 1 x 0. So let 1 X y; be any upper bound of A in X and suppose for the moment that x; = 0.
Then y; € [0,1) so that 0 < y; < 1, but then there is a yg € R such that 0 < y; < yo < 1. Then
Yo € [0,1) so that x1 X yg = 0 X yg € A, but also 1 X y1 < 1 X yo so that z1 X y; cannot be an
upper bound of A. So it must be that in fact z7 # 0 and hence x; > 0. Now let o = z1/2 > 0 and
yo = 0 so that clearly z X y < 2o X yo < 1 X y1 for any z X y € A since v =0 < 21/2 = xy < 27.
This shows that zg X yq is still an upper bound of A but that zg X yg < x1 X y1. Since z1 X y; was
an arbitrary upper bound of A, this proves that A can have no least upper bound! O

84 The Integers and the Real Numbers

Exercise 4.1

Prove the following “laws of algebra” for R, using only axioms (1)-(5):

(a) If x + y = z, then y = 0. (k) /1=
(b) 0.2 =0. [Hint: Compute (z + 0) - z.] () x#40and y #0=zy #0.
¢) —0=0. (m) (1/y)(1/z) =1/(yz) if y,z # 0.

—~ —
o

) )
) )
) )
) —(—x) = () (z/y)(w/z) = (zw)/(yz) if y, z # 0.

) #(=y) = —(zy) = (—2)y. () (z/y) + (w/z) = (zz +wy)/(y2) if y,z # 0.
) )

) )

) )

) )

) )

)

(

(z
(z
f
g

—_

(—1)z = —=. (p) z#£0=1/x #0.
2(y —2) =zy — xz. (@) 1/(w/z) =z/w if w,z # 0.

—_~ o~

h) —(z4+y)=—-2x—y; —(x —y) = —2x+y. (r) (z/y)/(w/z) = (xz)/(yw) if y,w, z # 0.
(i) fz#0and -y =z, then y = 1. (s) (ax)/y = a(z/y) if y # 0.
() #/z=1ifz £0. (t) (=2)fy = 2/(—y) = —(@/y) ity £0.

Solution:

Lemma 4.1.1. x+y=xz+ z if and only if y = z.
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Proof. (<) Clearly if y = z then « + y = = + z since the + operation is a function.
(=) If £+ y = + z then we have

y=y+0 (by (3))
04y (by (2))
— (a4 (~2) +y (by (4)
=(-r+z)+y (by (2))
=-—z+(z+y) (by (1))
=—z+(x+2) (by what was just shown for (<))
—(—at2)+2 (by (1))
—(a+ (—2) + 2 (by (2))
=0+2z (by (4))
S (by (2))
=z (by (3))

as desired. O

Lemma 4.1.2. If x #0 thenx-y=x -z if and only if y = 2.

Proof. (<) Clearly if y = z then = - y = x - z since the - operation is a function.

(=) If x-y =z -z then we have

y=y-1 (by (3))
=1y (by (2))
= (x . i) -y (by (4), noting that = # 0)
_ (; x) » (by (2))
=) (by (1))
= % (z-2) (by what was just shown for (<))
_ (i x) > (by (1))
- <x . ;) 2 (by (2))
—1.2 (by (4))
=21 (by (2))
=2 (by (3))

as desired. O

Lemma 4.1.3. 1/(yz) = 1/(2y) if y,z # 0.

Proof. We have (zy)-1/(yz) = (yz)-1/(yz) = 1 by (2) followed by (4) so that 1/(yz) is a reciprocal
of zy. Since this reciprocal is unique, however, it must be that 1/(yz) = 1/(zy) as desired. O

Main Problem.
(a) If v +y =z, then y = 0.
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Proof. Clearly by (3) we have x + 0 = z = x + y so that it has to be that y = 0 by Lemma 4.1.1.
O

(b) 0-2 =0. [Hint: Compute (z +0) - z.]

Proof. We have

z-x2+0-z=z-c+z-0 (since 0-z =z -0 by (2))
=z (z+0) (by (5))
=z-x. (since z + 0 = z by (3))
Thus it must be that 0 -« = 0 by part (a). O
(¢c) —0=0.
Proof. By (4) we have 0+ (—0) = 0 so that it has to be that —0 = 0 by part (a). O

(@) ~(~2) = .

Proof. We have

—(—z)=—(-2)+0 (by (3))
=—(-2)+ (z + (-2)) (by (4))
= —(—2) + ((-2) + =) (by (2))
=(—(-2)+(-2)) +=z (by (1))
=((—2)+(=(-2)) +z (by (2))
=0+ (by (4))
=z+0 (by (2))
=z (by (3))
as desired. O
(e) z(—y) = —(zy) = (—2)y.
Proof. First we have
z(—y) = z(-y) +0 (by (3))
=z(—y) + (zy + (—(zy)) (by (4))
= (2(~y) + 2y) + (—(2y)) (by (1))
=z(—y+y)+ (—(zy)) (by (5))
=z(y+ (—y) + (—(zy)) (by (2))
=z-0+ (—(zy)) (by (4))
=0-z+ (—(zy)) (by (2))
=0+ (—(zy)) (by part(b))
=—(zy) +0 (by (2))
=—(zy). (by (3))
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We also have

(—2)y =y(-2) (by (2))
= —(yx) (by what was just shown)
= —(ay) (by (2))
so that the result follows since equality is transitive. O
f) (-1)z = —=.
Proof. We have
(—Dz=—-1-x) (by part(e))
=—(z-1) (by (2))
=—z (since - 1 =z by (3))
as desired. O
(8) x(y — 2) = a2y — vz
Proof. We have
x(y—2z) =z(y+ (—=2)) (by the definition of subtractlon)
= ay + z(—2) by (5))
=2y + (—(z2)) (by part( )
=xy—xz (by the definition of subtraction)
as desired. ]
h) —(z+y)=-z-y; —(@—y)=-z+y.
Proof. We have
—(z+y)=(=D(z+y) (by part (f))
=(=Dz+(-1)y (by (5))
=—x+(—y) (by part (f) twice)
=—-xz—y (by the definition of subtraction)
and
—(z—y)=—(z+ (—y)) (by the definition of subtraction)
=—z—(—y)) (by what was just shown)
=—z+ (—(-y)) (by the definition of subtraction)
=-—z+y (by part (d))
as desired. ]

(i) Ifx#0and z -y =z, then y = 1.

Proof. By (3) we have -1 =z = x - y so that it has to be that y = 1 by Lemma 4.1.2, noting that

this applies since = # 0.

O
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(G)z/x=1ifz #0.

Proof. By the definition of division we have z/z = z-(1/x) = 1 by (4) since « # 0 and 1/z is defined
as the reciprocal (i.e. the multiplicative inverse) of x. O

(k) /1 = x.

Proof. First, we have by (4) that 1-(1/1) = 1, where 1/1 is the reciprocal of 1. We also have that
1-(1/1) = (1/1)-1 =1/1 by (2) and (3). Therefore 1/1 =1-(1/1) = 1 so that 1 is its own reciprocal.
Then, by the definition of division, we have z/1 =z - (1/1) =2 -1 =z by (3). O

(Dz#0and y #0= a2y #0.

Proof. Suppose that z # 0 and y # 0. Also suppose to the contrary that zy = 0. Since y # 0 it
follows from (4) that 1/y exists. So, we have (zy) - (1/y) =0- (1/y) = 0 by part (b). We also have

1 1
zy) - —=x |y — by (1
@z =2(v7) (by (1)
=z-1 (by (4))
=z (by (3))
so that = (xy) - (1/y) = 0, which is a contradiction since we supposed that z # 0. Hence it must
be that zy # 0 as desired. O

(m) (1/y)(1/2) = 1/(yz) if y,z # 0.

Proof. We have

(5 2) =0 (20) (by (2)

~(w2-1)1 (by (1)

~(v(2)); (by (1)

=17 (by (4))

v (by (3)

=1 (by (4))
so that (1/y)(1/z) is a multiplicative inverse of yz. Since this inverse is unique by (4), however, it
has to be that (1/y)(1/z) = 1/(yz) as desired. O
() (z/y)(w/2) = (zw)/(y2) if y, 2 # 0.
Proof. We have

g : % = (a: : gl/) (w : i) (by the definition of division)

_ ( | ;) (1 w) (by (2))
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as desired.

(0) (w/y) + (w]2) = (w2 +wy)/(y2) if y,z # 0.

Proof. We have

vow @ w o
y oz oy z
oz ow Yy
Yy oz oz oy
_xz | wy
Cyz oy
(22)— + (wy)
= \TrZ)— —
z yzy
1 1
—(932);4‘( y);
= —(z2) + —(wy)
:;(szrwy)
= (zz +wy) —
yZ
TRzt wy
==

as desired.

(p)x#0=1/x #0.

(by (1))
(by (1))
(by part (m) since y, z # 0)
(by (2))
(by (1))

(by (2))

(by the definition of division)

(by (3))

(by part (j))

(by part(n))

(by the definition of division)

(by Lemma 4.1.3)

(by the definition of division)

Proof. Suppose that « # 0 but 1/x = 0. Then we first have that - (1/z) =2-0=0-2 =0 by (2)
and part (b). However, we also have z - (1/x) = 1 by (4). Hence we have 0 = z - (1/2) = 1, which is
a contradiction since we know that 0 and 1 are distinct by (3). So, if we accept that x # 0, then it

must be that 1/z # 0 also.

(@) 1/(w/2) = 2/w if w, 2 £ 0,

O
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Proof. We have

(by part (n) since w, z # 0)
(by the definition of division)

(by Lemma 4.1.3 since w, z # 0)
(by (4))

so that by definition z/w is the reciprocal of w/z. Since this is unique by (4) we then have z/w =

1/(w/z) as desired.

(r) (z/y)/(w/z) = (x2)/(yw) if y,w, z # 0.
Proof. We have

zfy & 1
w/z Yy w/z
_r
=
_ 2z
=
as desired.
(s) (az)/y = a(z/y) if y # 0.
Proof. We have
ar 1
= —(ax) =
(az) ;
(+3)
=alxz- -
Yy
T
=q- - —
Y

as desired.

(t) (=2)/y =z/(~y) = —(z/y) it y # 0.
Proof. We have

—T 1
g -9y
1
=((-1)=)- "
e
= (—1)5

(by the definition of division)
(by part (q) since w, z # 0)

(by part (n) since y,w # 0)

(by the definition of division)

(by (1))

(by the definition of division)

(by the definition of division)
(by part (f))

(by (1))

(by the definition of division)

(by part (f))

O
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Now, we have (—1)(—1) = —(—1) = 1 by parts (f) and (d) so that —1 is its own reciprocal, since

the reciprocal is unique, i.e. 1/(—1) = —1. We also have
—x 1 . L
— =(—x) - (by the definition of division)
Y Y
1
= (=) (by part (f))
1
= (z(=1))- ; (by (2))
1
— o ((-1)2 (by (1))
Y
1 1 .
==z <1 . ) (by what was just shown above)
-1y
1
=z part (m) since y # 0
T (part (m) since y # 0)
1
ke (by part (f))
so that —(z/y) = (—x)/y = x/(—y) as desired. O

Exercise 4.2

Prove the following “laws of inequalities” for R, using axioms (1)-(6) along with the results of Exercise 1:

(a) z>yandw>z=c4+w>y+ 2. (g) -1<0<1.

by z>0andy>0=z+y>0and z-y > 0. (h) 2y > 0 & z and y are both positive or both
() z>0& —x<0. negative.

d) z>ye —x<—y. (i) x>0=1/z > 0.

(e) z>yand 2 < 0= 2z < yz. G)z>y>0=1/xz < 1/y.

(f) © #0= 22 >0, where 2°> = x - 2. k) z<y=z<(z+y)/2<y.

Solution:

Lemma 4.2.1. z + x = 2x for any real x.

Proof. We simply have

r+rx=x-1+x-1 (by (3))
=a(l+1) (by (5))
=x-2 (since 2 is defined as 1+ 1)
=2z (by (2))
as desired. O

Main Problem.
(dA)z>yandw>z=z+w>y+ 2.
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Proof. We have
rt+w>y+w
>z+y
=y+=z
as desired.
(b)z>0andy>0=xz+y>0and z-y > 0.

Proof. First we have

z+y>0+y

=y+0

=Y

>0.
Also

z-y>0-y
=0

as desired.

(c)z>0e —z<0.
Proof. (=) Suppose that > 0. Then we have

—x=—-x+0
=0+ (—x)
<z4(—x)
=0.

(<) Suppose now that —z < 0. Then we have

r=x+0
=0+=z
>—r+x
— o+ (~a)
=0

as desired.
dax>ye —x<—y.
Proof. (=) Suppose that > y. Then we have

—y=-y+0
= —y+ (@t (-2))

(by (6) since z > 0)
(by (2))
(by (3))

(by (6) since z > 0 and y > 0)

(by Exercise 4.1 part (b))

(by (3)
(by (2)
(by (6) since 0 < x
(by (4

—_— — — —
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=(z+(-2)) + (-y) (by (2))
=z+ (—z+(-y)) (by (1))
>y+(—z+(~y)) (by (6) since = > y)
y+ (—y+(-2)) (by (2))
=W+ (=y)+ (-2 (by (1))
=0+ (-2) (by (4))
=-z+0 (by (2))
=T (by (3))
(<) Now suppose that —z < —y. Then we have
240 (by (3))
=z+ (y+(-y) (by (4))
=W+ (=y) +z (by (2))
=(-y+y +z (by (2))
=-y+(y+z) (by (1))
>-—z+(y+z) (by (6) since —y > —x)
=-—z+(@+y) (by (2))
=(—z+z)+y (by (1))
=@+ (-2) +y (by (2))
=0+y (by (4))
=y+0 (by (2))
=Y (by (3))
as desired. O

() z>yand 2 < 0= zz < yz.

Proof. First, by Exercise 4.1 part (d), we have —(—z) = z < 0 so that —z > 0 by part (c¢). Then,
since = > y, it follows from (6) that

2(=2) > y(=2)
—(xz) > —(y2) (by Exercise 4.1 part (e) applied to both sides)
T2 <Yz (by part (d))
as desired. O

(f) x # 0= 2% > 0, where 2? =z - z.

Proof. Since z # 0 we either have that > 0 or z < 0 since the < relation is an order (in particular
a linear order since this is part of the definition of order in this text). If z > 0 then we have
2> =22 >0-2 =0 by (6) (since z > 0) and Exercise 4.1 part (b). If z < 0 then we have
0=0-z <z-z=2%by part (e) (since 0 > z) and Exercise 4.1 part (b). Together these show the
desired result. O

(g) -1<0<1.
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Proof. By (4) we know that 1 # 0 so that 12 > 0 by part (f). However, we have 12 =1-1 =1 by
(3). Hence 1 = 12 > 0. It then follows from part (c) that —1 < 0 so that we have —1 < 0 < 1 as
desired. 0

(h) zy > 0 < x and y are both positive or both negative.

Proof. (=) Suppose that zy > 0. It cannot be that = 0, for then we would have 0 = 0-y = 2y > 0
by Exercise 4.1 part (b), which is impossible by the definition of an order. Hence we have x # 0,
and an analogous argument shows that y # 0 as well. We then have the following:

Case: z > 0. Suppose that y < 0. Then, by part (e) and Exercise 4.1 part (b), we have zy < 0-y =0
since x > 0 and y < 0, which contradicts our initial supposition. Thus, since we know that y # 0,
it has to be that y > 0 as well.

Case: x < 0. Suppose that y > 0. Then, by (6) and Exercise 4.1 part (b), we have 0 =0y > xy
since 0 > x and y > 0, which again contradicts the initial supposition. So it must be that y < 0 also
since y # 0.

Therefore in every case either both x and y are positive or they are both negative. Since z # 0,
these cases are exhaustive so that this shows the result.

(<) Suppose that either > 0,y > 0 or z < 0,y < 0. In the case where both > 0 and y > 0 we
clearly have zy > 0-y = 0 by (6) and Exercise 4.1 part (b). In the other case in which z < 0 and
y < 0 we have 0 = 0-y < xy by part (e) and Exercise 4.1 part (b) since 0 > z and y < 0. Hence
xy > 0 in both cases. O

(i)z>0=1/z>0.

Proof. First, it cannot be that 1/2 = 0 because then we would have 1 = z(1/z) =z-0=0-2=0
by (4), (2), and Exercise 4.1 part (b). This is clearly a contradiction since we know that 1 # 0 by
(3). Hence 1/x # 0. Now suppose that 1/x < 0 so that 1 = z(1/z) < 0-(1/x) = 0 by part (e) since
x> 0and 1/ <0, and we have also used Exercise 4.1 part (b). This is also a contradiction since it
was proved in part (g) that 1 > 0. Hence the only remaining possibility is that 1/z > 0 as desired.

O

Dz>y>0=1/z<1/y.
Proof. First, since the order is transitive, we have z,y > 0. It then follows from part (i) that
1/z,1/y > 0. Then (1/x)(1/y) > 0 by part (h). We then have

1

T

<

<
. . 8|~ X
~— e e, e — — e

8| .
e e
S N N ' S N
=z
<
—
S~—
S~—

Il
TN N R =R

(by (6) since y < = and (1/z)(1/y) > 0)

(by (1))
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S NS

as desired.

e e

kr<y=z<(z+y)/2<y.

Proof. First, we know by part (g) that 1 > 0 so that

2=1
>0
=1
=1

+1
+1
+0

> 0.

(by the definition of 2)
(by (6) since 1 > 0)
(by (2))

(by (3))
(by part (g))

To summarize, 0 < 1 < 2. It then follows from part (i) that 1/2 > 0. We then have

<y

zt+trx<z+y
2r<xz+y

(237)% < (Jc+y)}

(x?)1 <

2

(1)

x -

r <

Similarly, we have

Tty

1< ——

<y
r+ty<y+t+y
T+y <2y

(ﬂchy)1 < (2y

2
Tty

This shows that z < (z +y)/2 < y as desired.

<y.

1
)3

2

(by (6))
(by Lemma 4.2.1)

(by (6) since 1/2 > 0)

(by (2) and the definition of division)

(by (1))

(by (6))
(by Lemma 4.2.1)

(by (6) since 1/2 > 0)

(by the definition of division and (2))
(by (1))

(by (4))

(by (3))
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Exercise 4.3

(a) Show that if A is a collection of inductive sets, then the intersection of the elements of A is an
inductive set.

(b) Prove the basic properties (1) and (2) of Z.

Solution:

(a) We must show that (). 4 A is inductive.

Proof. First, consider any A € A. Then, since A is inductive, 1 € A. Since A was arbitrary, this
shows that 1 € (4.4 A. Now suppose that z € (4.4 A and again consider arbitrary A € A.
Then = € A so that x +1 € A also since A is inductive. Since A was arbitrary, this shows that
x4+ 1€ () e A Hence by definition (), 4 A is inductive. O

(b)

Proof. Let A be the collection of all inductive sets of R so that by definition Z, = (1, 4 A. It then
follows immediately from part (a) that Z. is inductive since A is a collection of inductive sets. This
shows property (1).

Now suppose that A is an inductive set of positive integers. That is, A is inductive and A C Z,..
Consider any x € Z; = [|gc4 B, where again A is the the collection of all inductive subsets of R.
Clearly we have that A C Z C R so that A € A since A is an inductive subset of R. Hence z € A
(since x € (geq B and A € A) so that Z, C A since 2 was arbitrary. This shows that A =7Z, as
desired since also A C Z.. This shows property (2). O

Exercise 4.4

(a) Prove by induction that given n € Z., every nonempty subset of {1,...,n} has a largest element.

(b) Explain why you cannot conclude from (a) that every nonempty subset of Z, has a largest element.

Solution:
(a)

Proof. Let A be the set of integers such that the hypothesis is true. Clearly the result is then shown
if we can prove that A = Z,. So first, clearly 1 € A since the set {1} has only a single nonempty
subset, i.e. {1} itself, in which 1 is clearly the largest element. Now suppose that n € A so that
every nonempty subset of S,41 = {1,...,n} has a largest element. Consider any nonempty subset
Bof S, 12 ={1,...,n+ 1}, noting that S, 2 = Sp41 U {n+1}.

Case: n+ 1 € B. Then, for any other k € B, k € S,,42 so that either k =n+1or k € S;,41 so

that £k < n 4 1 by the definition of S, 1. Thus in either case k¥ < n + 1 so that n 4 1 is the largest
element of B since k was arbitrary.

Case: n+1 ¢ B. Then clearly B C S, 41 so that B has a largest element by the induction hypothesis
since B is nonempty.

Hence in either case B has a largest element so that n + 1 € A since B was an arbitrary nonempty
subset of S, 12 = {1,...,n+ 1}. This shows that A is an inductive set of positive integers so that
A =7 as desired by the Principle of Induction. O
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(b) There could be nonempty subsets of Z; that are not subsets of S,,11 = {1,...,n} for any
n € Z4, in which cases the hypothesis of part (a) is not satisfied so that the conclusion does not
necessarily apply. In fact, Z, itself is an example of such a set where both the hypothesis and the
conclusion are false.

Exercise 4.5

Prove the following properties of Z and Z:

(a) a,b€Zy = a+beZ,;. [Hint: Show that given a € Z, theset X ={x |z € Randa+x €Z}

is inductive.]

(b) a,b€Z+:>a-bEZ+.

(

¢) Show that a € Zy = a—1¢€ Z; U{0}. [Hint: Let X = {z |z € Rand z — 1 € Z; U{0}}; show
that X is inductive.]

(d) e,d€Z = c+deZand c—d e Z. [Hint: Prove it first for d = 1.]

(

e) c,deZ=c-del.

Solution:

Lemma 4.5.1. If x € Z then —x € Z.

Proof. Let Z_ = {—x | x € Z1} so that by definition Z = Z; U {0} UZ_. Suppose that z € Z so
that = € Zy U {0} UZ_.

Case: ¢ € Zy. Then —x € Z_ by definition.

Case: z = 0. Then by Exercise 4.1 part (¢) we have —x = —0 =0 € {0}.

Case: © € Z_. Then by definition there is a y € Z, such that z = —y. Then —x = —(—y) =y € Z
by Exercise 4.1 part (d).

Hence in all cases either —z € Z,, —x € {0}, or —z € Z_ so that —z € Z; U{0} UZ_ = Z as
desired. 0

Main Problem.
(a)

Proof. Consider any a € Z. and define X, = {z € R | a + = € Z;}. We show that X, is inductive.
First, since a € Z4 we have that a + 1 € Z, since Z4 is inductive. Hence 1 € X, by definition.
Now suppose that € X, so that a + = € Z;. Then we have a + (z + 1) = (a + ) + 1 € Z since
a+x € Zy and Z, is inductive. This shows by definition that  + 1 € X, and therefore that X, is
inductive. It follows that Z; C X, since Z, is defined as the intersection of all inductive subsets of
reals, of which X, is one.

Therefore, for any a,b € Z,, we have that b € X, since Z, C X,. Thus by definition a + b € Z, as
desired O

(b)

Proof. Consider any a € Zy and define X, = {zr € R|a -z € Z;}. We show that X, is inductive.
To this end, we first have that a -1 = a € Z; so that 1 € X, by definition. Now suppose that
x € X, so that ax € Zy. Then we have a-(x+1) =a-x+a-1=ax+a € Z4 by part (a) since we
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know both ax and a are in Z, . Hence z +1 € X, by definition. This shows that X, is inductive so
that again Z, C X,.

Hence for any a,b € Z, we have that b € X, since Z, C X,. It then follows by definition that
a-beZy as desired. O

(¢)

Proof. Let X = {x e R |z —1 € Z; U{0}}, which we show is inductive. First, we have 1 — 1 =
1+ (=1) = 0 so that clearly 1 € Z; U {0} and hence 1 € X. Now suppose that x € X so that
r—1€¢ Z+ @] {0}

Case: z — 1 € {0}. Then it must be that x — 1 = 0, which clearly implies x = 1 € Z since Z; is
inductive. Then (z+1)—1=2+4+(1—-1)=2+0=2 € Z; so that (z+1) -1 € Z, U {0} and
therefore z +1 € X.

Case: t =1 €Z4. Then (z+1)—1=2z+(1-1)=z+((-1)+1) = (zr—1)+1 € Z; since
x—1¢€ Z4 and Zy is inductive. Thus clearly (x4 1) —1 € Z U{0} so that x4+ 1 € X by definition.
Hence in both cases z + 1 € X, which shows that X is inductive, and so Z; C X. Therefore, for

any a € Z,, we have that also x € X since Z; C X. Then, by the definition of X, it follows that
a—1¢€Z; U{0} as desired. O

(d)

Proof. First we show that the set X, = {z € R | ¢+ 2z € Z and ¢ — x € Z} is inductive for any ¢ € Z.
So consider any ¢ and b in Z so that ¢,b € Z, U{0} UZ_.

Case: b€ Zy. Then b+ 1 € Z since Z is inductive and b — 1 € Z U {0} by part (c).

Case: b=0. Then b+1=0+41=1 € Z, since it is inductive, and b—1=0—1= —1 € Z_ since
leZ,.

Case: b€ Z_. Then b = —a for a € Z,, and we then have that a + 1 € Z4 since Z_ is inductive.
Hence b—1=—a—1= —(a+1) € Z_. We also have that a — 1 € Z U{0} by part (c), from which
it is trivial to show that —(a — 1) € Z_ U {0}. Therefore b+1=—-a+1=—(a—1) € Z_U{0}.

Thus in all cases we have that b+ 1 and b — 1 are in Z; or {0} or Z_ so that they are both in Z,
and so 1 € X;,. Note that this is the case for any b € Z so that it is clearly true for ¢, i.e. 1 € X..
Now suppose that € X, so that ¢+ x and ¢ — x are both in Z. It then follows that 1 € X ;. and
le Xe—psothat e+ (z+1)=(c+z)+1€Zand c— (x + 1) = (¢ —x) — 1 € Z. This then shows
that x +1 € X,.. Hence X, is inductive for any ¢ € Z so that Z, C X_.

Now consider ¢,d € Z.

Case: d € Z4. Then clearly d € X, since Z; C X.. Hence by definition ¢+ d and ¢ — d are both in
Z.

Case: d=0. Thenc+d=c+0=c€Zandc—d=c—0=ceZ.

Case: d € Z_. Then by definition d = —a for a € Z so that a € X, since Zy C X.. Then
¢+ a and ¢ — a are both in Z by the definition of X.. Hence c+d = ¢+ (—a) = c—a € Z and
c—d=c—(—a)=c+a€Z.

Therefore we have shown that ¢ + d and ¢ — d are both integers in all cases, which is the desired
result. O

()
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Proof. For any ¢ € Z, define X, = {x e R| c-x € Z}. We first show that X, is inductive for any
such ¢ € Z. We have ¢-1 =c € Z so that 1 € X.. Now suppose that x € X, so that c-x € Z. Then
c-(x+1)=c-z+c-1=c-x+c€Zby part (d) since both ¢z and ¢ are integers. This shows
that X, is inductive so that Z, C X..

Now consider any ¢, d € Z.
Case: d € Z4. Then d € X, since Z4 C X.. Thus c¢-d € Z.
Case: d=0. Thec-d=c-0=0€Z.

Case: d € Z_. Then there is an a € Zy such that d = —a. Hence a € X, since Zy C X, from
which it follows that ¢-a € Z. We then have ¢-d =c- (—a) = —(c-a) € Z as well by Lemma 4.5.1.

Thus in all cases ¢-d € Z as desired. O

Exercise 4.6

Let a € R. Define inductively
at =a,

a'IL-‘rl =a"-a

for n € Zy. (See §7 for a discussion of the process of inductive definition.) Show that for n,m € Z and
a,beR,

These are called the laws of exponents. [Hint: For fixed n, prove the formulas by induction on m.]

Solution:

The following lemma is the familiar proof by induction, which is more straightforward than having to
frame everything in terms of inductive sets. Henceforth we use this whenever induction is required.

Lemma 4.6.1. (Proof by Induction) Suppose that P(x) is a statement with parameter x. Suppose
also that P(1) is true and that P(x) implies P(x + 1). Then P(n) is true for alln € Z...

Proof. Define the set X = {x € R| P(z)}. We show that X is inductive. Clearly since P(1) is true
we have 1 € X. Now suppose that € X so that P(x) is true. Then P(z + 1) is also true so that
x+ 1 € X. This shows that X is inductive so that Z, C X. So, for any positive integer n we have
that n € X since Zy C X. Therefore P(n) is true. Since n was arbitrary, this shows the desired
result. O

Main Problem.
In what follows, suppose that a,b € R.
First we show that a"a™ = a™*™ for all n,m € Z..

Proof. Fix n € Z,. We show the result by induction on m. First, we clearly have a"a' = a®

a™! by the inductive definition. Now suppose that a”a™ = a™*™. Then

Q=

a"a™t =a" - (a™ - a) (by the inductive definition)
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=(a"a™)-a (since multiplication is associative)
=a"" . a (by the induction hypothesis)
= g(ntm)+1 (by the inductive definition)
= gntimFD) (since addition is associative)
which completes the induction step. Therefore the result holds for all m € Z by induction. O

Next we show that (a™)™ = a™™ for all n,m € Z, .

Proof. We again fix n € Z; and use induction on m. First, we have (a”)1 = a" = a™! by the

inductive definition. Supposing now that (a™)™ = a™™, we have
(@)™ = (@)™ - a" (by the inductive definition)
=a""a" (by the induction hypothesis)
= g"mtn (by what was shown above)
an<m+n 1
q™(mt1) (by the distributive property)
This completes the induction so that the result holds for all m € Z . O

Lastly, we show that a™b™ = (ab)™ for all m € Z,..

Proof. We show this by induction on m. First, we have a'b! = ab = (ab)! by the inductive definition.
Now suppose that a™b™ = (ab)™ so that

a™ Tyt = (@™ - a)(b™ - D) (by the inductive definition)
=(a-a™)(®-b) (since multiplication is commutative)

=((a-a™)™)-b (since multiplication is associative)

=(a-(a™b™))-b (since multiplication is associative)

= (a(ab)™) - b (by the induction hypothesis)

= ((ab)™a) - b (since multiplication is commutative)

= (ab)™(ab) (since multiplication is associative)

= (ab)™*!. (by the inductive definition)

This completes the induction. O

Exercise 4.7

Let a € R and a # 0. Define a° = 1, and for n € Z,, a=™ = 1/a™. Show that the laws of exponents
hold for a,b # 0 and n,m € Z.

Solution:

Lemma 4.7.1. For anyn € Z, 1™ =

Proof. We show this for n € Z, by simple induction on n. First, clearly 1! = 1 by the inductive
definition of exponentiation. Next, if 17 = 1, then we have 1?71 = 17 .1 = 1" = 1 by the inductive
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definition of exponentiation and the inductive hypothesis. This completes the induction so that the
result holds for all n € Z .

Clearly if n = 0 then, by the definition of 0 as an exponent, 1" = 1 = 1.
Lastly, if n € Z_ then there is a k € Z; where n = —k. Then we have

m=1*
1 " . L
=1 (by the definition of negative exponentiation)
1
=1 (by what was just shown by induction since k € Z)
=1. (since 1 is its own reciprocal)
Thus the result has been shown for all the resulting cases when n € Z. O

Lemma 4.7.2. 1/a™ = (1/a)™ for any real a #0 and n € Z...

Proof. We have

1" 1\
(a) a" = (a ~a> (by Exercise 4.6 since n € Z,.)
=1" (by the definition of the reciprocal)
=1. (by Lemma 4.7.1)
Thus (1/a)™ must be the unique reciprocal of a™, that is (1/a)™ = 1/a™ as desired. O

Lemma 4.7.3. a"a™" =1 for any real a # 0 and n € Z..

Proof. We have

1
aa”" =a" <a”> (by the definition of negative exponentiation)

1 n

= q" <) (by Lemma 4.7.2)
a
n\" . .

= (a . > (by Exercise 4.6 since n € Z,.)
a

=1" (by the definition of the reciprocal)

=1 (by Lemma 4.7.1)

as desired. O

Main Problem.

First we show that a"a™ = a™*™ for all real a # 0 and n,m € Z.

Proof. Consider any real a # 0 and n, m € Z. We number the following cases for reference:

1. Case: n € Zy.

(a) Case: m € Z,. Then the result immediately applies by Exercise 4.6.
(b) Case: m = 0. Then we have a"a™ = a"a’ = a" -1 = a™ = a"™" = a"t™.

(c) Case: m € Z_. Then m = —k for some k € Z..
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i. Case: n > k. Then n —k > 0 so that n — k € Zy since n — k € Z by Exercise 4.5
part (d). We then have

aa™ = ana—k
= g htkg Tk (sincen=n+0=n—k+k)
= (a""*a*)a"F (by Exercise 4.6 since k,n — k € Z,)
=a""F(a*a™F) (since multiplication is associative)
=a" "1 (by Lemma 4.7.3 since k € Z)
_ anfk
— an+m

ii. Case: n = k. Then clearly n+m =n —k =k — k = 0, so that we have a"a™ =
a’a™* =1 =0a" = a"™™ by Lemma 4.7.3 and the definition of 0 as an exponent.

iii. Case: n < k. Thenn — k < 0 so that n — k € Z_ since n — k € Z by Exercise 4.5
part (d). Also, clearly —n € Z_ since n € Z;. Then we have

a"a™ =a"a""
=g ktnon (since —k=—k+0=—-k+n—n)
=gk (since addition is commutatwe)
= a"(a" *a™") (by case 3¢ below since n — k,—n € Z_)
=a"(a "a"F) (since multiplication is commutatlve)
= (a"a"™)a" ¥ (since multiplication is associative)
=1-a"" (by Lemma 4.7.3)
= a’ﬂ*k‘
= gntm

2. Case: n =0.
(a) Case: m € Z4. Since a"a™ = a™a™ and a"t™ = o™ ™, this the same as case 1b above.
(b) Case: m = 0. Then we have a"a™ = a’a® =1-1=1=a" = a"*0 = g"*™.
c) Case: m € Z_. Then there is a k € Z, such that m = —k, and a"a™ = a®a™% =
+
1-(1/a*) =1/a* = a7 = a™ = a®T™ = o+,
3. Case: n€Z_.

(a) Case: m € Z,. This is the same as case 1c above.

(b) Case: m = 0. This is the same as case 2c above.

(c) Case: m € Z_. Here we have that n = —k and m = —[ for some k,! € Z,. Hence we
have
a*a™ = a—ka—l

1 1 " .

= (a’“) <al) (by the definition of negative exponents)
1" /1y

=|- - (by Lemma 4.7.2)
a a
1 k+l1

= (a) (by Exercise 4.6 since k,l € Z)
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= (by Lemma 4.7.2)

(by the definition of negative exponents)

Thus in all cases we have shown the result. O
Next we show that (a™)™ = a™™ for all real a # 0 and n,m € Z.

Proof. Consider any real a # 0 and n,m € Z. We again number the cases for reference:

1. Case: n € Zy.

(a) Case: m € Z,. Then the result immediately applies by Exercise 4.6.
(b) Case: m = 0. Then we have (a")™ = (a")? =1 = a® = ™% = @™ by the definition of a
0 exponent.

(c) Case: m € Z_. Then there is a k € Z4 such that m = —k. Then we have

1
= (@)F (by the definition of negative exponents)
1 . .
= ok (by Exercise 4.6 since n,k € Z)
=a~ ("M (by the definition of negative exponents)
= an(ik’)
—_ anm

2. Case: n = 0. Then we have (a™)™ = (a°)"™ = 1™ =1 = a° = "™ = a™™ by the definition of
0 as an exponent and Lemma 4.7.1.

3. Case: n € Z_. Then n = —k for some k € Z.

(a) Case: m € Zy. Then we have

1 m
— (k> (by the definition of negative exponents)
a
1 k m
= l() ] (by Lemma 4.7.2)
a
1 km
- (a> (by Exercise 4.6 since k,m € Z;)
1
= (by Lemma 4.7.2)
=q (kM) (by the definition of negative exponents)
_ q(-Bm
— anm
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(b) Case: m = 0. The same argument as in case 1b above applies here as it does not depend
on n being positive.

(c) Case: m € Z_. Then m = —! for some [ € Z,, and we have

—1
1
= <k> (by the definition of negative exponents)
a
1 .o, .
(1/ab)! (by the definition of negative exponents)
a
1
[(1/a)*]! (by Lemma 4.7.2)
1
DL (by Exercise 4.6 since k,l € Z,)
a
1\ M
- 1) (by Lemma 4.7.2)
a
— M
— o(=R (=D
— anm
Thus in all cases we have shown the result. 0

Lastly, we show that a™b™ = (ab)™ for all real a,b # 0 and m € Z.

Proof. We have the following cases:
Case: m € Zy. The result then follows immediately from Exercise 4.6.

Case: m = 0. Then we have a™b™ = a®° = 1-1 =1 = (ab)? = (ab)™ by the definition of a 0
exponent.

Case: m € Z_. Then there is a k € Z, such that m = —k. Then we have

ampm = afkbfkr

1 1
=5 (by the definition of negative exponents)
INE /1\E
= (a) (b) (by Lemma 4.7.2)
1 1\" . :
=(=3 (by Exercise 4.6 since k € Z)
a
1\*
= (b) (by Exercise 4.1 part (m))
a
1
= @) (by Lemma 4.7.2)
a
= (ab)™F (by the definition of negative exponents)

Il

e

=

~— ~—
3

—~

Therefore in all cases the result has been shown. O
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Exercise 4.8

(a) Show that R has the greatest lower bound property.

(b) Show that inf{1/n|ne€Zy}=0.

(c¢) Show that given a with 0 < a < 1, inf {a" |n € Z;} = 0. [Hint: Let h = (1 — a)/a, and show that
(I+h)">1+nhl]

Solution:
(a)

Proof. Suppose that A is an arbitrary nonempty set of real number that is bounded below by a.
Now let B={—z |z € A} and b = —a. First, we claim that b is an upper bound of B. So consider
any y € B so that y = —x for some z € A. Then a < x since a a lower bound of A. It then follows
from Exercise 4.2 part (d) that y = —2 < —a = b. Since y € B was arbitrary, this shows that b is
an upper bound of B.

Since B is clearly nonempty (since A is), we have that B has a least upper bound d = sup B since
the reals have the least upper bound property. We claim that ¢ = —d is the greatest lower bound
of A. So first consider any = € A so that y = —x € B. Then we have y < d since d = sup B. Hence
¢ = —d < —y = x again by Exercise 4.2 part (d). Since € A was arbitrary, this shows that ¢ is in
fact a lower bound of A.

Now suppose that = is any lower bound of A. Then, by the same argument as above for b = —a,
we have that y = —x is an upper bound of B. It then follows that d < y since d is the least upper
bound of B. Then, again by Exercise 4.2 part (d), we have ¢ = —(—2) = —y < —d = ¢, which shows
that ¢ is in fact the greatest lower bound since x was arbitrary. This completes the proof. O

(b)

Proof. First, let A= {1/n|n € Z,} so that we must show that inf A = 0. For any z € A we have
that x = 1/n for some n € Z,. Then n > 0 so that z = 1/n > 0 also by Exercise 4.2 part (i). Hence
0 < z is true, which shows that 0 is a lower bound of A since x was arbitrary.

Now consider any = > 0 so that also 1/z > 0 by Exercise 4.2 part (i). Then, by the Archimedean
ordering property there is an n € Z, such that n > 1/x > 0 (since otherwise 1/z would be an upper
bound of Z;). It then follows from Exercise 4.2 part (j) that 1/n < 1/(1/z) = x. Since clearly
1/n € A we have that x is not a lower bound of A. Since z > 0 was arbitrary, this shows that 0 is
the greatest lower bound of A since, by the contrapositive, x being a lower bound of A implies that
z <0. O

(c)

Proof. Consider any real a where 0 < a < 1. First we show that the set {1/a” | n € Z4} has no
upper bound. To this end define h = (1 —a)/a =1/a—1sothat 1+ h =1+ (1/a—1) = 1/a.
Clearly we have

a<l1
—a>—1

l1—-a>1-1=0

1;a>g=O (since a > 0)
h>0
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sothat 1+h >1>0 and
h>0
h*>h-0=0 (since h > 0)
nh?>>n-0=0

for any n € Z, since n > 0.

We show by induction that (1 + k)™ > 1+ nh for all n € Z,. For n = 1 we clearly have (14 h)" =
(1+h)}=1+h>1+h=1+1-h=1+nh. Now, supposing that (1 + )™ > 1+ nh,we have

(14+h)" =1 +h)"(1+h)

> (1+nh)(1+h) (since 1+ h > 0)
=1+ nh+h+nh?

>1+nh+h (since nh? > 0)
=14+ (n+1)h,

which completes the induction. So consider any real x. Then, since we know that Z has no upper
bound, there is an n € Z; where n > x/h (noting that h > 0) so that

n>zx/h
nh > (x/h)h =z (since h > 0)
1+nh>1+2>z.

Then we have 1/a™ = (1/a)™ = (1+ h)™ > 14+ nh > x, which shows that the set {1/a" | n € Z;} is
unbounded above since x was arbitrary.

Now we show the main result. Let A = {a" | n € Z;} so that we must show that inf A = 0. First
we show by induction that 0 is a lower bound of A. For n = 1 we clearly have a™ = a' = a > 0.
Then, if a® > 0, we have a"T! = a™-a > 0-a = 0 since a > 0. This completes the induction so that
clearly 0 is indeed a lower bound of A.

Now consider any real > 0 so that 1/x > 0 also. Then, by what was shown above, we know
that there is an n € Z4 such that 1/a™ > 1/2 > 0. We then have a™ = 1/(1/a") < 1/(1/z) = x
by Exercise 4.2 part (j). This shows that x is not a lower bound of A since obviously a™ € A. It
then follows that 0 is the greatest lower bound of A since x > 0 was arbitrary, because, by the
contrapositive, x being a lower bound of A implies that x < 0. Hence 0 = inf A as desired. O

Exercise 4.9

(a) Show that every nonempty subset of Z that is bounded above has a largest element.
(b)
(c)

)

(d) If y < x, show there is a rational number z such that y < z < x.

If x ¢ Z, show that there is exactly one n € Z such that n <z <n+ 1.
If x — y > 1, show there is at least one n € Z such that y <n < z.

Solution:

Lemma 4.9.1. The set of integers Z is an inductive set that has no lower or upper bounds in R.
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Proof. First we show that Z is inductive. Clearly 1 € Z since 1 € Z, C Z. Now suppose that n € Z
so that clearly n + 1 € Z by Exercise 4.5 part (d) since 1 € Z.

Next, consider any € R. Then we know that Z, has no upper bound so that there is an n € Z,
such that n > z, and clearly n € Z since Z C Z. By the same token there is an m € Z such that
m > —x. But then we have —m < —(—z) = x by Exercise 4.2 part (d), and —m € Z_ so that also
—m € Z since Z_ C Z. Since x was arbitrary, this shows that Z is not bounded above or below.

O

Lemma 4.9.2. There is no integer n such that 0 <n < 1.

Proof. Suppose to the contrary that n € Z and 0 < n < 1. Let S = {k €Z |0 < k <1} so that
clearly n € S so that S # @. Also since 0 < k and k € Z for any k € S, clearly S C Zy. Thus S
is a nonempty subset of positive integers so that it has a smallest element m by the well-ordering
property. Since m € S we have 0 < m < 1 and hence m?> = m -m < 1-m = m < 1 by property (6)
since m > 0. By the same property clearly 0 = 0-m < m -m = m? as well so that 0 < m? < 1.
Also, clearly m? = m - m € Z by Exercise 4.5 part (e) since m € Z, and so m? € S. However, this
cannot be since m is the smallest element of S and yet m? < m. Therefore we have a contradiction,
which proves the result. O

Corollary 4.9.3. For any integer n, there is no integer a such that n < a <n -+ 1.

Proof. Consider any n € Z and suppose to the contrary that there is an a € Z such that n < a < n+1.
First, we have n — a € Z by Exercise 4.5 part (d) since a,n € Z. Also, n < a clearly implies that
0 < a —n. Similarly, a < n 4+ 1 means that a —n < 1. But then we have that a — n is an integer
where 0 < a — n < 1, which contradicts Lemma 4.9.2. Thus it must be the case that there is no
such integer a. O

Main Problem.
(a)

Proof. Suppose that A is a nonempty subset of Z and that it is bounded above by a € R. Since
A # &, there is an a € A, so define A’ = {n —a+1|n € A}. First we claim that o/ =a—a+1is
an upper bound of A’ So consider any n’ € A’ so that n’ =n —a + 1 for some n € A. Since « is an
upper bound of A we have

n <«
n—a<oa—a
n—a+1<a—a+1

n <a,

which shows that o is an upper bound of A’ since n’ was an arbitrary element. We also have that
there is an N’ € Z, such that o/ < N’ since Z, has no upper bound.

Now let B = A’NZ, . Then, for any n’ € B’, we have that n’ € A’ so that n’ < o’ < N’. Since also
clearly n’ € Z4, we have that n’ € Sy = {k€Zy |k <N'} ={1,...,N' —1}. Hence B’ C Sn-
since n’ was arbitrary. We also have that 1 € A’ since a € A and a—a+1 = 1. Hence 1 € B’
since clearly also 1 € Z since it is inductive. Thus B’ is a nonempty subset of Sy~ so that it has a
largest element b’ by Exercise 4.4 part (a).

Since b’ € B’, we have that b’ € A’ so that there is a b € A such that ¥’ = b — a + 1. We claim that
b is the largest element of A. We already know that b € A so we need only show that it is also an
upper bound of A. So consider any n € A so that clearly n’ =n —a+1 € A’. Now, it follows from
Exercise 4.5 part (d) that n’ € Z since n,a,1 € Z. Thus we have the following:
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Case: n’ € Zy. Then, clearly n’ € A’NZ, = B’ so that n’ <V since V' is the largest element of B’.
Case: n’ € Z_U{0}. Then n’ <1 <1 since 1 € B’ and b’ is the largest element of B’.
Thus in either case n’ < ¥’ is true so that
n <y
n—a+1<b—a+1
n—a<b-—a
n<b,

which shows that b is an upper bound and thus the largest element of A since n was arbitrary. [

(b)

Proof. Suppose an © € R where x ¢ Z and let A = {n € Z | n < z}. It follows from Lemma 4.9.1
that there is an m € Z where m < z since Z has no lower bounds. Hence by definition m € A so
that A # @. Clearly also x is an upper bound of A so that A is a nonempty subset of Z that is
bounded above. It then follows from part (a) that A has a largest element n, where clearly n < x
since n € A.

Now, suppose for the moment that n + 1 < x. Then, since Z is inductive (again by Lemma 4.9.1)
and n € Z, we have that n+ 1 € Z as well. But = ¢ Z so that it must be that n + 1 # «, and hence
n+1 <z Thenn+1¢€ Asothat n+ 1 < n since n is the largest element of A. However, this
contradicts the obvious fact that n + 1 > n so that it must be that n +1 < x is not true. Hence
n + 1 > x and thus we have shown that n <z <n + 1.

Lastly, suppose that there is an integer m such that m < x < m + 1. Then m € A so that m <n
since n is the largest element of A. Suppose for a moment that m < m. Then we would have
m < mn <z <m+1 so that n is an integer between m and m + 1, which violates Corollary 4.9.3.
Thus is has to be that m = n (since m < n), which shows that n is the unique integer such that
n<zx<n+l. O

(c)

Proof. Suppose that z,y € Rand x —y > 1. If x € Z then let n = x — 1 so that clearly n € Z by
Exercise 4.5 part (d). First, we have

r—y>1
r>1+4y

r—1>y
n>uy.

We also clearly have n = 2 — 1 < z so that y < n < x.
On the other hand, if « ¢ Z, then we know from part (b) that there is a unique integer n such that
n <z <n-+ 1. We also have that
r<n+1
l<z—y<n+l-y
O<n—-y
y<n

so that again y < n < x.

Hence in both cases we have found an integer n such that y < n < x, which proves the result. [
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(d)

Proof. Suppose that z,y € R where y < . Then 0 < & — y so that 1/(x — y) exists.. Since Z, is
unbounded above there is a b € Z4 where b > 1/(z — y). Hence

1
b>
r—=yYy
blx —y) >1 (since z —y > 0)
br —by > 1.

It then follows from part (c) that there is an integer a such that by < a < bx. We then have that
y < a/b < x since b > 0 (since b € Z_). This shows the result since clearly a/b is rational because
a,beZ. O

Exercise 4.10

Show that every positive number a has exactly one positive square root, as follows:

(a) Show that if z > 0 and 0 < h < 1, then

(x+h)?* <z +h2z+1),

(b) Let > 0. Show that if 22 < a, then (z + h)? < a for some h > 0; and if 2% > a, then (z — h)? > a
for some h > 0.

(c) Given a > 0, let B be the set of all real numbers = such that 2 < a. Show that B is bounded
above and contains at least one positive number. Let b = sup B; show that b? = a.

(d) Show that if b and ¢ are positive and b? = ¢, then b = c.

Solution:

Lemma 4.10.1. If x € R and 2% < 1, then x < 1 also.

Proof. Suppose that o > 1. If 2 = 1 then clearly 22 = 1! = 1. On the other hand, if > 1 then
clearly 22 =z -2 > 1-2 = 2 > 1 by property (6) since z > 1 > 0. Thus in either case 22 > 1 so
that we have shown that z > 1 implies that 2 > 1. It then follows that z? < 1 implies = < 1 by
the contrapositive. O

Lemma 4.10.2. If0 <y < z then 0 < y? < 22
Proof. Supposing that 0 <y <z, wehave 0 =0-y<y-y=y’ =y -y<z-y=y -x <z -1 =2°
all by property (6) since both x and y are positive. O

Main Problem.
(a)

Proof. First, we know that 0 < h < 1. If h = 0 then clearly h =0 = 0> = h% so that 0 < h2 < h is
true. If h # 0 then 0 < h < 1sothat 0=0-h < h-h =h%? < 1-h = h by property (6) since h > 0
so that again 0 < h% < h is true.
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We then have

(x+h)? = (z+h)(z+h)
=22+ 2zxh + h?
<z?+2xh+h (since < h)
=22+ h2r+1).

Also
(x — h)2 =(z—h)(z—h)
= 2% — 2zh + h?
> 22 —2zh +0 (since K2 > 0)
=22 — h(2z),
which show the desired results. O

(b) We modify this result so that the h in the second part is not just positive but also h < z. In
fact, without this stipulation, the theorem becomes obvious since any arbitrarily large h will suffice.
Because then then z — h is arbitrarily large in magnitude (but negative) so that (z — h)? can be
made arbitrarily large so that of course (x — h)? > a. Adding the stipulation that 0 < h < x makes
the theorem more useful and is necessary for it to be of use in part (c) below.

Proof. Suppose that > 0. Then clearly 2z > 2 -0 = 0 as well. Also it then follows that 2z + 1 >
1>0.

If 22 < a then clearly 0 < a — x2. Hence we have that 0 < (a — 2?)/(2z + 1) by Exercise 4.2 parts
(i) and (h) since both a — 22 and 2z + 1 are positive. So let y = min(1, (a — 22)/(2z + 1)) so that
clearly both y < 1 and y < (a — 22)/(2z + 1). Since 0 < 1 and 0 < (a — 2%)/(2z + 1), we have that
0 < y so that it follows from Exercise 4.9 part (d) that there is a rational h such that 0 < h < y.
Hence 0 < h < y < 1 so that, by part (a), we have

(x4+h)?<2®+h2z+1)
2

<x?+ (gx—k:rl) (2 +1) (since h <y < (a —x?)/(2x + 1) and 2z + 1 > 0)

:x2+(a71¢2)

=a.

If 22 > a then clearly 22 —a > 0. Then we have again that (22 —a)/(22) is positive since we showed
previously that 2z is. So let y = min(1, (2% — a)/(22),z) so that clearly y < 1, y < (2% — a)/(22),
and y < z. Since both 1, (2% — a)/(2z), and z are all positive it follows that 0 < y so that there
is a rational h such that 0 < h < y by Exercise 4.9 part (d). Therefore 0 > —h > —y. Since

0 < h <y <1 we have by part (a) that

(z — h)? > 22 — h(2z)

2 _
> x? — (x 5 a) (22) (since —h > —y > —(2? — a)/(2z) and 2z > 0)
=22 — (22 —a)
= Qa s
which show the desired results since clearly 0 < h < y < x. O
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(c)

Proof. Suppose that a >0 and let B={z € R | 22 < a}.

Ifa < 1then 0 < a < 1sothata®> =a-a < 1-a = a so that a itself is in B (and of course a
is positive). Now consider any # € B so that 22 < a. Then 2% < a < 1 so that also < 1 by
Lemma 4.10.1. Since x € B was arbitrary, this shows that 1 is an upper bound of B.

If a > 1 then (1/2)? =1/22 = 1/4 < 1 < a so that 1/2 € B (and of course 1/2 is positive). Now
consider any r € B so that 22 < a. If x <1 then 2z < 1 < a. On the other hand, if x > 1 then
22 =x-x>1-2=uxsince x > 1> 0 so that x < 22 < a. Thus in both cases z < a so that a is an

upper bound of B since xz was arbitrary.

Therefore in each case B contains a positive element (so that b # @) and B is bounded above. It
then follows that B has a least upper bound b (so that b = sup B). Clearly since B has a positive
element z, it follows that 0 < x < b so that b is positive.

Now suppose that b2 < a. Then by definition b € B so that b has to be the largest element of b since
it is the least upper bound. Since we know that b is positive and b < a, it follows from part (b)
that there is an h > 0 where (b+ h)? < a and hence b+ h € B. However, since h > 0, it follows that
b < b+ h, which contradicts the fact that b is the greatest element of B. Hence it cannot be that
b? < a.

So suppose that b2 > a. Then again by part (b) there is an h where 0 < h < b such that (b—h)? > a.
Now, since h > 0, it follows that b — h < b so that n — h is not an upper bound of B (since then
b would not be the least upper bound). Hence there is an « € B such that b — h < z, noting that
22 < a by the definition of B. Since h < b, we have that 0 < b —h < z so that (b— h)? < 2% < a by
Lemma 4.10.2. But this contradicts the established fact that (b — h)? > a so that it cannot be that
b2 > a.

Thus the only possibility remaining is that b = a as desired. O

(d)

Proof. Suppose that b and ¢ are positive and that b> = c2. If it were the case that b < ¢ then
0 < b < csothat 0 < b? < ¢? by Lemma 4.10.2 so that clearly b # ¢2. As this is a contradiction, it
has to be that b > ¢. An analogous argument shows that b > ¢ also leads to a contradiction so that
b < c¢. Hence it must be that b = ¢ as desired. O

Exercise 4.11

Given m € Z, we say that m is even if m/2 € Z, and m is odd otherwise.

(a) Show that if m is odd, m = 2n + 1 for some n € Z. [Hint: Choose n so that n < m/2 <n + 1]
(b) Show that if p and ¢ are odd, so are p- ¢ and p", for any n € Z.

(¢) Show that if @ > 0 is rational, then a = m/n for some m,n € Z where not both n and m are even.
[Hint: Let n be the smallest element of the set {z |z € Z; and z-a € Z,}]

(d) Theorem: \/2 is irrational.

Solution:

Lemma 4.11.1. Ifn,m € Z andn <m, thenn+1<m andn <m —1.
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Proof. Suppose that n 4+ 1 > m so that n < m < n+ 1, which violates Corollary 4.9.3 since m € Z.
Thus it has to be that n +1 < m. From this it immediately follows that n =n+1—-1<m —1 by
simply subtracting 1 from both sides of the previous inequality. O

Lemma 4.11.2. An integer m is even if and only if m = 2n for some integer n.

Proof. (=) Supposing that m is even, then n = m/2 € Z. Then clearly m = 2n.
(<) Now suppose that m = 2n for some integer n. Then clearly m/2 = n is an integer so that m is
even by definition. O

Lemma 4.11.3. An integer a is odd if and only if a® is also odd.

Proof. (=) Suppose that a is odd so that a = 2n + 1 for some integer n (this is shown in part (a)
below, which does not depend on this lemma). Then

@?=a-a=2n+1)2n+1)=4n’> +2n+2n+1=4n’> +4dn+1=2[2(n" +n)] +1
noting that clearly 2(n? + n) is an integer since n is. Hence a? is odd again by what will be shown
in part (a).

(<) We prove this by contrapositive, so suppose that a is not odd so that it must be even. Therefore
a = 2n for some integer n by Lemma 4.11.2. Then a? = a-a = (2n)(2n) = 4n? = 2(2n?) so that a>
is even since clearly 2n? is an integer since n is. Thus a? is not odd. O

Main Problem.

(a) Here we show the converse as well, i.e. we show that m is odd if and only if m = 2n + 1 for some
n € 7.

Proof. (=) Suppose that m is odd so that by definition m/2 ¢ Z. It then follows from Exercise 4.9
part (b) that there is a unique integer n such that n < m/2 < n+ 1. We then have that 2n < m <
2(n+1) = 2n + 2 since obviously 2 > 0. Hence by Lemma 4.11.1 we have that 2n + 1 < m and also
m<2n+2—1=2n+ 1. Therefore it has to be that m = 2n + 1 as desired.

(<) Now suppose that there is an n € Z such that m = 2n + 1. Then we have that

m _ 2n+1

1
2 2 Ty

We then clearly have that n =n+0<n+1/2 <n+1since 0 < 1/2 < 1 so that m/2 =n+ 1/2
cannot be an integer by Corollary 4.9.3. Hence m is odd by definition. O

(b)

Proof. Suppose that p and ¢ are odd so that p = 2k + 1 and ¢ = 2m + 1 for some k,m € Z by
part (a). We then have that

p-q=02k+1)2m+1)=4dkm+2m+2k+1=22km+m+k)+1

so that p - ¢ is odd by what was shown in part (a) since clearly 2km + m + k € Z by Exercise 4.5
since k and m are integers.

Now we show by induction on n that p™ is odd for any n € Z,. First, for n = 1 we clearly have
p" = p' = p is odd by supposition. Then, if we assume that p” is odd, we have that the product
p"tl = p" . pis odd as well by what was just shown since both p™ and p are odd. This completes
the induction. O
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(c)

Proof. Suppose that a > 0 is rational. Then a = p/q for some integers p and g. Clearly it cannot
be that ¢ = 0, and if ¢ < 0 then g = —b for some b € Z. Then we have a = p/q =p/(=b) = (—-p)/b
so that ab = —p. Furthermore, since a and b are both positive, we have that ab = —p is positive by
Exercise 4.2 part (h). Thus clearly —p € Z since p € Z.

Now, let X = {2z € Z | ax € Z+}. Since we just showed that b € Z, and ab = —p € Z it follows
that b € X. Since clearly X C Z; and X is nonempty (since b € X), it has a smallest element n by
the well-ordering property. Letting m = an, we clearly have that m € Z, since n € X. Then, we
have a = m/n, noting again that m,n € Z.

To show that not both m and n are even, suppose to the contrary that they are both even. Then
by Lemma 4.11.2 we have that m = 2k and n = 2l for some k,l € Z. Clearly then k = m/2 and
I = n/2 so that both k and [ are positive by Exercise 4.2 part (h) since m and n (and 1/2) are.
Hence k,l € Z;. We have a = m/n = 2k/2l = k/I so that al = k, which implies that [ € X since [
and al = k are both in Z,. However, we also have that [ = n/2 < n since n > 0, which contradicts
the fact that n is the smallest element of X. Thus it has to be the case that not both m and n are
even. O

(d) This is one of the most famous proofs in all of mathematics, and is often used as an example of
mathematical proofs since it can be understood by most laymen.

Proof. Obviously we take v/2 to be the unique positive real number such that (v/2)? = 2 as was
shown to exist in Exercise 4.10. Suppose to the contrary that /2 is rational so that v/2 = a/b
for a,b € Z, where not both a and b are even by part (c) since v/2 > 0. We therefore have that
2 = (v/2)? = (a/b)? = a®/b? so that 2b> = a®. Since b? is an integer (clearly, since b is and b* = b-b) it
follows from Lemma 4.11.2 that a? is even. This means that a itself is even by Lemma 4.11.3. Hence
a = 2n for some integer n so that a®> = (2n)? = 4n?. From before, we then have 2b? = a? = 4n?
so that clearly b = 2n?, from which it follows as before that b and therefore b itself is even by
Lemmas 4.11.2 and 4.11.3. However, this is a contradiction since we previously established that a
and b cannot both be even! So it has to be that /2 is not rational and is therefore irrational as
desired. O

85 Cartesian Products

Exercise 5.1

Show that there is a bijective correspondence of A x B with B x A.

Solution:

Proof. We define a function f : Ax B — Bx A. For any element (a,b) € Ax B we set f(a,b) = (b,a),
noting that of course a € A and b € B. It should be obvious then that f(a,b) = (b,a) € B x A so
that B x A can be the range of f.

First we show that f is injective. To this end consider (a1,b1) and (ag, bs) in A X B where (a1,b1) #
(az,b2). Of course we have that f(a1,b1) = (b1,a1) and f(ag,b2) = (ba,az). Since (a1, b1) # (ag, b2)
clearly either ay # ag or by # be. In either case it should be clear that f(a1,b1) = (b1,a1) #
(ba,a2) = f(az,bs), which shows that f is injective since (a1,b1) and (ag, be) were arbitrary.

It is very easy to that f is also surjective since, for any (b,a) € B x A, clearly (a,b) € A x B and
f(a,b) = (b,a). Hence f is a bijection as desired. Note that if A x B = & then f = & as well, which

Page 67



is vacuously a bijective function since it must be that B x A = & as well (because either A = & or
B =2). O

Exercise 5.2

(a) Show that if n > 1 there is a bijective correspondence of

A x---x A, with (A1 X -+ X A1) X Ay
(b) Given the indexed family {41, Ay, ...}, let B; = Ag;—1 x Ay; for each positive integer i. Show that
there is a bijective correspondence of Ay x As X -+ with By X By X - -+
Solution:

Lemma 5.2.1. Ifn € Z is even, thenn/2 € Zy. If n € Zy is odd, then (n+1)/2 € Z..

Proof. First, suppose that n € Z, is even. Then by definition n/2 is an integer. However, since
both n and 1/2 are positive, it follows from Exercise 4.2 part (h) that n - (1/2) = n/2 is positive
also so that n/2 € Z.

Now, suppose that n € Z is odd so that n = 2k + 1 for some integer k by Exercise 4.11a. Then

n+1  (2k+1)+1 2k+2 2(k+1)
2 2 2 2

— k41,

which is clearly an integer since k is. Moreover, we have n +1 > n > 0 since n € Z; and again
1/2 > 0 so that (n+1)-(1/2) = (n+1)/2 is positive by Exercise 4.2 part (h). Thus (n+1)/2 € Z,..
O

Main Problem.
(a)

Proof. For brevity, let X = Ay x---x A, and Y = (A; X -+- X A,—1) X A,,. Suppose that n > 1 so
that X and Y make sense. We construct a bijective function f : X — Y. For any x = (z1,...,2,) €
X we have that z; € A; for 1 < i < n. So set f(z) = ((x1,...,Zn—1),2%y), which is clearly an
element of Y.

To see that f is injective consider x = (z1,...,2,) and y = (y1,...,yn) in X where x # y. It
then follows that there must be an i € {1,...,n} where z; # y;. Let x' = (z1,...,2,_1) and
¥ = (y1,...,Yn—1) so that clearly f(x) = (x/,z,) and f(y) = (y',yn). Now, if i = n, then clearly
f(x) = (X' 2n) # (¥, yn) = f(y) since z,, = 2; # y; = yn. On the other hand, if i # n then it has
to be that ¢ < n, and hence i < n— 1. It then follows that x" = (z1,...,2p—1) # (Y1, Yn-1) =Y’
so that then f(x) = (x',2,) # (¥',yn) = f(y) again. Since x and y were arbitrary, this shows that
f is indeed injective.

Now consider any y = ((x1,...,%n—1),%,) € Y and let x = (1,...,2,). It should be obvious that
both x € X and f(x) =y so that f is surjective. Hence f is a bijective function as desired. O

(b)
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Proof. First let A = Ay} x Ay x -+ and B = By X By X ---. We construct a bijective f : A — B.
So, for any a € A, we have that a = (a1,as,...), where a; € A; for any i € Z,. Then, for
any ¢ € Zy, define b; = (ag;—1,a9;) so that clearly b; € Ag;_1 X As; = B;. We then have that
b = (b1,ba,...) € By Xx Ba x --- = B. So set f(a) = b so that f is a function from A to B.

To show that f is injective, consider a = (aj,as,...) and a’ = (a},ab,...) in A where a # a’. For
each i € Zy, define b; = (ag;—1,a9;) and b, = (a);_,,ah;) as above and set b = (b1, ba,...) and
b’ = (V),bh,...) so that clearly f(a) =b and f(a’) = b’. Since a # a’, it follows that there must be
an i € Z4 where a; # al.

Case: i is even. Then let j = /2 so that j € Z; by Lemma 5.2.1. We also clearly have that i = 2j
so that bj = (agj_l,agj) 7§ (aéjfl,a’zj) = b; since a5 = Q4 35 a; = a’2j.

Case: i is odd. Then let j = (i + 1)/2 so that j € Z; by Lemma 5.2.1. We then clearly have that
i =2j — 1 so that b; = (ag;j—1,as;) # (ay;_y,as;) = b} since azj—1 = a; # aj = ay;_;.

Hence in all cases we have that there is a j € Z where b; # ). It then follows that f(a) = b =
(b1,ba,...) # (b, bh,...) =Db' = f(a') so that f is injective since a and a’ were arbitrary.

Lastly, to show that f is surjective, consider any b € B so that b = (b, bs,...) where b; € B; =
Ag;—1 x Ag; for every i € Zy. Then, for any ¢ € Z, b; = (al,al) where a} € Ag;_1 and a € Ay,.
So consider any j € Z,. If j is even, then ¢ = j/2 € Z; by Lemma 5.2.1. Clearly also j = 2i.
So, define a; = a} so that a; = as; = a € Ay = Aj. On the other hand, if j is odd, then
i = (j+1)/2 € Z; again by Lemma 5.2.1. Then clearly j = 2i — 1. So, here let a; = a} so that
aj; = a2;—1 = ag € Ay = Aj. Hence a; € Aj for all] € Z+ so that a = (al,ag,. . ) c A. Then,
for any ¢ € Z4, we have b; = (a},a}) = (agi—1,a2;) € Ag;i_1 X As; = B; so that by definition

f(a) =b = (by,bs,...). This shows that f is surjective since b was arbitrary.
This completes the proof that f is bijective so that the desired result follows. O

Exercise 5.3
LetA:Ale2x~-- andB:leng-n.

(a) Show that if B; C A; for all ¢, then B C A. (Strictly speaking, if we are given a function mapping
the index set Z into the union of the sets B;, we must change its range before it can be considered
as a function mapping Z, into the union of the sets A;. We shall ignore this technicality when
dealing with cartesian products)

(b) Show the converse of (a) holds if B is nonempty.

(c) Show that if A is nonempty, each A; is nonempty. Does the converse hold? (We will return to this
question in the exercises of §19.)

(d) What is the relation between the set AU B and the cartesian product of the sets A; U B;? What
is the relation between the set A N B and the cartesian product of the sets A; N B;?

Solution:
(a)

Proof. Suppose that b € B so that b = (b1, ba,...) where b; € B; for every i € Z,. Consider any
such i € Z, so that b; € B;. Then also b; € A; since B; C A;. Since ¢ was arbitrary, b; € A; for
every i € Z, so that b = (by,bs,...) € A1 X Ay x --- = A. Since b was arbitrary, this shows that
B C A. Note that we ignore the function range technicality issue mentioned above. O

(b)
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Proof. Suppose that B C A. Since B # @, there is a b’ € B so that b’ = (b}, b5, ...) where b} € B;
for every i € Z,. Now consider any ¢ € Z, and by € B;. Then define

for any j € Zy. Clearly we have that b; € B, for any j € Z sothat b = (b1,bs,...) € By xBaX--- =
B. It then follows that also b € A since B C A. Hence b; € A; for every j € Z,. In particular, we
have by = b; € A;. Since by was arbitrary, this shows that B; C A;, and since i was arbitrary, this
shows the desired result. O

()

Proof. Suppose that A is nonempty so that there is an a € A. Then, since A = A; x Ay x -+, it
follows that a = (a1,as,...) where a; € A; for every i € Z,. Therefore, for any such i € Z,, we
have that a; € A; so that A; # @. Hence every A; is nonempty as desired since i was arbitrary. [

Consider the converse. Suppose that each A; is nonempty (for ¢ € Z;). Then there is an a; € A;
for every i € Z so that a = (a1, as,...) € A1 X Ay x --- = A so that then A # &. While this may
seem like an innocuous argument, especially out of the context of axiomatic set theory, it actually
requires the Axiom of Choice. The reason is that, in the general case when each A; may have more
than one element, or even an infinite number of elements, we have to choose a specific a; in each
A;. Since the index set Z, is infinite, an infinite number of these choices must be made, which is
precisely when the Axiom of Choice is required. If the index set was finite, then the axiom would
not be needed.

(d) First, let C; = A; U B; for every i € Zy, and let C = Cy x Cy X -+, so that we are asked to
compare C' with AU B.

We claim that AU B C C but that C' is not generally a subset of AU B.

Proof. First consider any x € AU B so that x € A or x € B. If x € A then it has to be that
x = (x1,%2,...) where x; € A; for every i € Z,. Consider then any such i € Z,. Then z; € A;
so that clearly z; € A; U B; = C;. Since i was arbitrary, we conclude that x = (z1,22,...) €
C1 xCy x--- = (. An analogous argument shows that x € C when x € B as well. Hence AUB C C
since x was arbitrary.

To show that C is not a subset of A U B in general, consider the following counterexample. Let
Ay = @ and A; = {1} for every i € Z; where i > 1. Also let B; = {2} for every i € Z,. Now,
it follows from the contrapositive of part (c) that A = @ since 47 = &. We also clearly have
B=DB;xByx---={(2,2,...)} sothat AUB=@UB =B ={(2,2,...)}. Clearly C; = A;UB; =
@ U {2} = {2} while, for i > 1 we have C; = A, U B; = {1} U{2} = {1,2}. It then follows that, for
ap =2 and a; =1 for i > 1, we have a = (a1, a9,...) = (2,1,1,...) € C; x Cy x --- = C. However,
clearly a ¢ AU B, which suffices to show that C cannot be a subset of AU B in general. O

Now let C; = A; N B; for every i € Z, so that we are asked to compare C = C; x Cy X --- and
ANB.

Here we claim that in fact AN B = C.

Proof. First consider any x € AN B so that x € A and x € B. It then follows that x = (21, x2,...)
where x; € A; for every i € Z and z; € B; for every i € Z,. Then, for any such i € Z,, clearly
x; € A; and x; € B; so that x; € A;NB; = C;. We then have that x = (z1,22,...) € C1 xCy x -+ - =
C. Since x was arbitrary, this shows that AN B C C.
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Now consider any x € C' so that x = (z1, z2,...) where a; € C; for any i € Z. Then, for any such
1 € Z4, we have z; € C; = A; N B; so that z; € A; and z; € B;. Since i was arbitrary, this shows

that both x = (z1,22,...) € A1 X Ay x --- = A and x = (21,22,...) € By X By X --- = B. Hence
x € AN B, which shows that C C AN B since x was arbitrary.
Therefore it must be that AN B = C as desired. O

Exercise 5.4

Let myn € Z,. Let X # @.

(a) If m < n, find an injective map f: X™ — X",
(b) Find a bijective map g : X™ x X™ — X™*",
(¢) Find an injective map h : X" — X¥.
(d) Find a bijective map k: X" x X¥ — X,
(e) Find a bijective map [ : X* x X* — X%,
(f) If A C B, find an injective map m : (A¥)" — B“.
NOTE: For part (f), older printings of the text say, “If A C B, find an injective map m : X4 — XB.”
This is assumed to be an error since the meaning of X# and X are not defined in the text (though,

for example, X“ would typically mean the set of functions from A to X) as well as the fact that it was
changed.

Solution:

(a) If m < n, find an injective map f: X™ — X™.

Proof. Suppose that m < n. Since X # &, there is an xg € X. Now, for any x € X" we have that
x = (21,...,2Zm) where each z; € X. Then define

KT 1<i<m
Yi g m<i<n

fori e {1,...,n}. Clearly y; € X for every ¢ € {1,...,n} so that y = (y1,...,yn) € X™. Then set
f(x) =y so that f: X™ — X™.

To show that f is injective consider x and x" in X™ so that x = (z1,...,2m) and X’ = (2}, ..., 2,)
where both z; and z} are of course in X for any i € {1,...,m}. Also suppose that x # x’ so
that it follows that there is an i € {1,...,m} where z; # 2. Let y = (y1,...,yn) = f(x) and
vy = (W,...,y,) = f(x'). Then, since clearly 1 < i < m, we have y; = z; # z, = y} by the
definition of f. Hence we have f(x) =y #y’ = f(x’), which shows that f is injective since x and
x’ were arbitrary. O

(b) Find a bijective map g : X™ x X" — X™m+n,

Proof. Consider any x € X™ x X™ so that x = (a,b) where a € X™ and b € X™. Then we have that
a=(a,...,an) and b = (by,...,b,) where a;,b; € X for every i € {1,...,m} and j € {1,...,n}.
Then define

_ Jax 1<k<m
Yk b m<k<m-+n
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for any k € {1,...,m + n}, noting that for m < k < m +n we have m +1 < k < m + n, and
hence 1 < k —m < n so that bg_,, is defined. Now set g(x) =y = (y1,-.-,Ym+n) SO that clearly
g(x) € X™*" since each y; € X. Thus g is a function from X™ x X™ to X",

To show that g is injective, consider any x = (a,b) and x’ = (a’,b’) in X™ x X™ where x # x’. Also
lety = (Y1, .-, Ymsn) = 9(x) and y’ = (¥}, ..., ¥h1n) = 9(x'). Since x # x/, it must be that a # a’

or b # b’. In the former case we have that a = (a1,...,a,,) and &’ = (a},...,al,) since they are
both in X™. Since a # a’ there is an ¢ € {1,...,m} where a; # a,. Then, since clearly 1 < i < m,

we have that y; = a; # a; = y;. In the latter case we have that b = (b1,...,b,) and b’ = (b},...,b))
since they are both in X™. Then, since b # b’, we have that there is an ¢ € {1,...,n} such that
b; # . Let k =m +1 so that clearly k —m =4. Alsom <m+i=k<m+nsince0<1<i<n
so that yi = bg_m = b; # b, = b = y;,- Hence in both cases there is a k € {1,...,m + n} such

k—m
that yi, # yj, so that g(x) =y = (Y1, .-+, Ym+n) # (Y12 Yin) =¥ = g(x'). Since x and x’ were
arbitrary, this shows that ¢ is indeed injective.

Now consider any y = (Y1,.--,Ymin) € X™", and define a; = y; for any i € {1,...,m} and
bj = Ym+; for any j € {1,...,n}, noting that y,,4, is defined since 0 < 1 < j < n implies
that m < m+j < m+n. Then let a = (a1,...,am), b = (b1,...,b,), and x = (a,b) so that
clearly x € X™ x X™. Let y’ = g(x) as defined above so that y’ = (y'l, e ,y;n_m). Consider any
ke{l,....,m+n}. If 1 <k < m then we have by the definition of g that y; = ar = yx. On the
other hand, if m < k < m + n, then we have y;, = by_,, = Ym+(k—m) = Yk- Thus in both cases
Y, = yr so that clearly g(x) =y = (¥1,...,Ymnin) = W1, Ym+n) =y since k was arbitrary.
This shows that g is surjective since y was arbitrary.

Therefore we have shown that ¢ is bijective as desired. O
(¢) Find an injective map h : X™ — X“.

Proof. First, we know that X # @ so that there is an 29 € X. So, for any x = (z1,...,2,) € X",
define

{xi 1<i:<n

Yi = .

o n<1t

for any ¢ € Z,. Then set h(x) =y = (y1,¥2,.-.) so that clearly h(x) € X*. Thus h is a function
that maps X™ into X“.

To show that h is injective, consider x and x’ in X™ where x # x’. Clearly we have that x =
(1,...,2pn) and X' = (2,...,2}), and let y = (y1,¥2,...) = h(x) and y' = (v}, ¥5,...) = h(X').
Since x # x’, there must an ¢ € {1,...,n} where z; # ;. Then we have y; = z; # z; = y. by the
definition of h since obviously 1 < i < n. It then follows that h(x) =y = (y1,92,-..) # (Y}, ¥5,...) =

y' = h(x’), which shows that h is injective since x and x’ were arbitrary. O
(d) Find a bijective map k: X™ x X¥ — X¥.

Proof. Consider any x = (a,b) € X" x X“ so that clearly a = (a1,...,a,) € X™ and b =
(b1,ba,...) € X¥. Then define the sequence

a; 1<i<n
Yi = .
biin n<i

for any ¢ € Z,, noting that when n < ¢ we have n +1 <7 so that 1 <7 —n so that b;,_,, is defined.
We then of course set k(x) =y = (y1,¥y2,...) so that clearly k(x) € X“. Therefore k is a function
from X™ x X¢ to X“.
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To show that k is injective consider x and x’ in X™ x X“ where x # x’. Of course we have
x = (a,b) and x' = (a’,b’) where a,a’ € X™ while b, b’ € X*“. It then follows that a = (a1, ..., ay),
a' = (ay,...,a;), b= (b1,bs,...), and b’ = (b}, b5,...), where every a;, a;, bj, and b’; are in X (for
ie{l,...,n} and j € Zy). Also, let y = (y1,92,...) = k(x) and y' = (v}, ¥y5,...) = k(x'). Now,
since x # x’, we have that either a # a’ or b # b’. If a # a’ then there is an ¢ € {1,...,n} where
a; # a;. We then have that y; = a; # a; = y} by the definition of k, since obviously 1 < ¢ < n. If, on
the other hand, b # b’, then there is an ¢ € Z such that b; # b}. Then clearly n < n-+1i since 0 < 4
so that y,4i = bintiy—n = bi # b = b/(nJri)fn =y, s, noting that clearly n+i € Z,. Hence in either
case there is an ¢ € Z, such that y; # y, so that k(x) =y = (y1,¥2,-..) # (Y}, ¥4,...) =y = k(x').
This shows that k is injective since x and x’ were arbitrary.

Now consider any y = (y1,¥2,...) € X and set a; = y; for any i € {1,...,n} so that clearly
a=(a,...,a,) € X" Also, for any j € Zy, let b; = yn4; so that clearly b = (b1,bs,...) € X*.
Let x = (a,b) so that clearly z € X™ x X“. Now set y' = (v}, 5,...) = k(x) as defined above.
Consider any i € Z. If 1 < ¢ < n then y, = a; = y; by the definition of k. If n < i then y} = b;_,, =
Yn+(i—n) = Yi- Hence y; = y; for every i € Z, so that k(x) =y’ = (y1,%5,---) = (Y1,%2,-..) =,
which shows that k is surjective since y was arbitrary.

This completes the proof that k is bijective. O
(e) Find a bijective map [ : X¥ x X¥ — X¥.

Proof. Consider any x = (a,b) € X x X“ so that clearly a = (a1,a2,...) and b = (b1, b2,...).
Now define

_ Jaip 1 is even
vi= b(i+1)/2 i is odd

for any i € Z,. Note that i/2 and (i41)/2 are in Z, if i is even or odd, respectively by Lemma 5.2.1
so that y; is defined. Clearly we have that y; € X for any ¢ € Z, so that y = (y1,92,...) € X%.
Setting I(x) =y, we then have that [ is a function from X% x X% to X«.

To show that [ is injective, consider x = (a,b) and x’ = (a’,b’) in X x X* where x # x’. Also
set y = (y1,92,...) =U(x) and y' = (¢}, ¥5,...) = 1(X'). Since x # x’, we have that either a # a’ or
b # b’. If a # a’ then there is an i € Z; such that a; # af. Then, since clearly 2i is even, we have
Yoi = Q(2))2 = Qi F# a5 = ‘%21)/2 = yh,. On the other hand, if b # b’ then there is a j € Z; where
bj # b;. Set k =2j — 1, noting that

1<
2<2j
1<2j—1
1<k

so that k € Z. Clearly also (k + 1)/2 = j. Since obviously & is odd, we have yj = b(41)/2 = bj #
vy = b’(k+1)/2 = y},. Hence in both cases we have that there is a k € Z; where y; # . so that
I(x)=y=(1,92,---) # W1, ¥5,...) =y =1(x'). Since x and x’ were arbitrary, this shows that [
is injective.

Now consider any y = (y1,¥2,...) € X¥. For any i € Z,, define a; = yo; and b; = yo;_1, noting
again that 20 — 1 € Z; (and clearly 2i € Z,). Then set a = (a1,a2,...), b = (b1,be,...), and
x = (a,b). Now let y' = (y1,v5,...) = I(x) and consider any ¢ € Z. If i is even then we have by
the definition of [ that y; = a;/2 = y2(i/2) = vi- If i is odd then let j = (i + 1)/2 so that clearly
i =2j —1. Then y; = bt1)/2 = bj = y2;-1 = ;. Hence in either case we have y; = y; so that
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I(x)=y = W, v,-..) = (Y1,y2,...) =y since ¢ was arbitrary. Since y was arbitrary this shows
that [ is surjective.

Thus we have shown that [ is bijective as desired. O
(f) If A C B, find an injective map m : (A¥)" — BY.

Proof. Consider any x € (A¥)" so that x = (x1,...,x,) where x; € A“ for any i € {1,...,n}.
Then let z;; = x;(j) for i € {1,...,n} and j € Z; so that clearly x;; € A, from which it follows
that each z;; € B as well since A C B. Consider any k € Z;. Since n # 0 (since n € Z), it
follows from the Division Theorem from algebra that there are unique integers ¢ and 0 < r < n
where £k = gn + r. Suppose for a moment that ¢ < 0 so that ¢ +1 < 0. Then we have that
E=gn+r<gn+n=(@+1)n<0-n=0<k(since k¥ € Z;) since r < n and n > 0 (so that
(g+ 1)n < 0-n since ¢+ 1 < 0). This is of course a contradiction so that it must be that ¢ > 0.
Thenset i=r+1>1and j=¢+1>1sothatie {1,...,n} and j € Z;. Set y, = z;; so that
clearly y, € B since z;; is. It then follows that y = (y1,92,...) € B¥. Then set m(x) =y so that
clearly m is a function from (A“)" to B“.

To show that m is injective, consider any x and x” in (4%)" where x # x’. Then x = (x1,...,Xy)
and x’ = (x{,...,x],) where each x; and x] are in A for ¢ € {1,...,n}. As before set z;; = x;(j)
and xj; = x;(j) for i € {1,...,n} and j € Z4, and also let y = m(x) and y’ = m(x’). Now, since

x # x/, there is an ¢ € {1,...,n} where x; # x}. It then follows that there is a j € Z; such that
rij = %i(j) # x;(j) = 2};. Now let k = (j — 1)n + (i — 1) so that it follows from the definition of m
that y, = x;; and y;, = :E;»j since the quotient ¢ and remainder r are unique by the Division Theorem.
Hence yj, = z;; # w}; = yj, so that clearly m(x) =y = (y1,y2,-..) # (¥1,¥5,...) =y = m(x’). This
shows that m is injective as desired since x and x’ were arbitrary. O

Exercise 5.5
Which of the following subsets of R¥ can be expressed as the cartesian product of subsets of R?
(a) {x | z; is an integer for all i}.
(b) {x|x; >1i for all i}.
(¢) {x|=; is an integer for all i > 100}.
(d) {x |22 = xs}.

Solution:

(a) Let X = {x € R¥ | ; is an integer for all i} and Y = Z%, noting that Z C R. We claim that
X=Y.

Proof. Consider any x € X so that z; € Z for any i € Z,. It is then immediately obvious that
x € Z¥ =Y. Hence X C Y since x was arbitrary.

Now consider any x € Y = Z% so that x; € Z for every ¢ € Z,. Again it is obvious by the definition
of X that x € X. Hence Y C X since x was arbitrary. This shows that X =Y as desired. O

(b) Let X = {x € R¥ | z; >ifor all i} and define ¥; = {x € R| x > i} for i € Z,, noting that
obviously each Y; CR. Then let Y =Y; x Y5 x ---. We claim that X =Y.

Proof. First consider x € X so that x; > i for any ¢ € Z;. Then, for any ¢ € Z, clearly z; € Y; by
definition since x; > i (and also x; € R). Hence it follows that x = (z1,z9,...) €Y1 x Yo x--- =Y.
Since x was arbitrary, this shows that X C Y.
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Now suppose that x € Y so that x; € Y; for every i € Z,. Consider any such ¢ € Z, so that x; € Y.
Then, by definition x; > i. Since i was arbitrary, this shows that x € X by definition. Hence Y C X
since x was arbitrary so that X =Y. O

(c) Define X = {x € R¥ | z; is an integer for all 4 > 100}. Also define Y; = R when ¢ < 100 and
Y, = Z when ¢ > 100 (and ¢ € Z, for both), noting that of course Y; C R for either case. Let
Y =Y, xY; x---, and we claim that X =Y.

Proof. Consider any x € X so that x; € Z for all ¢ > 100. Suppose i € Z,. If i < 100 then clearly
r; € R =Y, since x € R¥. If i > 100 then we have that z; € Z = Y;. Hence in either case z; € Y;
so that x € Y1 x Yo x --- =Y since ¢ was arbitrary. Since x was arbitrary, this shows that X C Y.

Now consider any x € Y and any ¢ € Z; where ¢ > 100. Then x; € Y; = Z so that z; is an integer.
From this it follows that x € X by definition since obviously x € R“ (since z; € Y; = R when
1 < 100). Hence Y C X since x was arbitrary. This completes the proof that X =Y. O

(d) We claim that X = {x € R¥ | 23 = 3} cannot be expressed as the cartesian product of subsets
of R.

Proof. Suppose to the contrary that there are X; C R for ¢ € Z; where X = X7 x Xg x ---. Let
(a,a,...) denote the sequence (z1,zs,...) where z; = a for all i € Z,. We then have that (1,1,...)
and (2,2,...) are both in X since clearly x5 = 3 in both. Hence we have that 1 and 2 are both in
X; for every i € Z4 since X = X7 x Xo X ---. Now define

1 oi#£2
LA PR

for i € Zy. Clearly y = (y1,¥2,...) € X1 X X3 X -+ since both 1 and 2 are in each X;. However,
it is also clear that y ¢ X by definition since yo = 2 # 1 = y3. This contradicts the fact that
X = X7 x X x ---, which shows the desired result. O

86 Finite Sets

Exercise 6.1

(a) Make a list of all the injective maps
Fi{1,2,3) = {1,2,3,4} .

Show that none is bijective. (This constitutes a direct proof that a set A of cardinality three does
not have cardinality four.)

(b) How many injective maps

f{1,...,8 = {1,...,10}

are there? (You can see why one would not wish to try to prove directly that there is no bijective
correspondence between these sets.)

Solution:
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Lemma 6.1.1. The number of injective mappings (i.e. the cardinality of the set of injective func-
tions) from {1,...,m} to {1,...,n}, where m < n, is equal to the number of m-permutations of n,
which is

n!
(n—m)!"

Proof. We fix n and show this for all m < n by induction. First, for m = 1, the domain of the
mappings is simply {1} so that we need only choose a single element to which to map 1. Since there
are n elements to choose from (since the range is {1,...,n}) there are clearly

n! n!

"ThoD T (n—m)

mappings, all of which are trivially injective.

Now suppose that m < n and that there are n!/(n — m)! injective mappings from {1,...,m} to
{1,...,n}. Consider any such mapping (f1,..., fm). Since this mapping is injective, each f; is
unique so that it uses m of the n available numbers in {1,...,n}. Thus there are n — m numbers
to choose from to which to set f,,+1 so that the mapping (fi,..., fm+1) is still injective. Hence
for each injective mapping (f1,..., fm) there are n — m injective mappings from {1,...,m + 1} to
{1,...,n}. Since there are n!/(n—m)! such mappings by the induction hypothesis, the total number
of mappings from {1,...,m —+ 1} to {1,...,n} will be

n! n! n!
(=) = T T T O

(n —m)!
which completes the induction. O

Main Problem.

(a) Here we have n = 4 and m = 3 in Lemma 6.1.1 so that we expect 4!/(4 — 3)! = 41/11 = 41 = 24
injective mappings. Since the domain of each f is a section of the positive integers, these maps can
be written simply as 3-tuples. They are enumerated below:

1. (1,2,3) 7. (2,1,3) 13. (3,1,2) 19. (4,1,2)
2. (1,2,4) 8. (2,1,4) 14. (3,1,4) 20. (4,1,3)
3. (1,3,2) 9. (2,3,1) 15. (3,2,1) 21. (4,2,1)
4. (1,3,4) 10. (2,3,4) 16. (3,2,4) 22. (4,2,3)
5. (1,4,2) 11. (2,4,1) 17. (3,4,1) 23. (4,3,1)
6. (1,4,3) 12. (2,4,3) 18. (3,4,2) 24. (4,3,2)

Note that they are all injective since no number is used more than once in each tuple. Also none
are surjective since it is easily verified that there is always an element of {1,2,3,4} that is not in
each tuple. Thus none are a bijection since they are not surjective.

(b) Here we have n = 10 and m = 8 in Lemma 6.1.1 so that there are 10!/(10—8)! = 10!/2! = 1814400
injective mappings. That is nearly two million! Certainly a direct proof would be unfeasible by hand,
but could be done by computer fairly easily.

Exercise 6.2

Show that if B is not finite and B C A, then A is not finite.
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Solution:

Proof. Suppose that B is not finite and B C A but that A is finite. Since B C A, either B = A or
B is a proper subset of A. In the former case we clearly have a contradiction since B would be finite
since A is and B = A. In the latter case we have that there is a bijection from A to {1,...,n} for
some n € Z4 by definition since A is finite. Then, since B is a proper subset of A, it follows from
Theorem 6.2 that there is a bijection from B to {1,...,m} for some m < n. However, then clearly
B is finite by definition, which is also a contradiction since we know B is not finite. Hence in either
case there is a contradiction so that A must not be finite. O

Exercise 6.3

Let X be the two-element set {0,1}. Find a bijective correspondence between X“ and a proper subset
of itself.

Solution:

Proof. Let Y = {x € X% | x; =0}, which is clearly a proper subset of X since, for example,
(1,1,...) is in X*“ but not in Y. We construct a bijective function f from X“ to Y. So consider
any x € X“ and define
o =1
(A P

for i € Z,, noting that when ¢ # 1 we have ¢ > 1 so that ¢ — 1 > 1, and thus y; = x;_1 is defined.
Now define f(x) =y = (y1,¥2,...) so that clearly f is a function from X*“ to Y, since y; = 0 for
any input x.

To show that f is injective, consider x and x’ in X* where x # x’, and let y = f(x) and y’ = f(x').
Now, since x # x', there is an i € Z; where z; # z}. Since ¢ > 0 (since ¢ € Z, ) it follows that
i+1>1sothat i + 1 # 1. We then have by the definition of f that y;11 = x41)—1 = 2 # 2] =
I/(i+1)—1 = Yi4q so that clearly f(x) =y #y’ = f(x'). Since x and x’ were arbitrary, this shows
that f is indeed injective.

Now consider any y € Y so that y; = 0. Define x; = y;41 for any ¢ € Z, and let x = (x1,x2,...).
Then x € X% since clearly each z; = y;41 € X. Now let y' = f(x) and consider any i € Z,.
If ¢ = 1 then clearly ¥} = y§ = 0 =y1 = y; (y; = 0 since the range of f is V). If ¢ # 1 then
Yi = Tj_y = Yi—1)+1 = ¥i- Hence y; = y; in both cases so that f(x) =y’ =y since 7 was arbitrary.
This shows that f is surjective since y was arbitrary.

Therefore f is bijective as desired. O

Exercise 6.4
Let A be a nonempty finite simply ordered set.

(a) Show that A has a largest element. [Hint: Proceed by induction on the cardinality of A.]
(b) Show that A has the order type of a section of positive integers.

Solution:

(a)
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Proof. We show by induction that, for all n € Z,, any simply ordered set with cardinality n has a
largest element. This of course shows the result since, by definition, A # @ has cardinality n for
some n € Z, when A is finite.

First, suppose that A is simply ordered and has cardinality 1 so that clearly A = {a} for some
element a. It is also clear that a is trivially the largest element of A since it is the only element.

Now suppose that any simply ordered set with cardinality n has a largest element. Suppose that A is
simply ordered by < and has cardinality n+ 1. Then there is a bijection f from A to {1,...,n+ 1},
noting that obviously f~! is also a bijection. Clearly A is nonempty (since the cardinality of A
ism+1>mn > 0) so that there is an a € A. Let A’ = A — {a} so that A’ has cardinality n by
Lemma 6.1. Note also that clearly A’ is simply ordered by < as well (technically we must restrict <
to elements of A’ so that it is really ordered by < N(A’ x A")). It then follows that A’ has a largest
element b by the induction hypothesis. Since a and b must be comparable in < by the definition of
a simple order we have the following:

Case: a = b. This is not possible since b € A’ but clearly a ¢ A — {a} = A'.

Case: a < b. We claim that b is the largest element of A. To see this, consider any x € A so that
either x = a or z € A’. In the former case clearly x = a < b, and in the latter z < b since b is the
largest element of A’. This shows that b is the largest element of A since x was arbitrary.

Case: b < a. We claim that a is the largest element of A. So consider any z € A so that x = a or
z € A'. In the first case obviously z < £ = a, and in the second x < b < a since b is the largest
element of A’. This shows that a is the largest element of A since x was arbitrary.

Thus in all cases we have shown that A has a largest element, which completes the induction. [

(b)

Proof. We again show this by induction on the (finite) cardinality of the set. First, if A is a simply
ordered set with cardinality 1 then clearly A = {a} for some a, which is clearly trivially the same
order type as the section {1}.

Now suppose that all simply ordered sets of cardinality n have the order type of a section of positive
integers. Consider then a set A simply ordered by < that has cardinality n + 1. Clearly A # @
so that it has a largest element a by part (a). Then the set A’ = A — {a} has cardinality n by
Lemma 6.1. Since A’ is also clearly simply ordered by < (with the appropriate restriction) it follows
from the induction hypothesis that it has order type of {1,...,m} for some m € Z. Since this also
implies that A’ has the cardinality of m, it has to be that m = n since this cardinality is unique (by
Lemma 6.5). So let f’ be the order-preserving bijection from A’ to {1,...,m} = {1,...,n}. Now

define
fl(x) z#a
Fa) = { () @+
n+1l x=a
for any € A. Tt is clear that f is a function from A to {1,...,n+ 1} since obviously n + 1 €

{1,...,n+ 1} and the image of f"is {1,...,n} C {1,...,n+1}.

Consider next any x and z’ in A where x < x’. Suppose for the moment that x = a. Thenz’ < a ==
since a is the largest element of A. This contradicts the fact that z < 2’ so that it must be that
x # a. Then f(z) = f'(z). If also 2’ # a then clearly f(z) = f'(z) < f'(z') = f(2') since f’
preserves order. If 2/ = a then f(z') = n+ 1 so that f(z) = f'(z) <n <n+1= f(a’) since the
image of f’is only {1,...,n}. Hence in all cases f(x) < f(z') so that f preserves order since x and
z' were arbitrary. Note that this also shows that f is injective since, for any z,2’ € A where © # 2/,
we can assume without loss of generality that # < z’ (since it must be that z < 2’ or 2/ < z) so
that f(z) < f(2'), and hence f(z) # f(z').

Page 78




Lastly consider any k € {1,...,n+ 1}. If Kk = n + 1 then clearly by definition f(a) =n+1 =k,
noting that obviously @ € A. On the other hand, if & # n + 1 then it has to be that k <n 4+ 1 so
kE <n. Then k € {1,...,n}, which is the image of f’ so that there is an x € A’ where f'(z) =k
since f’ is bijective (and therefore surjective). Since x € A’ we have that x € A but x # a so that
f(x) = f(x) = k. This shows that f is surjective since k was arbitrary.

Thus we have shown that f is an order-preserving bijection from A to {1,...,n + 1}, which completes
the induction since by definition A has order type {1,...,n+ 1}. O

Exercise 6.5

If A x B is finite, does it follow that A and B are finite?

Solution:

We claim that in general this does not follow.

Proof. As a counterexample, let A = Z, and B = @. Clearly A is infinite by Corollary 6.4 so that
not both A and B are finite. It also follows from Exercise 5.3 part (c) that A x B = @ since B is
empty. Hence clearly A x B is finite. O

If we add the additional stipulation that both A and B are nonempty, then the statement becomes
true.

Proof. Since A x B is finite there is a bijective function f : A x B — {1,...,n} for some n € Z,..
We then show that A is finite by first constructing an injective function g from A to A x B. Since
B # o, there is a b € B. So, for any « € A, set g(x) = (z,b), which is clearly in A X B so
that ¢ is a function from A to A x B. Now consider « and 2’ in A where  # xz’. Then clearly
g(x) = (x,b) # (¢/,b) = g(2’). This shows that g is injective since z and 2’ were arbitrary.

We then have that the composition fog is an injective function from A to {1,...,n} by Exercise 2.4
part (b) since f is injective as well (since it is a bijection). Therefore A is finite by Corollary 6.7.
An analogous argument uses the fact that A # @ to show that B is also finite. O

Exercise 6.6

(a) Let A= {1,...,n}. Show there is a bijection of P (A) with the cartesian product X", where X is
the two-element set X = {0,1}.

(b) Show that if A is finite, then P (A) is finite.

Solution:
(a)

Proof. We construct a bijection f: P (A) — X™. So, for any Y € P (A) we have that clearly Y C A.
Then set

0 i
= i¢Y
1 ieY

Page 79



for any i € {1,...,n} = A. Now set f(Y) =x = (x1,...,%,), noting that clearly f(Y) € X since
each x; € {0,1} = X. Hence f is a function from P (A) to X™.

To show that f is injective consider ¥ and Y’ in P (A) where Y # Y’. Also let x = f(Y) and
x' = f(Y’) as defined above. Since Y # Y, we can without loss of generality assume that there is
an i € Y where i ¢ Y'. It then follows that x; = 1 # 0 = 2} by the definition of f. Hence clearly
fY)=x=(z1,...,2,) # (2],...,2)) =x" = f(Y'), which shows that f is injective since Y and
Y’ were arbitrary.

Now consider any x € X™ and let Y = {i € A|x; =1}. Clearly Y C A so that Y € P(A). Let
x' = f(Y) and consider any i € {1,...,n} = A. If i € Y then z; = 1 = 2} by the definitions of YV’
and f. It ¢ ¢ YV then x; # 1 so that it has to be that x; = 0 since z; € X = {0,1}. Also, by the
definition of f, we have that z; = 0 = x;. Thus in either case x; = z} so that x = x' = f(Y) since ¢
was arbitrary. Since x was arbitrary, this shows that f is surjective.

Therefore f is a bijection from A to X™ as desired. O

(b)

Proof. First, if A = @ then clearly P (A) = P (@) = {@} is finite. So assume in what follows that
A # @. Since A is finite and nonempty there is a bijection f from A to B = {1,...,n} for some
n € Zy. Let X = {0,1} so that by part (a) there is a bijection g from P (B) to X™. For any
Y € P (A) clearly the mapping h(Y) = {i € B | f~'(i) € Y'} is a bijection from P (A4) to P (B). It
then follows that g o h is bijection from P (A) to X™. Since clearly X" is a finite cartesian product
of finite sets, it follows from Corollary 6.8 that X™ is finite so that P (A) must be as well since there
is a bijection between them. O

Exercise 6.7

If A and B are finite, show that the set of all functions f: A — B is finite.

Solution:

Proof. As is customary, denote the set of all functions from A to B by BA. First, if A = &, then
the only function from A to B is the vacuous function @ so that B4 = {@}, which is clearly finite.
So assume that A # &. Then, since A is finite, there is a bijection f from A to {1,...,n} for some
n € Z,, noting that of course f~! is then a bijection from {1,...,n} to A.

We construct a bijection h from B4 to B™. So, for any g € B? set h(g) = g o f~!, noting that
clearly this is a function from {1,...,n} to B. Hence h is a function from B to B™.

To show that A is injective consider g and ¢’ in B4 where g # ¢’. It then follows that there is an
a € A where g(a) # ¢'(a). Then let k = f(a) so that clearly f~'(k) = a and k € {1,...,n}. We
then have that (g o f~1)(k) = g(f~1(k)) = g(a) # ¢'(a) = ¢'(f (k) = (g’ o f1)(k) so that it
must be that h(g) = go f~1 # g’ o f~1 = h(g’). Since g and g’ were arbitrary, this shows that h is
injective.

Now consider any function ¢ € B™ and let g =i o f so that clearly ¢ is a function from A to B since
f:A—={1,...,n}andi:{l,...,n} = B. Hence g € B4, and h(g) = go f ' = (iof)of ! =
io(fof~1) =i. Since i was arbitrary, this shows that h is surjective as well.

Hence h is bijection from B# to B™. Now, since B™ is a finite cartesian product of finite sets (since

B is finite), it is finite by Corollary 6.8. Thus it must be that B is also finite since there is bijection
between them. O
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87 Countable and Uncountable Sets

Exercise 7.1

Show that Q is countably infinite.

Solution:

Lemma 7.1.1. The set Z x Z is countably infinite.

Proof. First, by Example 7.1, the set of integers Z is countably infinite so that there is a bijection
f from Z to Z,. We construct a bijection g from Z x Z to Z4 x Z,. For any (a,b) € Z x Z define
g(a,b) = (f(a), f(b)), noting that clearly g(a,b) € Z4 X Z since Z, is the range of f. Hence g is a
function from Z X Z to Zy X Z.

It is easy to show that g is bijective. First, consider any (a,b) and (@, V') in ZxZ where (a,b) # (a’,b’)
so that a #a’ or b # . If a # a then f(a) # f(a’) since f is bijective (and therefore injective).
Thus we have that g(a,b) = (f(a), f(b)) # (f(a'), f(¥')) = g(a’,b'). A similar argument shows the
same result when b # '. Since (a,b) and (a’,b’) were arbitrary, this shows that g is injective.

Now consider any (¢, d) € Z4 xZ4 so that ¢,d € Z . Since f is surjective (since it is a bijection) there
are a,b € Z where f(a) = c and f(b) = d. We then clearly have that g(a,b) = (f(a), f(b)) = (¢,d)
so that g is surjective (¢, d) was arbitrary.

Therefore g is a bijection. Now, we know from Corollary 7.4 that Z, x Z, is countably infinite so
that there must be a bijection h from Z, x Zy to Z,. It then follows that h o g is bijection from
Z X 7 to Z,, which shows the desired result by definition. O

Main Problem.

Proof. First we define a straightforward function f from ZxZ to Q. First consider any (m,n) € ZxZ.
If n £ 0 then let ¢ = m/n. If n = 0 then set ¢ = 0. Setting f(m,n) = g we clearly have that f is
a function from Z x Z to Q. Now consider any rational ¢ so that by definition there are integers m
and n where ¢ = m/n. It then of course follows that f(m,n) = m/n = ¢, which shows that f is
surjective since ¢ was arbitrary.

Now, from Lemma 7.1.1 we know that Z x Z is countably infinite so that there is a bijection g from
7Z x 7 to Z,. Hence g~' is a bijection from Z, to Z x Z. It then follows that the function f o g~!
is a surjective function from Z, to Q. From this it follows from Theorem 7.1 that Q is countable.
Since Z is a subset of Q, it has to be that Q is infinite, and hence must be countably infinite. [

Exercise 7.2

Show that the maps f and g of Examples 1 and 2 are bijections.

Solution:

It is claimed in Example 7.1 that the function

f(n):{2n n>0

—2n4+1 n<0
is a bijection from Z to Z. .

Proof. To show that f is injective, consider n,m € Z where n # m.
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Case: m > 0. Then f(n) = 2n, which is clearly even. If m > 0, then clearly f(n) = 2n # 2m = f(m)
since n # m. If m <0 then f(m) = —2m + 1 = 2(—m) + 1 is clearly odd so that it must be that
f(n) # f(m).
Case: n < 0. Then f(n) = —2n + 1 = 2(—n) + 1, which is clearly odd. If m > 0 then f(m) = 2m
is even so that it has to be that f(n) # f(m). If m <0 then f(m) = -2m+1# —2n+1= f(n)
since n # m.

Thus in every case f(n) # f(m), which shows that f is injective since n and m were arbitrary.

To show that f is surjective, consider any k € Z,.. If k is even then k = 2n for some n € Z,. Hence
n > 0 (since k > 0 and n = k/2) so that f(n) = 2n = k, noting that n € Z since Zy C Z. If k is
odd then k = 2m — 1 for some m € Z,. So let n =1 —m so that clearly n is an integer and

m>1 (since m € Z4)
—-m < -1
1-m<O0

n<0.

Thus f(n) = —2n+1=-2(1-m)+1=—-242m+1=2m—1 = k. This shows that f is surjective
since k was arbitrary. Therefore we have shown that f is a bijection as desired. O

Regarding Example 7.2, the following set is defined:
A={(z,y) €Zy x Ly |y <z} .
Then the function f is defined from Z; x Z4 to A by
fl@,y) = (x+y—1y)
for (z,y) € Zy x Z4. It is claimed that f is a bijection.

Proof. First, it is not even clear that the range of f is constrained to A, so let us show this.
Consider any (x,y) € Z4 x Z4 so that f(z,y) = (x +y — 1,y). Since x > 1 and y > 1, we have
that z+y > 1+1 =2 > 1so that xt+y—1 > 0 and hence x +y — 1 € Z;. Thus clearly
flz,y)=(x+y—1,y) € Zy x Z;. We also have

1<z
0<z—-1
y<z+y—1.

Therefore it is clear that f(x,y) = (x +y — 1,y) € A by definition.

To show that f is injective consider (z,y) and (2',y’) in Z, X Z, where f(z,y) = (z+y—1,y) =
(@'+y —1,v) = f(@,y). Thusz+y—1=2'+y —1and y = /. Therefore x+y—1=2a'+y' -1 =
' +y — 1, from which it obviously follows that x = =’ as well. Then (z,y) = (¢,3’), which shows
that f is injective since (x,y) and (z/,y") were arbitrary.

Now consider any (z,y) € A so that (z,y) € Z4 X Z4 and y < z. Let z = z — y + 1 so that clearly
z=z+y— 1. We also have

y<z=z+4+y-—-1
0<zx-—1
1<z

so that (x,y) € Zy x Z,. Since also we have f(z,y) = (z +y — 1,y) = (2,y), f is surjective since
(z,y) was arbitrary. This completes the proof that f is a bijection. O
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The function g is then defined from A to Z, by

g(z,y) = %(w— Dz +y

for (x,y) € A. This is also claimed to be a bijection.

Proof. First we show that the range of g is indeed Z, since this is not obvious. Consider any
(x,y) € A sothat (z,y) € Zy x Zy and y < x. First, if = is even then x = 2n for some n € Z. Then
glx,y) =(x—1)z/24+y=(2n—1)(2n)/2 + y = (2n — 1)n + y, which is clearly an integer. If x is
odd then x = 2n + 1 for some integer n so that

gx,y)=(x—-1z/24y=2n+1-1)2n+1)/24+y=02n)2n+1)/24+y=n2n+1)+y,

which is also clearly an integer. We also have that —y < 0 since y > 0 so that

z>1
r—1>0
1
5(1‘—1) >0 (since 1/2 > 0)
1
5(90— 1z >0>—y (since x > 0)

1
§(x—1)x+y>0
g(z,y) > 0.

Since we have shown that g(z,y) € Z as well, it follows that g(z,y) € Z.
Consider any (x,y) € A so that (x,y) € Z; x Zy and y < z. Then clearly

1 1
g(z,y) = §($—1)w+y§ §(x—1)fv+w

1 1
<§(x—1)x+3:+1=§( Z_r+42r)+1

1 1
zi(a:2+x)+1:§x(x+1)+1

= a1 DE )41

=gz +1,1).

A simple inductive argument shows that g(z,y) < g(x + n, 1) for any n € Z. This was just shown
for n = 1. Then, assuming it true for n, we have that g(z,y) < g(z +n,1) < g((x +n) +1,1) =
g(z + (n+1),1), which completes the induction.

So consider any (z,y) and (z/,y’) in A so that (x,y) and (2/,y') are in Zy xZ4, y <z, and y’ < 2.
Also suppose that (z,y) # (2/,y’) so that either x # 2’ or y # y. If = 2’ then it has to be that
y # 1 so that clearly

y#y
1 1 ,
i(x—l)x—ky#i(x—l)x-&-y
1 1
§(x—1)a:+y7é 5(33'—1)33'4'29/

g(z,y) # 9@, y').
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If « # 2’ then we can assume that « < 2. Then let n = 2’ — z so that clearly n > 0 and 2’ = x +n.
By what was just shown, we have

1 1
g(z,y) < gz +n,1) =g, 1) = 5(56’ -1’ +1< 5(:6’ -1z’ +y =gz, y)

since 1 < y'. Thus g(z,y) # g(«',y’). Since this is true in both cases, this shows that g is injective
since (z,y) and (2',y’) were arbitrary.

To show that g is also surjective, consider any z € Z,. Define the set B = {x € Z, | g(z,1) < z}.
First, we have that ¢g(1,1) =1 < z since z € Z so that 1 € B and therefore B # @. If z =1 then
clearly z=1<1=g(1,1) = g(z,1). If z # 1 then we have

2<z

1<1
-z
-2

1
z—1§§(2—1)z

1
ZSE(Z_l)Z‘Fl
z<g(z1)

Now consider any z,y € Z, where z < y. It then follows from what was shown above that
g(z,1) < g(z,y) < g(xz + 1,1). From this we clearly have that the function g(z, 1) is monotonically
increasing in z, i.e. for x,y € Z,, x < y implies that g(z,1) < g(y,1). By the contrapositive of this,
g(z,1) > g(y, 1) implies that > y. With this in mind, consider any « € B so g(z,1) < z < g(z,1).
Then this implies that x < z, which shows that z is an upper bound of B since x was arbitrary.

We have thus shown that B is a nonempty set of integers that is bounded above. It then follows

from Exercise 4.9 part (a) that B has a largest element . Now let y = z — g(z, 1) 4+ 1, noting that,
since x € B,

g(x,1) < 2
0<z—g(z1)
1<z—g(z,1)+1
1<y

and hence y € Z so that (z,y) € Z; x Zy. We also must have that z < g(x + 1,1) since otherwise
we would have that x + 1 € B, which would violate the definition of x as being the largest element
of B. Thus we have

z<g(z+1,1)-1
1
zﬁi(x+1fl)(x+1)+lfl

1
z< gl@+1)z
1
z§x+§(x—1)x
1
z§x+§(x—1)x+1—l
z<x+g(x,1) -1
z—g(z,1)+1<x
ysz
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so that (z,y) € A.
Lastly, since y = z — g(z,1) + 1, we clearly have

1 1
Z=y+g(x,1)—1=y+§($—1)x+1—1=§(z—1)x+y=g(w,y)-

This shows that g is surjective since z was arbitrary, thereby completing the long and arduous proof
that g is a bijection. O

Exercise 7.3

Let X be the two-element set {0,1}. Show there is a bijective correspondence between the set P (Z.)
and the cartesian product X¢.

Solution:

Proof. Similar to Exercise 6.6 part (a), we construct such a bijection f from P (Z,) to X*. For any
A€ P (Zy) we have that A C Z4. Then, for i € Z., set

. 1 i€A
‘)0 i¢gA
and set f(A) = (x1,22,...) so that clearly f(A4) € X¥.

To show that f is injective consider A and A" in P (Z,) where A # A’. Without loss of generality,
we can assume that there is an i € A where i ¢ A’, noting that of course i € Z, since A C Zy. Let
x = (21,%2,...) = f(4) and x' = (2], 5%, ...) = f(A’). Then x; =1 # 0 = a} by the definition of f
since i € A but ¢ ¢ A’. Thus clearly f(A) = x # x’ = f(A’), which shows that f is injective since
A and A’ were arbitrary.

Now consider any x = (z1,%2,...) € X* and define the set A = {i € Z; | x; = 1} so that clearly
A C Z4 and hence A € P(Zy). Let x' = (z},25,...) = f(A) and consider ¢ € Z,. If i € A
then z; = 1 = x; by the definitions of A and f. If ¢ ¢ A then x; # 1 since otherwise i € A by
definition. Since z; € X = {0, 1} it clearly must be that z; = 0. We then also have that 2} = 0 by
the definition of f, and thus z; = 0 = «}. Since z; = =} in both cases and i was arbitrary, it follows
that x = x’ = f(A). This proves that f is surjective since x was arbitrary.

Hence it has been shown that f is a bijection as desired. O

Exercise 7.4

(a) A real number z is said to be algebraic (over the rationals) if it satisfies some polynomial equation
of positive degree

"+ ap 12"t az4ag=0
with rational coefficients a;. Assuming that each polynomial equation has only finitely many roots,

show that the set of algebraic numbers is countable.

(b) A real number is said to be transcendental if it is not algebraic. Assuming the reals are uncount-
able, show that the transcendental numbers are uncountable. (It is a somewhat surprising fact that
only two transcendental numbers are familiar to us: e and n. Even proving these two numbers
transcendental is highly nontrivial.)
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Solution:
(a)

Proof. First consider arbitrary degree n € Z,. Then for each q = (q1,...,¢n) € Q", there is a
corresponding polynomial equation in x:

n
2"+ gt =" g™ e+ =0,
i=1

which is assumed to have a finite number of solutions. So let Xq be the finite set real numbers
that are solutions. (We note that the polynomial corresponding to the vector q = (0,...,0) € Q™
becomes 0 = 0 so that any real number x satisfies it. Similarly the polynomial corresponding to
q=(q1,0,...,0) € Q™ for nonzero ¢; corresponds to the equation ¢; = 0, which has no solutions.
Of course Xy = @ is still finite in this case. For the infinite-solution case we could simply remove the
zero vector from Q" without changing the argument in any substantial way. This is also taken care
of if we really do assume that any polynomial has a finite number of solutions as we are evidently
doing here.)

Now, we clearly have that Q" is countable by Theorem 7.6 since it is a finite product of countable
sets (since it was shown in Exercise 7.1 that Q is countable). Thus the set A, = U,cqn Xq is
countable by Theorem 7.5 since it is a countable union of finite (and therefore countable) sets. Of
course, this is the set of all algebraic numbers from polynomials of degree n. Then A = Un€Z+ A,
is the set of all algebraic numbers, which is also then countable by Theorem 7.5 since each A,, was
shown to be countable. O

(b)

Proof. As in part (a), let A C R be the set of algebraic numbers so that clearly, by definition,
T = R — A is the set of transcendental numbers. Note that clearly R = AUT so that, if T" were
countable, then R would be too since it is a finite union of countable sets. This of course contradicts
the (hitherto unproven) fact that R is uncountable so that it must be that 7T is also uncountable as
desired. O

Exercise 7.5

Determine, for each of the following sets, whether or not it is countable. Justify your answers.

The set A of all functions f : {0,1} — Z.
The set B, of all functions f: {1,...,n} = Z,.
The set C = UnEZ+ B,.

The set E of all functions f : Zy — {0, 1}.

The set F' of all functions f : Z; — {0, 1} that are “eventually zero.” [We say that f is eventually
zero if there is a positive integer N such that f(n) =0 for all n > N ]

)
)
()
(d) The set D of all functions f:Zy — Z.
)
)

The set G of all functions f : Z; — Z, that are eventually 1.

The set I of all two-element subsets of Z .

)

(h) The set H of all functions f : Z; — Z, that are eventually constant.
)
)

The set J of all finite subsets of Z .
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Solution:

(a) The set A of all functions f:{0,1} — Z.
We claim that A is countable.

Proof. For any f € A, clearly the mapping g(f) = (f(0), f(1)) is a bijection from A to Z,%. Since
Z+2 is a finite cartesian product of countable sets, it follows that it is also countable by Theorem 7.6.
Hence there is a bijection h : Z,? — Z. It is then obvious that h o g is a bijection from A to Z,
so that A is countable. O

(b) The set B,, of all functions f: {1,...,n} — Z.

We claim that B, (for some n € Z,) is also countable.

Proof. By the definition of Z,", B,, = Z.", which is clearly a finite cartesian product of countable
sets. Thus B, is countable by Theorem 7.6. O

(c) The set C'=U, ¢z, Bn-
We claim that C is countable.

Proof. Since n was arbitrary in part (b), we showed that B, is countable for any n € Z,. Thus
C= Un€Z+ B,, is a countable union of countable sets, which is itself also countable by Theorem 7.5
as desired. ]

(d) The set D of all functions f : Z, — Z.

Clearly D = Z.“, which we claim is uncountable.

Proof. We proceed to show, as in Theorem 7.7, that any function ¢ : Z; — D is not surjective. So
denote

g(n) =Xp = (-'L'nlaxn27-~-)7

where of course each ., € Z, since x,, € D and so is a function from Z, to Z. Now set

{0 Tpn # 0
Yn =

1 x,, =0

so that clearly y = (y1,¥2,...) is an element of D. Now consider any n € Zy. If z,, = 0 then
Yn =1 # 0 = &y, and if z,, # 0 then y, = 0 # zp,. Thus clearly g(n) = x,, # y since the nth
element of each differs. This shows that g cannot be surjective since y € D and n was arbitrary. It
then follows from Theorem 7.1 that D is not countable. O

(e) The set E of all functions f: Z; — {0,1}.
This is exactly the set X“ in Theorem 7.7, wherein it was shown to be uncountable.

(f) The set F of all functions f : Zy — {0,1} that are “eventually zero.” [We say that f is
eventually zero if there is a positive integer N such that f(n) =0 for all n > N

We claim that F' is countable.
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Proof. For brevity define X = {0,1}. First let Fiy be the set of all eventually zero functions
f:Z;y — X that are zero for n > N, where of course N € Z,. Then clearly F = UNEZ+ Fy.

We show that each Fj is countable. So consider any N € Z,. If N = 1 then clearly f:Z; — X
defined by f(n) = 0 for n € Z; (which could be denoted (0,0,...)) is the only element of Fy = F;

so that fy is clearly finite and therefore countable. If N > 1 then for x = (z1,...,xn_1) € XN-1
define
_Jx, n<N
“Zlo >N

for n € Z4. It then trivial to show that g defined by ¢g(x) =y = (y1,¥2,...) is a bijection from
XN-1to Fy. Now, since X = {0,1} is finite, XV ~! is finite by Corollary 6.8. Since this is in
bijective correspondence with Fp, it follows that it must also be finite and therefore countable.

Thus F = Nez, Fy is a countable union of countable sets, and so is countable by Theorem 7.5 as
desired O

(g) The set G of all functions f : Zy — Z, that are eventually 1.

Since G is clearly a subset of H in part (h) below, it is countable by Corollary 7.3 since H is.
(h) The set H of all functions f : Zy — Z, that are eventually constant.

We claim that H is countable.

Proof. For N € Z., let Hy be the set of functions f : Z; — Z, such that f(n) is constant for
n > N. Thus clearly H = UNeZ+ Hy.

We show that each Hy is countable. So consider N € Z, . For any x = (z1,...,2x) € Z," define
_Jxy n<N
Yn = zny n>N

for n € Zy, and set g(x) =y = (y1,y2,...). It is then a simple matter to show that g is a
bijection from Z+N to Hy. Then, since Z+N is a finite product of countable sets, it is countable by
Theorem 7.6. Hence Hy must also be countable since there is a bijective correspondence between
them.

Thus H = nez, Hn is the countable union of countable sets so that it must also be countable by
Theorem 7.5. 0

(i) The set I of all two-element subsets of Z. .

In part (j) below it is shown that the set J of all finite subsets of Z, is countable. Since clearly
I C J, it follows that I is also countable by Corollary 7.3.

(j) The set J of all finite subsets of Z .

We claim that J is countable.

Proof. First, let J, denote the set of n-element subsets of Z (for n € pints), and let Jy = {@}
since @ is the only “zero-element” subset of Z.. Clearly then J =, 7, o} Jn- Obviously Jo is
finite and therefore countable. Next, we show that J, is countable for any n € Z, .

So consider any such n € Z,. Clearly Z." is countable by Theorem 7.6 since it is a finite product
of countable sets. Hence there is a bijection f : Z,"™ — Z,. We now construct an injective function
g:J, = Z.". Forany X € J,, we can choose a bijection h : X — {1,...,n} since it has n elements.
Since X C Z,, clearly h™! € Z,", so set g(X) = h~!. To show that g is injective, consider X and
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X' in J, where X # X’'. Without loss of generality we can assume that there is an x € X where
x ¢ X'. Let h and h' be the chosen bijections from X and X', respectively, to {1,...,n} so that
by definition g(X) = h~! and g(X’) = h'~!. Now let k = h(x) so that h~1(k) = x. It has to be
that h'~1(k) # x since otherwise 2 would be in X’. Hence h=1(k) = x # h'~!(k), which shows that
g(X)=h"t#h'~! = g(X’). Thus g is injective since X and X’ were arbitrary. It then follows that
f og is an injective function from J,, to Zy so that .J,, must be countable by Theorem 7.1.

Since n was arbitrary, this shows that J,, is countable for any n € Z,. From this it follows from

Theorem 7.5 that J =, ez, u{o} Jn, 1s also countable since it is clearly a countable union of countable
sets. O

Exercise 7.6
We say that two sets A and B have the same cardinality if there is a bijection of A with B.
(a) Show that if B C A and if there is an injection
f:A— B,

then A and B have the same cardinality. [Hint: Define A; = A, By = B, and for n > 1, A,, =
f(A,—1) and B,, = f(B,-1). (Recursive definition again!) Note that A; D By D A2 D By D A3 D
-++. Define a bijection h : A — B by the rule

h(z) = flz) ifxe An — B, for some n,
z otherwise.]

(b) Theorem (Schroeder-Bernstein theorem). If there are injections f: A — C and g : C — A, then A
and C have the same cardinality.

Solution:
(a)
Proof. Following the hint, we define two sequences of sets recursively:
A=A B, =8B
and
An = f(An-1) By, = f(Bn-1)

for integer n > 1. Now define a function from A to B by

T otherwise

A, — B, for s 7
h(m):{f(x) T € Ap », for some n € Z

for any z € A.

First we show that B really is the range of h as this is not readily apparent. So consider any = € A.
Clearly if x € A,, — B,, for some n € Z, then h(z) = f(x) € B since B is the range of f. On the
other hand, if this is not the case then = ¢ A,, — B,, for any n € Z,, and h(z) = z. In particular,
x ¢ Ay — By = A — B so that it has to be that h(z) = = € B, for otherwise it would be that
x € A— B since z € A. Hence, in either case, h(z) € B so that h is indeed a function from A to B.

To show that h is injective, consider any x,z’ € A where x # x’.
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1. Case: x € A,, — B,, for some n € Z,. Then by definition h(z) = f(z).

(a) Case: 2’ € A,,— By, for some m € Z,. Then we clearly have h(z) = f(z) # f(z') = h(z')
since f is injective and x # 2.

(b) Case: o’ ¢ A,, — By, for all m € Z;. Then h(z’) = 2/. Since x € A,,, we have that
f(z) € f(An) = Apta. If it were the case that f(z) € B,y+1 = f(B,), then there would
be a y € B, such that f(y) = f(z). Of course, since f is injective, it would have to be
that x = y € B,,, which we know is not the case since x € A,, — B,,. Hence it has to be
that f(z) ¢ Bp41 so that f(x) € A, 41 — Bpt1. From this it is clearly that it cannot be
that 2’ = f(z) so that h(z’) = 2’ # f(x) = h(x).

2. Case: x ¢ A, — B, for all n € Z,. Then by definition h(z) = z.
(a) Case: o’ € A, — By, for some m € Z,. This is the same as case 1b above with the roles

of  and 2’ reversed.

(b) Case: ©' ¢ A, — By, for all m € Z. Then clearly h(z) = z # 2’ = h(a').

Thus in all cases h(x) # h(z"), which shows that h is injective since x and z’ were arbitrary.
To show that A is also surjective, consider any y € B, noting that also y € A since B C A.

Case: y € A, — B, for some n € Z,. It cannot be that n = 1 since then y € A; — B = A — B,
and we know that y € B. Hence n > 1 so that n — 1 € Z,. Since y € A,, = f(A,_1), there is an
x € A,—1 where f(x) = y. Suppose for a moment that € B,,_; so that y = f(z) € f(Bn-1) = Bn,
which we know not to be the case. Thus it must be that « ¢ B,,_; so that x € A,,_1 — B,,_1 and so
by definition h(x) = f(z) = y.

Case: y ¢ A, — B, for all n € Z. Then clearly h(y) = y by definition.
This shows that A is surjective since y was arbitrary.

Therefore it has been shown that A is a bijection from A to B, which shows that they have the same
cardinality by definition. O

(b)

Proof. Clearly f is a bijection from A to f(A) since f is injective. Also, clearly the function g o f
is an injective function from C into f(A) since both f and g are injective. Noting that obviously
f(A) C C, it then follows from part (a) that C' and f(A) have the same cardinality so that there is
a bijection h : f(A) — C. We then have that ho f is a bijection from A to C so that they have the
same cardinality by definition. O

Exercise 7.7

Show that the sets D and E of Exercise 7.5 have the same cardinality.

Solution:

Throughout what follows let A® denote the set of all functions from set A to set B.

Lemma 7.7.1. If there is an injection from Ay to A with As # &, and an injection from By to
By, then there is also an injection from AP' to AD2.

Proof. Since A; # @, there is an as € As. Since we know they exist, let f4 : A1 — A and
fB : Bi — By be injections. We construct an injection F : APt — AD2. So, for any g € AP, define
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F(g) = h, where h € AP? is defined by

_ J(facgof5h)b) be fu(Bi)
h(b) = {@ ¥ b fn(By)

for b € By, noting that f5' is a function with domain fp(B;) since it is injective.

To show that F' is injective, consider g;, 92 € Ajl31 where g1 # g2. Then there is a b; € By where
g1(b1) # g2(b1). Let by = fp(b1) so that clearly bs € fp(By) and by = fgl(bg). Then clearly

F(g1)(b2) = (faogio f5")(b2) = falgi(f5" (b2))) = fa(g1(b1))
# falg2(b1)) = falga(f5' (52))) = (fao g2 0 f5")(b2)
= F(gz)(b2)

since g1(b1) # g2(b1) and f4 is injective. Thus F(g1) # F(gz), which shows that F' is injective since
g1 and go were arbitrary. O

Lemma 7.7.2. For sets A, B, and C, the set (AB)C has the same cardinality as the set AB*C.

Proof. We construct a bijection F' : ABXC — (AB)Y. So, for any f € APXC  we have that
f:BxC — A. Define g : C — AB by g(c) = h for any ¢ € C, where h : B — A is defined by
h(b) = f(b,c). Then assign F(f) =g.

To show that F is injective, consider f, f’ € ABXC where f # f’. Then there is a (b,c) € B x C
where f(b,c) # f'(b,c). Alsolet g = F(f), g = F(f'), h=g(c), and b’ = ¢’(c¢). Then, by definition,
we have h(b) = f(b,c) # f/(b,c) = h/(b) so that g(c) = h # h' = ¢'(c). From this it follows that
F(f)=g+# ¢ = F(f'), which shows that F is injective since f and f’ were arbitrary.

Now consider any g € (AP)Y and any (b,c) € B x C. Let h = g(c) € AP, and then assign
f(b,e) = h(b). Clearly then f: B x C — A so that f € ABXC. So let ¢ = F(f) and consider any
c € C. Let h = g(c) and b’ = ¢'(c¢) so that h'(b) = f(b,c) by the definition of F. Consider any
b € B so that h(b) = f(b,c¢) = h'(b) by the definition of f. Since b was arbitrary, this shows that
g(c) =h =1 = g'(c). Since ¢ was also arbitrary, this shows that F(f) = ¢’ = g. Lastly, since g was
arbitrary, this shows that F' is surjective. O

Main Problem.

Recall that we have D = Z,“ = Z,%* and E = X = X%+, where we let X = {0,1}. We show
that these have the same cardinality.

Proof. First consider any f € E = X%+. Then define g(n) = f(n) + 1 for n € Z, so that clearly
g € Z,.% = D. Now define the function b : E — D by h(f) = g. It is then trivial to show that h is
an injection.

Now, for n € Z, define x,, = 1 and ; = 0 when ¢ € Z, and ¢ # n. Clearly then x = (z1,22,...) €
X7+ and it is easily shown that the function defined by f(n) = x is an injection from Z, to X%+
Also clearly the identity function on Z is an injection since it is a bijection. It then follows from
Lemma 7.7.1 that there is an injection f; : Z+Z+ — (X%+)Z+ | noting that clearly X%+ # &.

We presently have that there is a bijection fy : (X%+)%+ — X%Z+*Z+ by Lemma 7.7.2, which is of
course also an injection. Finally, since Z; x Z has the same cardinality as Z, (by Corollary 7.4),
it follows that there is an injection from Z; x Z4 to Z.. Since also the identity function on X is
an injection, we have again that there is an injection fs : X%+*%+ — X%+ by Lemma 7.7.1. Thus
clearly then f3 o fy o f; is an injection from Z+Z+ =D to X% =E.

Therefore, since there is an injection from F to D as well as from D to F, it follows from Exercise 7.6
part (b) that D and E have the same cardinality as desired. O
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Exercise 7.8

Let X denote the two-element set {0, 1}; let B be the set of countable subsets of X*. Show that X“ and
B have the same cardinality.

Solution:
Again let AP denote the set of functions from A to B.

Proof. First, for x € X% clearly the function that maps x to the set {x} is an injective function
from X* to B.

Now we construct an injection f; : B — (X“)“. So consider any S € B so that S is a countable
subset of X*“. Then, by Theorem 7.1, we can choose a surjective function g : Z, — S. Note that
this does require the Axiom of Choice since we must choose such a surjection for each S € B, and
clearly B is infinite. Since S C X%, g can be considered as a function from Z; to X“ so that
g € (X¥)¥, though of course it would no longer necessarily be surjective with this range. So we
simply set f1(S) =g

To show that f; is injective consider S,S’ € B where S # S’. Then, setting g = f1(S) and
g = f1(5’), we have that g(Z) = S and ¢'(Z) = S’ by definition. Since S # S’, we have that g and
¢’ have the same domain but different image sets. Clearly this means that f1(S) =g # ¢’ = f1(5'),
which shows that f; is injective since S and S’ were arbitrary.

Hence f; is an injection from B to (X“)* = (X%+)Z+. Now, from Lemma 7.7.2, we have that
(XZ+)Z+ has the same cardinality as XZ+*%+ so that there is a bijection fy : (X%+)%+ — X2+ *2+
which is of course also an injection. Finally, since Zy x Z, has the same cardinality as Z, (by
Corollary 7.4), it follows that there is an injection from Z, x Z, to Z,. Since also the identity
function on X is an injection, we have that there is an injection f3 : X%Z+*%+ — X%+ by Lemma 7.7.1.
Then clearly f3o fo o f; is an injection from B to X%+ = X%,

Since there is an injection from X“ to B and vice-versa, it follows that they have the same cardinality
by Exercise 7.6 part (b) as desired. O

Exercise 7.9

(a) The formula

h(1)=1,
(+) he) =2,
h(n) = [h(n +1)]> = [h(n — 1)]? for n > 2

is not one to which the principle of recursive definition applies. Show that nevertheless there does
exist a function h : Z; — R satisfying this formula. [Hint: Reformulate (%) so that the principle
will apply and require h to be positive.]

(b) Show that the formula (x) of part (a) does not determine h uniquely. [Hint: If h is a positive
function satisfying (), let f(:) = h(i) for i # 3, and let f(3) = —h(3).]

(¢) Show that there is no function h : Z, — R satisfying the formula

h(l) =1,
h2) =2,
h(n) = [h(n + 1))* + [h(n — 1)]? for n > 2.
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Solution:

(a) First, notice that (%) does not satisfy the principle of recursive definition because, for n > 2,
h(n) is not defined strictly in terms of values of h for positive integers less than n, since its definition
depends on A(n + 1). Now we show that there does exists a function satisfying (x).

Proof. Consider the following reformulation:

h(1)=1,
h(2) =2,
= V/h(n—1)+ [h(n —2)]2 forn > 2,

where as is convention we take the positive square root for h(n). Clearly for n € {1,2} we have
that h(n) is positive. Now suppose n > 2 and that h(k) is positive for k& < n so that h(n — 1)
and h(n — 2) are both positive. Then clearly h(n — 1) + [h(n — 2)]? is positive so that h(n) =
Vh(n —1) + [h(n — 2)]2 is defined and is positive. Hence h(n) is positive and well-defined for all
n € Z4 by induction.

Thus, since h(n) depends only on values of h for integers less than n, this satisfies the recursion
principle so that a unique h satisfying the above exists. We also claim that this h satisfies (k).
Clearly the explicitly defined values of h(1) and h(2) are satisfied. For n > 2, we have that n+1 > 2
so that, by definition,

h(n+1) = /A((n+ 1) = 1) + [o((n + 1) = 2 = v/A(n) + [h(n — D
[h(n+ 1)) = h(n) + [h(n — 1)]?
h(n) = [h(n + 1) = [h(n - D],

which is the final constraint of (x) so that it is also satisfied since n > 2 was arbitrary. O
(b) First note that, for the recursively defined function h from part (a),

=VhR)+ P =V2+12=V3

— VB TP = V3 +22 =B+ 4.

Now define the function f as in the hint, that is f(i) = h(i) for ¢ # 3 and f(3) = —h(3). Then we
clearly have f(3) = —h(3) = —v/3 while

F@P - @) = BA)P - b = (\N@ 4> P Bi4—d=3

so that f(n) = —v3 # V3 = [f(n + 1)]?2 — [f(n — 1)]? for n = 3, and hence (x) is violated. So it
would seem that the hint as given does not exactly work.

Now we show that the function satisfying () is not unique, taking inspiration from the hint.

Proof. We construct a function f, different from h from part (a), that also satisfies (). We define
f using recursion:

fn)=+vf(n—=1)+[f(n—2)2 forn > 3.
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Clearly, since each f(n) is defined only in terms of f(k) for k < n (or without dependence on any
values of f), f exists uniquely by the recursion principle so long as each f(n) is well-defined. We
show this presently by induction.

Clearly f(n) is defined for n € {1,2,3}. For n = 4 we have f(n) = f(4) = /f(3) +[f(2)]? =
V=3 +22v/—/3 + 4. Now, since 1 < 3, we have that /3 < 3 < 4 so that —v3+4 =4 —+/3 >0
and hence the square root, and therefore f(4), is defined and positive. Now consider any n > 4
and suppose that f(n — 1) is positive. Then clearly f(n) = /f(n — 1) + [f(n — 2)]? is defined and
positive since f(n — 1) > 0, noting that even if f(n — 2) < 0, its square is non-negative.. This
completes the induction that shows that f is uniquely defined.

Clearly f # h since f(3) = —V/3 # /3 = h(3). Also obviously f(n) satisfies () explicitly for
n € {1,2}. For n = 2 we have

[fn+ )P =[f(n =P = [fB) - [F(P = [-V3* -1°=3-1=2= f(n).
Then, for n > 2 we have n 4+ 1 > 3 so that, by definition,
f+1) = VA D=0+ [+ D) =P = VF) + [ (n— 1P

[f(n+1)]* = f(n) + [f(n - 1)]?
f(n) = [f(n+ D] = [f(n - 1.

Thus the recursive part of (%) holds for n > 2 so that (%) holds over the whole domain of f as
desired. O

()

Proof. Suppose that such a function h does exist. Since the recursive property holds for n > 2, we
have

h(2) = [A(3)]* + [h(1)]?
2= [h(3)]* + 17
hB3))=2-12=1
h(3) = +1.

Similarly, we have

h(3) = (WA + [h)P?
+1 = [h(4)]? +2°
(4] =+1-22 =414
so that either [h(4)]> =1—4 = -3 or [h(4)]> = —1 — 4 = —5. In either case we have [h(4)]> < 0,

which is of course impossible since the square of a real number is always non-negative! So it must
be that such a function does not exist. O

88 The Principle of Recursive Definition

Exercise 8.1

Let (b1,bo,...) be an infinite sequence of real numbers. The sum Y _,_, by is defined by induction as
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follows:

n

> b =1b forn =1,
k=1
n—1
b, = (Zbk>+bn for n > 1.
k=1 k=1

Let A be the set of real numbers; choose p so that Theorem 8.4 applies to define this sum rigorously.
We sometimes denote the sum EZ:1 br by the symbol by + bs + - - - + b,,.

Solution:

For a function f : {1,...,m} — A, define p(f) = f(m) + by,41. For clarity, denote the sum function
by s: Z4 — A so that s(n) = >_;_; by. Then by Theorem 8.4 there is a unique s : Z; — A such
that

(s {1,....,n—1}) for n > 1.

2

3 ~—
=

I
>

Then we clearly have that 211@:1 b = s(1) = by and

n—1
D b=sn)=p(s 1{l,...,n=1}) = s(n = 1) +bu_1)41 = Y _ bk +bn
k=1

k=1

for n > 1 as desired.

Exercise 8.2

Let (b1, bo, . ..) be an infinite sequence of real numbers. We define the product [];_, by by the equations

k=1

n n—1

ku:<ku>-bn for n > 1.
k=1 k=1

Use Theorem 8.4 to define the product rigorously. We sometimes denote the product [];_, by by the
symbol bybs - - - by,.

Solution:

First, for any function f: {1,...,m} — R, define p by p(f) = f(m) - by+1. Then, by the recursion
theorem (Theorem 8.4), there is a unique function p : Zy — R such that

p(l) :bla
p(n)=ppl{L,...,n—1}) for n > 1.

Then we define []}_, by, = p(n) so that we have [],_, bx = p(1) = by and

ku :p(n) :P(p r{la"'vnfl}) :p(nil)'b(n—l)-&-l = <1:[ bk) by
k=1 k=1

for n > 1 as desired.
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Exercise 8.3

Obtain the definitions of a™ and n! for n € Z, as special cases of Exercise 8.2.

Solution:

Regarding a”, defined the sequence (b1, bs,...) by b; = a for every i € Z,, which we could denote by
(a,a,...). Then define a™ = [];_, by as it is defined in Exercise 8.2, and we claim that this satisfies
the inductive definition given in Exercise 4.6 and Example 8.2.

Proof. First, we clearly have a' = Hi:1 br = by = a. Next, for n > 1, we have

n n—1
*a” = ku = (ku> by =a""1a,
k=1 k=1

which shows that the inductive definition is satisfied. O

Since it does not seem to be given in the book thus far, we reiterate the typical inductive definition
for n!:

=1,
nl=mn-1!n for n > 1.

Now, define the sequence (b1, ba, ...) by b; =i for i € Z. We then claim that defining n! = [];_, bk
as defined in Exercise 8.2 satisfies this definition.

Proof. First, we have 1! = Hizl by, = by = 1. Then we also have

n!:ﬁbk: <hbk> cbp=mMm—=1!-n
k=1 k=1

for n > 1 so that the definition is clearly satisfied. O

Exercise 8.4

The Fibonacci numbers of number theory are defined recursively by the formula
A=A =1,
A = A1+ Ao for n > 2.

Define them rigorously by use of Theorem 8.4.

Solution:

First, note that the Fibonacci numbers are all positive integers. So, for any function f : {1,...,m} —
Z define

1 m=1
p(f>_{f(m)+f(m1) m>1,

noting that clearly the range of p is still Z, since that is the range of f. Then, by Theorem 8.4,
there is a unique function F': Z; — Z such that

F(1)=1,
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F(n)=p(F [ {1,...,n—1}) for n > 1.
We claim that the Fibonacci numbers are A,, = F(n) for n € Z..

Proof. To show that the numbers \,, satisfy the inductive definition of the Fibonacci numbers, first
note that we clearly have A\ = F(1) = 1. We also have that

Ay = F(2) = p(F [ {1}) = 1.
Lastly, for any n > 2, clearly n > 1 also and n — 1 > 1 so that
Mo = F(n) = p(F [ {L,...,n—1}) = F(n— 1)+ F(fn = 1] = 1) = Au_1 + Ans,

which shows that the inductive definition is satisfied. O

Exercise 8.5

Show that there is a unique function h : Z4 — R satisfying the formula
h(1) =3,
h(i) = [h(i — 1) + 1]"/2 for i > 1.

Solution:

Proof. First, for any function f: {1,...,m} — R, define

p(f) = [f(m)+1]"/2.

Consider any m € Z4 and any function f : {1,...,m} — Ry. Since f(m) € Ry, it follows that
f(m)+1 € Ry also so that p(f) = [f(m)+1]'/? is defined and is positive. Hence p is a well-defined
function with range Ry since m and f were arbitrary. It then follows from the principle of recursive
definition (Theorem 8.4) that there is a unique function h : Z, — R, such that

h(1) =3,
h(n)=p(h 1 {1,...,n—1}) for n > 1.

It is easy to see that this h satisfies the required property since h(1) = 3 and
h(i) = p(h [ {1,...,i—1}) = [h(i — 1) + 1]'/?

for ¢ > 1 as desired.

Now we show that such a function is unique. Suppose that g and h both satisfy the inductive
formula. We show by induction that g(¢) = h(i) for all i € Z,, from which it clearly follows that
g = h. First, we clearly have g(1) = 3 = h(1). Now suppose that ¢g(i) = h(i) for i € Z,. Then we
have that i +1 > 1 so that g(i + 1) = [g(i) + 1]*/2 = [h(i) + 1]/2 = h(i + 1) since g(i) = h(i) and
we are taking the positive root. This completes the induction. O

Exercise 8.6
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(a) Show that there is no function h : Z; — R satisfying the formula
h(1) =
h(i)

Explain why this example does not violate the principle of recursive definition.

3,
[h(i —1) —1]'/2 for i > 1.

(b) Counsider the recursion formula
h(1) =3,

i—1)—1)Y2 if h(i—
h(i):{[h( 1) —1] £ I 1)>1}

. for i > 1.
5 ifh(z—1)<1

Show that there exists a unique function h : Z; — R, satisfying this formula.

Solution:
(a)

Proof. Suppose to the contrary that there is such a function h. Then clearly h(1) = 3 and h(2) =
\/h(l) —1=+3—-1=+2 Now, since 1 < 2 < 4, we clearly have 1 < V2 < /4 = 2. Thus

0 < v2—-1< 1sothat h(3) = \/h(2) —1 = V/v/2 — 1 is defined. However, we also have that
0<h(3)=+vVVv2—-1<1since 0 <+2—1<1,and hence h(3) — 1 < 0. We then have that

h(4) = V/h(3) — 1

[h@)]? = h(3) — 1 <0,

which is of course impossible since a square is always non-negative. This contradiction shows that
such a function h cannot exist. O

Note that this does not ostensibly violate the principle of recursive definition since h(n) is defined
only in terms of values of h less than n for n > 1. However, were one to try to show the existence of h
rigorously using the principle, one would find that the required function p would not be well-defined.

(b)

Proof. First, for any function f: {1,...,m} — Ry, define

of) = {[f(m) — 12 f(m) > 1

Consider any m € Z4 and any function f : {1,...,m} — R4. If f(m) > 1 then clearly f(m)—1>0
so that p(f) = [f(m)—1]*/? is defined and positive. If f(m) < 1 then clearly p(f) = 5 is also defined
and positive. Since m and f were arbitrary, this shows that p is a well-defined function with range
R,.

It then follows from the principle of recursive definition (Theorem 8.4) that there is a unique function
h:Zy — Ry such that

—~ -

hi{l,....,n—1}) for n > 1.
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To see that this h satisfies the recursion formula, clearly h(1) = 3, and, for ¢ > 1, we have

[h(i—1) =1)Y2 h(i—1)>1
5 h(i—1)<1

h(i):p(h[{l,...,i—l}):{

as desired.

To show that this function is unique, suppose that g and h both satisfy the recursive formula.
We show by induction that g(n) = h(n) for all n € Z4 so that clearly ¢ = h. First, obviously
g(1) = 3 = h(1l). Now suppose that g(n) = h(n) for n € Z; so that n +1 > 1. Then, if
g(n) = h(n) > 1 then we have g(n + 1) = [g(n) — 1]'/2 = [h(n) — 1]/2 = h(n + 1) since g(n) = h(n)
and the roots are taken to be positive. Similarly, if g(n) = h(n) <1, then g(n+1) =5 =h(n+ 1).
Thus in either case g(n + 1) = h(n + 1), which completes the induction. O

Exercise 8.7

Prove Theorem 8.4.

Solution:

The proof follows the same pattern used to prove (x) at the beginning of the section, which culminates
in Theorem 8.3. Similar to that approach, two lemmas will be proved first. In what follows, (x)
refers to the properties defined in the statement of Theorem 8.4.

Lemma 8.7.1. Given n € Z, there exists a function f:{1,...,n} — A that satisfies (x) for all i
in its domain.

Proof. We show this by induction on n. First, for n = 1, clearly the function f : {1} — A defined
by f(1) = ao satisfies (). Now suppose that (*) holds for some function f’': {1,...,n} — A for
n € Zy. Now define f: {1,...,n+1} — A by

A [P0 et
76 {Mf)i=n+1

for any ¢ € {1,...,n + 1}. Note that f is not defined in terms of itself, but in terms of f’ and p.

First, we clearly have f' = f [ {1,...,n} since f(i) = f'(¢) for all i« € {1,...,n}. Then, clearly
f(1) = f'(1) = ap since 1 < n and f’ satisfies (x). Consider any i € {1,...,n+ 1} where i > 1.
Then we have

if 1 < i< nsince f’ satisfies (x). Lastly, if i = n + 1, then
again. This shows that f satisfies (x), thereby completing the induction. O

Lemma 8.7.2. Suppose that f:{1,....,n} = A and g:{1,...,m} — C both satisfy (x) for alli in
their respective domains. Then f(i) = g(i) for all i in both domains.

Proof. Suppose that this is not the case and let ¢ be the smallest integer (in the domain of both f
and g) for which f(i) # ¢(i). Hence f(j) = g(j) for all 1 < j < i so that clearly f [ {1,...,i—1} =
g [{1,...,i—1}. Now, it cannot be that ¢ = 1 since clearly f(1) = ap = g(1). So then it must be
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that 1 <isothat f(i) = p(f [ {1,...,4—1}) and g(i) = p(g [ {1,...,% — 1}) since they both satisfy
(x). Since f | {1,...,i—1} =g [ {1,...,4— 1}, we then clearly have

in contradiction with the definition of 7. Thus the result must be true as desired. O
Main Problem.

Proof. Lemmas 8.7.1 and 8.7.2 show that there exists a unique function f, : {1,...,n} — A satis-
fying () for every n € Z. We then define h = UneZ+ fn and claim that this is the unique function
from Z, to A satisfying ().

First we must show that h is a function at all. So consider any ¢ € Z, and suppose that (i, z) and
(i,y) are in h. Then there are n,m € Z, where (i,z) € f, and (i,y) € fm since h = UnGZ+ I
noting that it must be that ¢ < n and ¢ < m. Since f, and f,, both satisfy (x) and clearly ¢ is in
the domain of both, it follows from Lemma 8.7.2 that © = f,, (i) = fiu(i) = y. This shows that h is
a function since (i, z) and (¢,y) were arbitrary. Also, clearly the domain of h is Z; since, for any
1 € Zy, 1 is in the domain of f; and so in the domain of h. Lastly, clearly the range of h is A since
that is the range of all the f,, functions.

Now we show that h satisfies (x). First we have that 1 is clearly in the domain of h and f; so
that it has to be that h(1) = fi1(1) = ap since h is a function, f; C h, and f; satisfies (x).
Now suppose that ¢ > 1. Then clearly ¢ is in the domain of h and f; so that it has to be that
h(j) = fi(j) for 1 < j < ¢ since h was shown to be a function and f; C h. It then follows that
hi{l,...;i—1}=f; 1 {1,...,i — 1}. Thus we have

h(i) = fi(i) = p(fi 1{1,...,i = 1}) = p(h [ {1,...,i = 1})

since f; satisfies (). This completes the proof that h also satisfies (k).

Lastly, we show that h is unique, which is very similar to the proof of Lemma 8.7.2. So suppose
that f and g are two functions from Z, to A that both satisfy (x). Suppose also that f # g
so that there is a smallest integer ¢ such that f(i) # g(i). Now, it cannot be that ¢ = 1 since
we have f(1) = ag = ¢(1) since they both satisfy (x). Hence i > 1 and, since ¢ is the smallest
integer where f(i) # g(i), it follows that f(j) = g(j) for all 1 < j < 4. Therefore we have that
fid1,...,i—1} =g {1,...,i— 1} so that

f(i>:p(fr{la"'vi_l}):p(gr{lv""i_l}):g(i)

since f and g both satisfy (x) and ¢ > 1. This of course contradicts the definition of ¢ so that it has
to be that in fact f = g. This shows the uniqueness of h constructed above. O

Exercise 8.8

Verify the following version of the principle of recursive definition: Let A be a set. Let p be a function
assigning, to every function f mapping a section S,, of Zy into A, an element p(f) of A. Then there is
a unique function h : Z, — A such that h(n) = p(h | S,,) for each n € Z, .

Solution:

Denote the above property of h by (x). We show that there is a unique h : Zy — A satisfying this
using the standard principle of recursive definition, Theorem 8.4.
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Proof. First, note that S; = {n € Z; | n < 1} = @ by definition. Note also that & itself is vacuously
a function from S7; = @ to A, and is the only such function. It then follows that f [ S1 = f [ @ =0
for any f : S, — A for some n € Z;. So then, define ay = p(&) so that there is a unique function
h such that

h(l):ao,
hi)=p(h | {1,...,i—1}) for i > 1.

by Theorem 8.4. Denote this property by (+).
We first claim that this h satisfies (x). To see this, consider any n € Z,. If n = 1 then we have

B(n) = h(1) = ag = p(@) = p(h | ) = pl | $1) = p( | S)
If n > 1 then by (+) we have
h(n) Zp(h r{lv"wn_ 1}) =p(h | Sn)

again. Since n was arbitrary, this shows that (x) is satisfied.

To show that this h satisfying (%) is unique, suppose that another function f : Z; — A satisfies (x).
Then we have

h(1) = p(h | S1) = p(h [ @) = p(@) = ao
and
B(i) = p(h 1 S5) = p(h [ {1,....i—1})

for ¢ > 1. This shows that f also satisfies (4), and, since we know that the function satisfying (+)
is unique, it must be that f = h as desired. O

89 Infinite Sets and the Axiom of Choice

Exercise 9.1

Define an injective map f : Z; — X, where X is the two-element set {0, 1}, without using the choice
axiom.

Solution:

For any n € Z,, define

0 i#n
T; = .
1 i=n
for i € Z4. Then set f(n) = x = (x1,%2,...) so that clearly f is a function from Z; to X“. It is
easy to show that f is injective.

Proof. Consider n,m € Z, where n # m. Then let x = f(n) and y = f(m). Then we have that
Zn = 1 while y,, = 0 by the definition of f since n # m. It thus follows that f(n) =x £y = f(m),
which shows that f is injective since n and m were arbitrary. O
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Exercise 9.2

Find if possible a choice function for each of the following collections, without using the choice axiom:

(a) The collection A of nonempty subsets of Z.
(b) The collection B of nonempty subsets of Z.
)
)

(c

(d) The collection D of nonempty subsets of X, where X = {0, 1}.

The collection C of nonempty subsets of the rational numbers Q.

Solution:

Lemma 9.2.1. If A is a countable set and A is the collection of nonempty subsets of A then A has
a choice function.

Proof. Since A is countable, there is an injective function A — Z, by Theorem 7.1. We define a
choice function ¢ : A — (Jpc 4 B. Consider any X € A so that X is a nonempty subset of A. Then
f(X) is a nonempty subset of Z so that it has a unique smallest element n since Z . is well-ordered.
Now, since n € f(X), clearly there is an € X such that f(z) = n. Moreover, it follows from the
fact that f is injective that this x is unique. So set ¢(X) = x so that clearly x is a choice function
on A since ¢(X) =z € X. O

Main Problem.

(a) Since Z, is countable, a choice function can be constructed as in Lemma 9.2.1.

(b) Since Z is countable (by Example 7.1), a choice function can be constructed as in Lemma 9.2.1.
(c) Since Q is countable (by Exercise 7.1), a choice function can be constructed as in Lemma 9.2.1.

(d) First, there is an injective function f from the real interval [0, 1] to X*. The most straightforward
such function is, for each x € [0,1] let 0.x12223 ... be a unique binary expansion of x (these can be
made unique by avoiding binary expansions that end in all 1’s, noting though that the expansion
of 1 itself must be 0.111...). So suppose that ¢ were a choice function on D (that is presumably
constructed without the choice axiom). If X is a nonempty subset of [0, 1] then f(X) is a set in
D so that we can choose ¢(f(X)) € f(X). Since f is injective, there is a unique z € X where
f(z) = ¢(f(X)), and so choosing z results in a choice function on the collection of nonempty subsets
of [0, 1] since X was arbitrary.

This would allow one to then well-order [0, 1] without using the choice axiom, which evidently
nobody has done. As far as I have been able to determine, this has not yet been proven impossible,
it is just that nobody has been able to do it. So it would seem that such an explicit construction of
a choice function on D would at least make one famous. Or else it is impossible, which is what we
assume to be the case here.

Exercise 9.3

Suppose that A is a set and {f,} is a given indexed family of injective functions

neZy
fo:{l,...,n} = A.

Show that A is infinite. Can you define an injective function f : Z, — A without using the choice
axiom?
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Solution:

We defer the proof that A is infinite until we define an injective f : Z, — A, which we can do
without using the choice axiom by using the principle of recursive definition.

Proof. First, let ag = f1(1) € A. Now consider any function g : S,, - A. If ¢ = & then set
p(@) = p(g) = ap. Otherwise let Iy = {i € Spq1 | fu(i) & 9(Sn)}. Suppose for the moment that
I, = @. Consider any z € f,(Snh41) so that there is a k € S,41 where f,(k) = . Then it has to
be that © = f, (k) € g(S,) since otherwise we would have k € I,. Since x was arbitrary, this shows
that f,,(Spt+1) C g(Sp). Thus the identity function hy : f,,(Sn4+1) — g(Sn) is an injection. Clearly
g is a surjection from S, to its image g(.S,) so that there is we can construct a particular injection
hs : g(Sn) — S, by Corollary 6.7. Lastly, f, is an injection from S, 11 to f,(Sp+1). Therefore
h = hyohj o f, is an injection from S, 41 to S,. Hence h is a bijection from S;,+1 to h(Sp+1), which
is clearly a subset of S,, since S, is the range of h. But, since S, C Sp41, clearly h(S, 1) € Snt1
as well so that h is a bijection from S, 11 onto a proper subset of itself. As S, is clearly finite,
this violates Corollary 6.3 so that we have a contradiction.

So it must be that I, # & so that it is a nonempty set of positive integers, and hence has a smallest
element . So simply set p(g) = f,(i). Now, it then follows from the principle of recursive definition
that there is a unique f : Z, — A such that

f(1)=ao,
fn)=p(f T Sn) for n > 1.

We claim that this f is injective.

To see this we first show that f(n) ¢ f(S,) for alln € Z,. If n = 1 we have that f(n) = f(1) = ap =
f1(1) and f(S,) = f(@) = @ so that clearly the result holds. If n > 1 then f(n) = p(f [ Sn) = fn(i)
for some i € Iyg, since clearly S, # @ so that f [ S, # @. Since ¢ € I¢;g, we have that
f(n) = fu(@) & (f | Sn)(Sn) = f(Sn) as desired. This shows that f is injective. For consider any
n,m € Z, where n # m. Without loss of generality we can assume that n < m. Then clearly
f(n) € f(Sm) since n € S, since n < m. However, by what was just shown, we have f(m) ¢ f(Sn)
so that it has to be that f(n) # f(m). This shows f to be injective since n and m were arbitrary.

Lastly, since f : Z, — A is injective, it follows that f is a bijection from Z, to f(Zy) C A. Hence
f(Zy) is infinite since Z is, and since it is a subset of A, it has to be that A is infinite as well. O

Exercise 9.4

There was a theorem in §7 whose proof involved an infinite number of arbitrary choices. Which one was
it? Rewrite the proof so as to make explicit use of the choice axiom. (Several of the earlier exercises
have used the choice axiom also.)

Solution:

This was the proof of Theorem 7.5, which asserts that a countable union of countable sets is also
countable. The following rewritten proof makes explicit use of the choice axiom and so points out
where it is needed.

Proof. Let {Ay}, c; be an indexed family of countable sets, where the index set J is {1,..., N}
or Z,. Assume that each set A,, is nonempty for convenience since this does not change anything.
Now, for each n € J, let B,, be the set of surjective functions from Z, to A,. Since each A, is
countable, it follows from Theorem 7.1 that B, # @. Then, by the axiom of choice, the collection
{Bn},,c; has a choice function ¢ such that ¢(B,) € B,, for every n € J.
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Now set f,, = ¢(B,) for every n € J so that f, € B, and hence is a surjection from Z, into
A,. Since J is countable, there is also a surjection g : Zy — J by Theorem 7.1. Then define
h:Zy xZy = Upey An by h(k,m) = fyey(m) for k,m € Z.

We now show that & is surjective. So consider any a € |J,c; An so that a € A, for some n € J.
Since g : Z4 — J is surjective, there is a k € Z, where g(k) = n. Also, since f, : Zy — A, is
surjective, there is an m € Z where f,(m) = a. We then have by definition that

h(kvm) = fg(k)(m) = fn(m) =a,

which shows that h is surjective since a was arbitrary.

Lastly, since Zy x Z, is countable by Example 7.2, there is a bijection b’ : Z, — Z, x Z,. It then
follows that hoh' is a surjection from Z, to | J,,c ; An, which shows that J,,. ; An is countable again
by Theorem 7.1. O

Exercise 9.5

(a) Use the choice axiom to show that if f: A — B is surjective, then f has a right inverse h: B — A.

(b) Show that if f : A — B is injective and A is not empty, then f has a left inverse. Is the axiom of
choice needed?

Solution:
(a)

Proof. Suppose that f : A — B is surjective. Now, by the choice axiom, the collection A =
P (A) — {@} is a collection of nonempty sets and thus has a choice function c. Consider any b € B
and the set A, = {x € A| f(z) =b}. Then A, # @ since f is surjective, and hence A, € A since
clearly also A, C A so that A, € P (A). So set h(b) = ¢(Ap) € Ap so that h(b) € A since A, C A.
Hence h is a function from B to A.

Recall that, by definition, h is a right inverse if and only if f o h = i, which we show presently. So
consider any b € B and let a = h(b) = ¢(Ap) € Ap so that f(a) =b. Then clearly

(f o h)(b) = f(h(b)) = f(a) = b,

which shows that f o h = ip since b was arbitrary. Hence h is a right inverse of f. O

(b)

Proof. Suppose that f: A — B is injective and A # @. Then f is a bijection from A to its image
f(A) C B and hence its inverse f~! is a function from f(A) to A. Now, since A is nonempty, there
is an ag € A. So define h: B — A by

[ bes
h(b)‘{ao b £(A)

for any b € B. Recall that h is a left inverse of f if and only if h o f = i4 by definition, which we
show now.
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So consider any a € A and let b = f(a) so that clearly b € f(A). Hence by definition h(b) = f~1(b) =
f~Y(f(a)) = a. Finally, we have

(ho f)(a) =h(f(a)) = h(b) = a.
This shows that h o f =i4 since a was arbitrary. Therefore h is a left inverse of f as desired. O

Note that this proof does not require the axiom of choice as we did not need to make a choice for
each b € B in order to define h as we did in part A.

Exercise 9.6

Most of the famous paradoxes of naive set theory are associated in some way or another with the concept
of the “set of all sets.” None of the rules we have given for forming sets allows us to consider such a set.
And for good reason — the concept itself is self-contradictory. For suppose that A denotes the “set of all
sets.”

(a) Show that P (A) C A; derive a contradiction.

(b) (Russell’s paradox.) Let B be the subset of A consisting of all sets that are not elements of
themselves:

B={A|AcAand A¢ A} .

(Of course, there may be no set A such that A € A; If such is the case, then B = A.) Is B an
element of itself or not?

Solution:

(a) We show that P (A) C A and that a contradiction results.

Proof. Consider any set A € P (A). Since A is a set and A is the set of all sets, clearly A € A
and hence P (A) C A since A was arbitrary. Therefore the identity function ip(4) is clearly an
injection from P (A) to A. However, this is impossible by Theorem 7.8! Hence we have reached a
contradiction. O

(b) We show that the existence of B is a contradiction by showing that supposing either B € B or
B ¢ B results in a contradiction.

Proof. Suppose that B € B so that by definition we have B € A and B ¢ B, the latter of which
clearly contradicts our initial supposition. On the other hand, suppose that B ¢ B. Then, since
clearly also B € A since it is a set, it follows that B € B by definition. This again contradicts the
initial supposition. Since one or the other (B € B or B ¢ B) must be true, we are then guaranteed
to have a contradiction. O

Exercise 9.7

Let A and B be two nonempty sets. If there is an injection of B into A, but no injection of A into B,
we say that A has greater cardinality than B.

(a) Conclude from Theorem 9.1 that every uncountable set has greater cardinality than Z .

(b) Show that if A has greater cardinality than B, and B has greater cardinality than C, then A has
greater cardinality than C.
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¢) Find a sequence A;, As, ... of infinite sets, suc at for each n € Z,, the set A,41 has greater
Find q A A f infinite set h that f h Z4, the set A,y1 has great
cardinality than A,,.

(d) Find a set that for every n has cardinality greater than A,,.

Solution:

Lemma 9.7.1. For any set A, P (A) has greater cardinality than A.

Proof. Clearly the function that maps a € A to {a} € P (A) is an injection. However, we know from
Theorem 7.8 that there is no injection from P (A) to A. Together these show that P (A) has greater
cardinality than A as desired. O

Main Problem.
(a)

Proof. Suppose that A is any uncountable set. Clearly A is not finite for then it would be countable.
Hence it is infinite and so there is a injection from Zy to A by Theorem 9.1. There also cannot be
an injection from A to Z., for if there were then A would be countable by Theorem 7.1. This shows
that A has greater cardinality than Z by definition. O

(b)

Proof. Since A has greater cardinality than B, there is an injection f : B — A. Likewise, since B
has greater cardinality than C, there is an injection g : C' — B. It then follows that f o g is an
injection of C into A. Now suppose that h: A — C is injective. Then g o h would be an injection
of A into B, which we know cannot exist since A has greater cardinality than B. Hence it must be
that no such injection h exists, which shows that A has greater cardinality than C as desired. [

(c) We define a sequence of sets recursively:

A =7, ,
A, =P((An-1) for n > 1.

We show that this meets the requirements.

Proof. First we show that each A, is infinite by induction. Clearly A; = Z, is infinite. Now
assume that A, is infinite for n € Z, so that there is an injection f : Zy — A, by Theorem 9.1.
Then, by Lemma 9.7.1, A1 = P (A,) has greater cardinality than A,, so that there is an injection
g: A, — Apy1. Then go f is an injection from Z; to A,41 so that A, is infinite as well by
Theorem 9.1. This completes the induction.

Finally, for any n € Z; we have that n +1 > 1 so that A,4; = P (A(n+1)_1) = P (A,). Then
clearly A, +1 has greater cardinality than A, by Lemma 9.7.1. This shows the desired result. O
(d) Let A=

neZy A,,, which we claim has the required property.

Proof. Consider any n € Zy. Clearly A,, C A so that the identity function i4, is an injection of
A, into A. Now suppose for the moment that g : A — A,, is injective. Since clearly also A, 11 C A,
it follows that g | A, 11 is then an injection of A, 11 into A,,. However this contradicts the proven
fact that A, 1 has greater cardinality than A,. Hence it has to be that no such injection g exists,
which shows that A has greater cardinality than A,,. Since n was arbitrary, this shows the desired
result. O
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Exercise 9.8

Show that P (Z4) and R have the same cardinality. [Hint: You may use the fact that every real number
has a decimal expansion, which is unique if expansions that end in an infinite string of 9’s are forbidden.]

A famous conjecture of set theory, called the continuum hypothesis, asserts that there exists no set having
cardinality greater than Z, and lesser cardinality than R. The generalized continuum hypothesis asserts
that, given the infinite set A, there is no set having greater cardinality than A and lesser cardinality
than P (A). Surprisingly enough, both of these assertions have been shown to be independent of the
usual axioms of set theory. For a readable expository account, see [Sm)].

Solution:

Lemma 9.8.1. If A and B are sets with the same cardinality, then P (A) and P (B) have the same
cardinality.

Proof. Since A and B have the same cardinality there is a bijection f : A — B. We define a bijection
g:P(A) — P(B). So, for any X € P(A), set g(X) = f(X). Clearly f(X) C B, since B is the
range of f, so that ¢g(X) = f(X) € P(B) and hence P (B) can be the range of g.

To show that g is injective, consider sets X and Y in P (A4) so that X, Y C A. Also suppose that
X #Y so, without loss of generality, we can assume that there is an x € X where x ¢ Y. Clearly
f(z) € f(X) since x € X. Were it the case that f(z) € f(Y) then there would be a y € Y such that
f(y) = f(x). But then we would have that y = x since f is injective and hence z = y € Y, which we
know not to be the case. Hence f(x) ¢ f(Y) so that it has to be that g(X) = f(X) # f(Y) = g(Y)
since f(x) € f(X). Since X and Y were arbitrary this shows that g is injective.

To show that g is surjective consider any Y € P (B) so that Y C B. Let X = f~}(Y), noting that
f~1is a bijection from B to A since f is bijective. Clearly X C A since A is the range of f~! so
that X € P(A). Now consider any y € f(X) so that there is an x € X where f(z) = y. Then,
since X = f~1(Y), there is a ¥/ € Y where x = f~1(y/), and hence y = f(x) = f(f71(v')) = ¢
Thus y = ¥’ € Y so that f(X) C Y since y was arbitrary. Now consider y € Y and let z = f~1(y)
so that clearly * = f~1(y) € f~1(Y) = X. Moreover, f(z) = f(f~'(y)) = y so that y € f(X).
Thus Y C f(X) as well since y was arbitrary. This shows that g(X) = f(X) =Y, from which we
conclude that g is surjective since Y was arbitrary.

Hence g : P(A) — P(B) is a bijection so that P (A) and P (B) have the same cardinality by
definition. O

Main Problem.

Proof. We show this using the Cantor-Schroeder-Bernstein (CSB) Theorem, which was proven in
Exercise 7.6 part (b).

First, we construct an injective function f from R to P (Q). Forany x e Rlet Q = {¢ € Q| ¢ < z}
so that clearly @ C Q and hence @ € P (Q). Therefore setting f(x) = @ means that f is a function
from R to P (Q). To show that f is injective consider z,y € R where z # y. Without loss of
generality we can assume that x < y so that there is a ¢ € Q where x < ¢ < y since the rationals
are order-dense in the reals. Also set @ = f(x) and P = f(y). Since ¢ > = we have that ¢ ¢ Q.
Analogously, since ¢ < y we have that ¢ € P. Thus it has to be that f(z) = Q # P = f(y), which
shows that f is injective since x and y were arbitrary.

Now, it was shown in Exercise 7.1 that Q is countably infinite and thus has the same cardinality as
Z4 . From Lemma 9.8.1 it then follows that P (Q) has the same cardinality as P (Z4) so that there
is a bijection g : P (Q) — P (Z,). Clearly then g o f is an injection from R to P (Z4).

Now let X = {0, 1}, and we construct an injection h : X¥ — R. For any sequence x = (z1,2,...) €
X% set h(x) to the decimal expansion 0.z1x2x3 . .., where clearly each z,, is the digit 0 or 1. Clearly
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h(x) is a real number so that h is a function from X“ to R. It is easy to see that h is injective since
different sequences will result in different decimal expansions. Since none of the expansions end in
an infinite sequence of 9’s, clearly the corresponding real numbers will be different.

Now, it was shown in Exercise 7.3 that P (Z4) and X“ have the same cardinality so that there is a
bijection i : P (Z4) — X“. It then follows that hoi is an injection of P (Z;.) into R. Since we have
shown the existence of both injections, the result follows from the CSB Theorem. O

8§10 Well-Ordered Sets

Exercise 10.1

Show that every well-ordered set has the least upper bound property.

Solution:

Proof. Suppose that A is a set with well-ordering <, and that B is some nonempty subset of A with
upper bound a € A. Let C then be the set of upper bounds of B, which is not empty since clearly
a € C. Then C is a nonempty subset of A and so has a smallest element ¢ since A is well-ordered.
Clearly then c is the least upper bound of B by definition. This shows that A has the least upper
bound property since B was arbitrary. O

Exercise 10.2

(a) Show that in a well-ordered set, every element except the largest (if one exists) has an immediate
Successor.

(b) Find a set in which every element has an immediate successor that is not well-ordered.

Solution:
(a)

Proof. Suppose that A is well-ordered by < and consider any a € A where a is not the largest
element. It then follows that there is some z € A where a < x since otherwise a would be the largest
element of A. Let X = {y € A|a < y} so that clearly X C A and x € X. Thus X is a nonempty
subset of A and so has a smallest element b since < well-orders A. We claim that b is the immediate
successor of a. To see this suppose that there is a z € A such that a < z < b, noting that clearly
a < bsince b € X. Then we would have that z € X but z < b so that it is not true that b < z, which
contradicts the definition of b as the smallest element of X. So it must be that no such z exists,
which shows that b is indeed the immediate successor of a. O

(b) The most natural example of such a set is Z. We show that this has the desired properties.

Proof. First, clearly Z is not well-ordered since, for example, the set of negative integers is a
nonempty subset of Z but has no smallest element. Also, for any n € Z, clearly n + 1 is the
immediate successor of n, which was shown back in Corollary 4.9.3. O
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Exercise 10.3

Both {1,2} x Z4 and Z4 x {1,2} are well-ordered in the dictionary order. Do they have the same order
type?

Solution:

We claim that they do not have the same order type, which we show presently.

Proof. First, clearly (1,1) is the smallest element of both ordered sets. For brevity let A = {1,2} x
Zy, B=17, x{1,2}, and <4 and <p be the corresponding dictionary orderings, with < being the
normal ordering of Z .

So assume that they do have the same order type so that there is an order-preserving bijection
f:A— B. Consider (2,1) € A, which is clearly not the smallest element since (2,1) # (1,1). Let
(n,b) = f(2,1) € B, which cannot be the smallest element of B since f preserves order, so that
(n,b) # (1,1). Clearly b € {1,2} so that b = 1 or b = 2. In the former cases we must have that
n > 1sothat n —1 € Z;. So set y = (n — 1,2). In the latter case set y = (n,1). It is easy to see,
and trivial to formally show, that y is the immediate predecessor of (n,b) in either case.

Now let x = f~!(y), noting that f~! is an order-preserving bijection from B to A since f is an
order-preserving bijection. It then follows that z <4 (2,1) since f(z) = y <p (n,b) = f(2,1). If
x = (m,a) then it has to be that m < 2 so that m =1 (because m € {1,2}) since there is no a € Z
where a < 1. Thus z = (1,a) for some a € Zy. We then have that a + 1 € Z, so that clearly
x=(1,a) <4 (l,a+1) <4 (2,1). From this we have, y = f(1,a) <p f(l,a+1) <p f(2,1) = (n,b),
which contradicts the fact that y is the immediate predecessor of (n,b). So it has to be that they
do not have the same order type. O

It is worth noting that, in the theory of ordinal numbers, A = {1,2} x Z has order type w+w = w-2
whereas B = Z4 x {1,2} has simply order type w. This also shows that A and B have different
order types since distinct ordinal numbers always have different order types.

Exercise 10.4

(a) Let Z_ denote the set of negative integers in the usual order. Show that a simple ordered set A
fails to be well-ordered if and only if it contains a subset having the same order type as Z_.

(b) Show that if A is simply ordered and every countable subset of A is well-ordered, then A is well-
ordered.

Solution:
(a)

Proof. Let A be a set with simple order <.

(=) Suppose that < is not a well-ordering of A. Then there exists a nonempty subset B of A such
that B has no smallest element. For any b € B define the set X, = {z € B | z < b}. Clearly X, C B
and X, # @ for any b € B since otherwise b would be the smallest element of B. Now let ¢ be
a choice function on the collection of nonempty subsets of B, which of course exists by the axiom
of choice. Since B is nonempty there is a by € B. It then follows from the principle of recursive
definition that there is a function f :7Z, — B such that

f(1) =1bo,
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f(n) = c(Xpm-1)) for n > 1.

It then is easy to show that f(n+ 1) < f(n) for all n € Z,, i.e. that the sequence defined by f is
decreasing. If we then simply define g : Z_ — Zy by g(n) = —n for n € Z_, it is clear that fog
is an order-preserving bijection from Z_ to some subset C of B. Clearly also C C A since B C A.
Hence the subset C' has the same order type as Z_.

(<) Now suppose that A has a subset B with the same order type as Z_. Clearly then B is
nonempty and has no smallest element since Z_ does not. The existence of this B shows that A
fails to be well-ordered. O

(b)

Proof. Suppose that A is a set that is simply ordered by < such that every countable subset is well-
ordered by <. Consider any nonempty subset B C A. Suppose for a moment that the restricted <
does not well-order B. Then it follows from part (a) that B has a subset C' with the same order
type as Z_. However, clearly C' C A (since B C A) and C is countable (since Z_ is countable) and
thus it should be well-ordered. As this is impossible since C' has the same order-type as Z_ (which
is clearly not well-ordered), it has to be that the restricted < does in fact well-order B. Hence B
has a <-smallest element, which shows that A is well-ordered since B was arbitrary. O

Exercise 10.5

Show the well-ordering theorem implies the choice axiom.

Solution:

Proof. Suppose that A is a collection of nonempty sets. Then, by the well-ordering theorem there
is a well-ordering < of | J.A. We construct a choice function ¢ : A — [ J.A. Consider any set A € A.
Since clearly A is then a nonempty subset of | J.A, it follows that it has a unique smallest element
a according to < since |J.A is well-ordered by <. So simply set ¢(A) = a so that clearly then
¢(A) = a € A. This shows that ¢ is in fact a choice function on A. O

Exercise 10.6

Let Sq be the minimal uncountable well-ordered set.

(a) Show that Sq has no largest element.
(b) Show that for every a € Sq, the subset {z | @ < z} is uncountable.

(c¢) Let Xo be the subset of Sq consisting of all elements « such that = has no immediate predecessor.
Show that X is uncountable.

Solution:

Lemma 10.6.1. If A is an uncountable set and B C A is countable then A — B is uncountable.

Proof. If we let C' = A — B, then clearly A = C'U B. If C were countable then A = C' U B would
be countable by Theorem 7.5 since B is also countable. Since we know that A is uncountable it
therefore must be that C' = A — B is uncountable as well. O
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Main Problem.

It is assumed in the following that < is the well-order on Sq.
(a)

Proof. Suppose to the contrary that S does have a largest element . Then, for any x € Sq, we
have that < a. Hence either z € {y € Sq | y < a} = S, or = a. Therefore Sq = S, U {a} since
clearly both S, and {a} are both subsets of Sq. Now since S, is a section of Sgq, it is countable.
Since {a} is also clearly countable, it follows from Theorem 7.5 that their union S, U {a} = Sq is
countable. But this contradicts the fact that Sq is uncountable! Hence it has to be that Sg has no
largest element as desired. O

(b)

Proof. Consider any o € Sq. Let T, = {z € Sq | @ < x} so that we must show that T, is uncount-
able. Let S, = S, U{a} so that clearly we have that S, = {x € Sq | z < a}. It is then easy to show
that T, = Sq — S,. Now, since S, is a section of Sq, it is countable so that clearly S, = S, U {a}
is also countable by Theorem 7.5. Then, since Sq itself is uncountable, it follows that T, = Sq — S,
is also uncountable by Lemma 10.6.1. O

(c)

Proof. First we show that X, is not bounded above. Assume the contrary so that a € Sq is an
upper bound of Xy. It then follows that the set T, = {x € Sq | @ < z} is such that every element
of T, has an immediate predecessor since otherwise there would be a g € T, where 3 € X so that
a would not be an upper bound of X since then o < 3.

Now, we know from part (a) that Sq has no largest element so that it follows from Exercise 10.2
that every element of Su has an immediate successor. Since T, C Sgq it follows that each element
x € T, has an immediate successor y. Moreover we then have that o < z < y so that y € T, also.
Hence every element of T, has an immediate successor in T,.

Now, we know that T, is uncountable by part (b) so that it has a smallest element /8 since it is
then a nonempty subset of the well-ordered Sq,. We derive a contradiction by showing that T, has
the same order type as Z; and is thus countable. We do this by defining an increasing bijection
f:Z4y — T,. First, set f(1) = 8 and then set f(n) to the immediate successor of f(n—1) for n > 1,
which was shown to exist above. Then the function f uniquely exists by the principle of recursive
definition. Clearly we have that f(n + 1) > f(n) for all n € Z4 since f(n + 1) is the immediate
successor of f(n). Hence f is increasing and therefore also injective.

To show that f is surjective suppose the contrary so that the set T,, — f(Z4) is nonempty. Since
clearly this is a subset of the well-ordered Sq, it has a smallest element y. Now, we know that
f(1) = B so that y # 8, and in fact 8 < y since § is the smallest element of T,. Since y € T, we
know that it has an immediate predecessor z and that a < 8 < x so that « € T,,. However, it cannot
be that © € T,, — f(Z4) since x < y and y is the smallest element of T, — f(Zy). Thus x € f(Z4) so
that there is an n € Z; where f(n) = z. But then f(n + 1) = y since y is the immediate successor
of z. As this contradicts the fact that y ¢ f(Z4), it must be that f is in fact surjective!

Therefore we have shown that f is a bijection from Z4 to T, so that T, is countable. But we know
from part (b) that T, is uncountable. As mentioned above, this is a contradiction so that it must
be that indeed Xg is not bounded above. From this it immediately follows from the contrapositive
of Theorem 10.3 that Xy must be uncountable. O

It is interesting to note that S corresponds to the ordinal number wq, which is the first uncountable
ordinal, and the set X of part (¢) corresponds to the set of limit ordinals in w;. All of the curious
properties deduced here for Sq apply to wy too, assuming we allow the choice axiom.
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Exercise 10.7

Let J be a well-ordered set. A subset Jy of J is said to be inductive if for every a € J,
(Sa CJo)éaejo.

Theorem (The principle of transfinite induction). If J is a well-ordered set and Jj is an inductive subset
of J, then Jy = J.

Solution:

Proof. Suppose that Jy is an inductive subset of the well-ordered set J. Also suppose that Jy # J.
Since Jy C J, it follows that there must be an x € J such that x ¢ Jy. Thus the set J — Jy is
nonempty. Since clearly this is also a subset of J, it must have a smallest element « since J is
well-ordered. Consider any y € S, so that y < a. Then it cannot be that y € J — Jj since otherwise
a would not be the smallest element of J — Jy. Since clearly y € J (since S, C J) it has to be
that y € Jy. Since y was arbitrary this shows that S, C Jy. It then follows that a € Jy since Jy
is inductive. However, this contradicts the fact that o € J — Jy so that our initial supposition that
Jo # J must be incorrect. Hence Jy = J as desired. O

Exercise 10.8

(a) Let A; and A, be disjoint sets, well-ordered by <; and <a, respectively. Define an order relation
on A; U As by letting a < b either if a,b € Ay and a <1 b, or if a,b € Ay and a <3 b, or if a € A,
and b € Ay. Show that this is a well-ordering.

(b) Generalize (a) to an arbitrary family of disjoint well-ordered sets, indexed by a well-ordered set.

Solution:
(a)

Proof. 1t is easy but tedious to show that < is actually an order on A; U As, so we shall skip that
proof and jump straight to the proof that it is a well-ordering.

So consider any nonempty subset A of A; U As.

Case: A1 NA # &. Then clearly A; N A is a nonempty subset of A; so that it has a smallest element
a according to <; since it is a well-ordering. We then claim that a is the smallest element of A
according to <. So consider any x € A so that clearly also z € A; U As. Hence z € Ay or x € As.
If x € Ay then obviously x € A; N A so that a <; x since a is the smallest element of A; N A. Then
also a < z by definition since a and x are both in A;. On the other hand, if z € A5 then we again
have that ¢ < x since a € A; and x € Ay. Therefore a < x no matter what so that a is the smallest
element of A since x was arbitrary.

Case: A1 N A = @. Then it has to be that A3 N A # & since A is nonempty and A = A; U As.
Thus As N A is a nonempty subset of Ay so that it has a smallest element a by <5 since it is a
well-ordering. We claim that a is the smallest element of A. So consider any x € A. It has to be
that & € Ag since A; N A is empty and A = Ay U As. Therefore x € Ao N A so that a <5 x since a is
the smallest element of A N A. Then, by definition, a < x since both a and x are elements of As.
This shows that a is the smallest element of A since x was arbitrary.

In either case we have shown that A has a smallest element so that < is a well-ordering of A; U A,
since A was arbitrary. O
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Note that well-ordering a union of two well-ordered sets like this is analogous to the addition of two
ordinal numbers. In particular if A; has order type oy and A; has order type as where a; and as
are an ordinal numbers, then A; U As with the above well-ordering has order type oy + as.

(b) Suppose that J is well-ordered by <; and {A4}, ¢ is a collection of well-ordered sets where A,
is well-ordered by <, for each o € J. Now define an order < on A = (J,; Aa as follows. For any x
and y in A there are clearly & and § in J where x € A, and y € Ag, noting that o and 8 are unique
since the collection is mutually disjoint. So set x < y if and only if either « = 8 and = <, y, or else
a <y B, noting that these are clearly mutually exclusive. We then claim that < is a well-ordering
of A.

Proof. Let B be any nonempty subset of A and I be the set of o € J such that there is an x € B
where € A,. Now, since B is nonempty, there is a z € B. Since B C A = |, ; Aa, there is an
v € J where z € A,. Then clearly v € I so that I is a nonempty subset of J. Then I has a smallest
element « since it is well-ordered by < ;. By the definition of I there is a w € B where w € A,.
Then clearly w € A, N B so that it is a nonempty subset of A,. It then follows that A, N B has a
smallest element a according to <, since it is a well-ordering on A,. We claim that a is the smallest
element of B by <.

So consider any « € B so that there is a 8 € J where x € Ag since B C A.

Case: § = a. Then both a and z are in A, N B = Ag N B so that a <, b since a is the smallest
element of A, N B. It then follows from the definition of < that a < x.

Case: 8 # «. Clearly then 5 € I so that o <; (3 since « is the smallest element of J. Since we know
that 8 # « it must be that o <; . From this it follows that a < x by definition.

Hence in either case it is true that a < x, which shows that a is the smallest element of B. Since B
was an arbitrary nonempty subset of A, this shows that A is well-ordered by <. O

Exercise 10.9

Consider the subset A of (Z4)“ consisting of all infinite sequences of positive integers x = (1, x2,...)
that end in an infinite string of 1’s. Give A the following order: x <y if x,, < y, and z; = y; for i > n.
We call this the “antidictionary order” on A.

(a) Show that for every n, there is a section of A that has the same order type as (Z4)™ in the dictionary
order.

(b) Show that A is well-ordered.

Solution:
(a)

Proof. Consider any positive integer n. Define a sequence a = (ay,as,...) in A by

2 1=n+1
a; =
1 i#n+1.

We claim that the section S, has the same order type as (Z4)". To show this we construct an
order-preserving mapping f : Sa — (Z4)™. So consider any sequence x = (r1,Z2,...) in S, so
that x < a. Now define a finite sequence where y; = x,_;41 for any i € {1,...,n}, and set
fx)=y=(y1,...,Yn). Clearly f(x) € (Z4)" since x € A C (Z4+)*“.
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Here we must digress for a moment and show that, for all x = (x1,22,...) € A, x € S, if and only
if z; =1 for all i > n.

(=) We show the contrapositive. So suppose that there is an ¢ > n where z; # 1. Moreover let i
be the greatest such index, which must exist since x must end in an infinite string of 1’s. Clearly
then the fact that x; € Z, and x; # 1 means that x; > 1. Now, if ¢ > n + 1 then we have that
z; > 1 =a; and x; =1 = a; for all j > i so that clearly x > a. If i = n+ 1 and ¢ > 2 clearly
T; > 2 =ap41 =a; and x5 =1 = a; for all j > 7 so that again x > a. Lastly suppose that i =n+1
but that x; =2 = ap41 = a;. If ; =1 =q; for all j <i=n+1 then clearly x = a. On the other
hand if there is a 1 < j < n + 1 =i where z; # 1 then let j be the greatest such index. Then we
clearly have x; > 1 = a; while x, = a), for all k£ > j so that x > a. Therefore in every one of these
exhaustive cases we have that x > a so that a ¢ S,.

(<) Now suppose that x; = 1 for every i« > n. Then we have that z,41 = 1 < 2 = a1 while
z; =1=aq; forall j >n+1>nso that x < a and hence x € S,.

Now, returning to the main proof, we first show that f as defined above preserves order. To this end
let < denote the dictionary order on (Z)™. Now consider any x = (1,2, ...) and x’ = (2}, z),...)
in S, where x < x’. Also let y = f(x) and y’ = f(x’). Then there is an m € Z, where x,,, < z/,
and z; = x} for all ¢ > m. We also have by what was shown above that z; = 1} for all ¢ > n
since x,x’ € S,. So it has to be that m < n. It then follows from the fact that 1 < m < n that
1<n-m+1<nas well. Thus we have

Yn—m+1 = Tpn—(n—m+1)+1 = Tm < I;n = xln—(n—m—i-l)—i-l = y;L—m-&-l .
For any 1 < j <n—m+ 1 we have that n — j +1 > m so that

_ . _ / _ /
Yji = Tn—j+1 = Tp—jy1 = Yj -

Thus by definition we have that f(x) =y <y’ = f(x’), which shows that f preserves order since x
and x’ were arbitrary. Note that this also clearly shows that f is injective.

To show that f is also surjective, consider any y = (y1,...,yn) € (Z4)". Now define a sequence

so that clearly x = (z1,2,...) € Sa by what was shown above. Now let y' = (y1,...,y,) = f(x).
Consider any 1 <i<mnand let j =n — i+ 1 so that also n — j + 1 = ¢, noting also that 1 < j < n.
Then we have

Yi = Yn—j+1 = Lj = Tn—it+l = Z/é
by the definition of f. Since ¢ was arbitrary this shows that f(x) = y’ =y, which shows that f is

surjective since y was arbitrary.

The existence of f therefore shows that S, and (Z4)™ have the same order type. O

(b)

Proof. Consider any nonempty subset B of A. Clearly the sequence (1,1,...) is the smallest element
of A and hence if it is in B then it is also the smallest element of B. So suppose that (1,1,...) ¢ B
so that, for every x € B there is a unique greatest nx € Z4 where z,,, > 1 but z; = 1 for all i > nx.
So let I = {nx | x € B}, noting that B # & implies that I # & as well. Thus I is a nonempty
subset of Z, and hence has a smallest element n. If we then let B,, be the set of sequences x € B
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where x,, > 1 but x; = 1 for all ¢ > n, then the fact that n € I clearly implies that B,, # &. Also,
if we define the sequence

2 1=n+1
a; = .
1 i#n+1

as in part (a) then it follows from what was shown there that B,, C Sa. Moreover it was shown that
Sa has the same order type as the dictionary order of (Z4)", which we know to be a well-ordering.
Hence S, must also be a well-ordering so that B,, has a smallest element b = (by, by, ...) since it is
a nonempty subset of S,. We claim that b is in fact the smallest element of all of B.

So consider any x € B so that ny € I. It then follows that n < ny since it is the smallest element
of I. If n = ny then we have that x € B,, so that b < x since it is the smallest element of B,,.
If n < nx then we have that b, =1 < x,, but b = 1 = z; for every ¢ > nx > n. This shows
that b < x. Thus in all cases b < x, which shows that b is the smallest element of B since x was
arbitrary. Since B was arbitrary, this shows that A is well-ordered as desired. O

Note that, in the theory of ordinal numbers, the set (Z4)™ (and therefore the corresponding section
of A) has order type w™. It would seem then that the set A has order type w®.

Exercise 10.10

Theorem. Let J and C be well-ordered sets; assume that there is no surjective function mapping
section of J onto C. Then there exists a unique function h : J — C satisfying the equation

(%) h(z) = smallest[C — h(Sy)]

for each = € J, where S, is the section of J by .
Proof.

(a) If h and k map sections of J, or all of J, into C' and satisfy (x) for all  in their respective domains,
show that h(x) = k(x) for all z in both domains.

(b) If there exists a function h : S, — C satisfying (*), show that there exists a function k : S, U{a} —
C satisfying (x).

(¢) If K C J and for all & € K there exists a function h, : S, — C satisfying (*), show that there
exists a function

ki) Sa—cC
acK
satisfying ().

ow by transfinite induction that for every 0 € J, there exists a function : — (' satistying
d) Show b finite inducti hat f B € J, th i f ion hg : Sg C isfyi
*). |Hint: as an immediate predecessor «, then =S, Ua;. If not, 1s the union of a
Hi Ifpgh i di d hen Sg =S If Sp is th i f all
Se with o < 3]

(e) Prove the theorem.

Solution:

The following lemma is proof by transfinite induction, which is more straightforward than having to
frame everything in terms of inductive sets. Henceforth we use this whenever transfinite induction
is required.
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Lemma 10.10.1. (Proof by transfinite induction) Suppose that J is a well-ordered set and P(x)
is a proposition with parameter x. Suppose also that if P(x) is true for all x € S, (where S, is a
section of J), then P(«) is also true. Then P(B) is true for every g € J.

Proof. Let Jy = {x € J | P(x)}. We show that Jy is inductive. So consider any o € J and suppose
that S, C Jo. Then, for any = € S, we have that x € Jy so that P(x). It then follows that P(«a)
is also true since x was arbitrary, and so a € Jy. Since a € J was arbitrary, this shows that Jy is
inductive. It then follows from Exercise 10.7 that Jy = J. So consider any 3 € J so that also 5 € Jy
and hence P(3) is true. Since § was arbitrary, this shows the desired result. O

Main Problem.

(a)

Proof. First suppose that the domains of & and k are sets H and K where each is either a section
of J or J itself. Since this is the case, we can assume without loss of generality that H C K and so
H is exactly the domain common to both A and k. Now suppose that the hypothesis we are trying
to prove is not true so that there is an z in both domains (i.e. x € H) where h(x) # k(z). We can
also assume that x is the smallest such element since H C J and J is well-ordered. It then clearly

follows that S, C H is a section of J and that h(y) = k(y) for all y € S,.. From this we clearly have
that h(S;) = k(S;). But then we have

h(z) = smallest[C' — h(S;)] = smallest[C — k(S,)] = k(x)
since both h and k satisfy () and z is in the domain of both. This contradicts the supposition

that h(x) # k(z) so that it must be that no such = exists and hence h and k are the same in their
common domain as desired. O

(b)

Proof. Suppose that h : S, — C is such a function satisfying (). Now let Sy = So U {a} and we
define k£ : S, — C as follows. For any = € S, set

) h(z) x € Sy
hle) = {smallest[C —h(Sy)] z=q.

We note that clearly S, and {«a} are disjoint so that this is unambiguous. We also note that h is

not surjective onto C' since S, is a section of J, and hence C' — h(S,) # @ and so has a smallest
element since C' is well-ordered.

Now we show that k satisfies (x). First, clearly h(S;) = k(S.) for any x < a since k(y) = h(y) by
definition for any y € S, C S,. Now consider any z € S,. If z = « then by definition we have

k(x) = smallest[C' — h(Sy)] = smallest[C' — k(Sy)] = smallest[C' — k(S,)] .
On the other hand, if z € S, then x < «a so that
k(x) = h(z) = smallest[C — h(Sz)] = smallest[C — k(Sy)]

since h satisfies (). Therefore, since x was arbitrary, this shows that k also satisfies (). O

(c)
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Proof. Let

k= ha,

acK

which we claim is the function we seek.

First we show that k is actually a function from (J,cx Sa to C. So consider any x in the domain of
k. Suppose that (z,a) and (z,b) are both in & so that there are o and 5 in K where (z,a) € h, and
(x,b) € hg. Since h, and hg both satisfy (x), it follows from part (a) that a = ho(x) = hg(x) =
since clearly x is in the domain of both. This shows that k is indeed a function since (x,a) and
(w,b) were arbitrary. Also clearly the domain of & is | J,c i Sa since, for any € |J, ¢ x Sa, we have
that there is an o € K where x € S,,. Hence x is in the domain of h, and so in the domain of k. In
the other direction, clearly if « is in the domain of &k then it is in the domain of h,, for some a € K.
Since this domain is Sy, clearly 2 € (J, i Sa. Lastly, obviously the range of k£ can be C' since this
is the range of every hg.

Now we show that k satisfies (). So consider any x € |J,cx Sa so that x € S, for some a € K.
Clearly we have that k(y ) = ho(y) for every y € S, since h, C k. It then immediately follows that
k(x) = h(z) and k(S;) = ha(Sy) since Sy C S,. Then, since h,, satisfies (x), we have

k(x) = ho(x) = smallest[C' — h,(S;)] = smallest[C' — k(S;)] .

Since z was arbitrary, this shows that k satisfies (%) as desired. O

(d)

Proof. Consider any § € J and suppose that, for every x € Sg, there is a function h, : S, — C
satisfying (*). Now, if 5 has an immediate predecessor o then we claim that Sy = S, U {a}. First
if x € Sz then z < 8 so that z < a since « is the immediate predecessor of 5. If x < o then 2 € S,
and if = « then x € {a}. Hence in either case we have that € S, U {a}. Now suppose that
x € SqU{a}. If x € S, then x < a < f so that s € Szg. On the other hand if z € {a} then
x = a < [ so that again x € Sg. Thus we have shown that Sg C S, U {a} and S, U{a} C Sz so
that Sg = So U {a}. Since a € Sp it follows that there is an h, : S, — C that satisfies (x). Then,
by part (b), we have that there is an hg : Sg = S, U {a} — C that also satisfies ().

If B does not have an immediate predecessor then we claim that Sz = U'y <5 Sy So consider any
x € S so that x < . Since z cannot be the immediate predecessor of 3, there must be an a where
x < a< f. Then z € S, so that, since o < 3, clearly = € | <8 Sy. Now suppose that = € U7<5

so that there is an o < 8 where x € S,. Then clearly z < a < 3 so that also x € Sg. Thus we have
shown that Sg C |J, 55, and U, 5 Sy C Sg so that Sg =, _55,. Now, clearly Sz is a subset
of J where there is an h, : S, — C satisfying (%) for every z € Sg. Then it follows from what was
shown in part (c) that there is a function hg from J = U,<5 Sy = Sp to C that satisfies

(%)-
Therefore, in either case, we have shown that there is an hg : Sz — C' that satisfies (). The desired
result then follows by transfinite induction. O

(e)

Proof. First suppose that J has no largest element. Then we claim that J = (J,; So. For any
x € J there must be a y € J where < y since = cannot be the greatest element of J. Hence x € 5,
so that also clearly |, ¢ ; Sa- Then, for any x € J,¢; Sa, there is an a € J where x € S,,. Clearly
Sa C J so that z € J also. Hence J C U(XEJS and (J,c;Sa C J so that J = J,c; Sa. Since we
know from part (d) that there is an h, : S, —> C that satisfies (%) for every a € J, it follows from
part (c) that there is a function h from |J = J to C that satisfies ().

’Y<SB

aGJ
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If J does have a largest element § then clearly J = Sz U {f}. Since we know that there is an
hg : Sg — C that satisfies (x) by part (d), it follows from part (b) that there is a function h from
SgU{B} = J to C that satisfies (*). Hence the desired function h exists in both cases. part (a) also
clearly shows that this function is unique. O

Exercise 10.11

Let A and B be two sets. Using the well-ordering theorem, prove that either they have the same
cardinality, or one has cardinality greater than the other. [Hint: If there is no surjection f : A — B,
apply the preceding exercise. |

Solution:

Lemma 10.11.1. For well-ordered sets A # & and B there is an injection from A to B if and only
if there is a surjection from B to A.

Proof. (=) Suppose that there is an injection f: A — B and A # &. Then there is an a € A. We
then construct a surjection g : B — A as follows. For any y € B if b € f(A) then there is a unique
x € A where y = f(x). It is unique since, if  and 2’ are in A where f(z) =y = f(2'), then z = 2’
since f is injective. So in this case set g(y) = z. If b ¢ f(A), then set g(y) = a. Clearly g is a
function from B to A. To show that g is surjective, consider any = € A and let y = f(x), which
is clearly an element of B. Then, since obviously y € f(A) and z is the unique x € A such that
y = f(x), we have that g(y) = = by definition. This shows that g is surjective since x was arbitrary.

(<) Now suppose that g : B — A is surjective. We then construct an injection f : A — B as follows.
For any 2 € A we have that the set B, = {y € B | g(y) = z} is nonempty since g is surjective. Hence
B, has a unique smallest element y since it is a nonempty subset of B and B is well-ordered. So
simply set f(x) = y. Clearly f is a function from A to B. To show that f is injective, consider
xz,x' € A where x # x’. Then clearly the sets B, and B, have to be disjoint for otherwise there
would be a y € B where g(y) = z and g(y) = 2/, which is impossible if z # 2’ since g is a function.
Hence, since f(z) and f(z') are defined to be the smallest elements of B, and B,, respectively, we
have f(z) # f(z'). This shows that f is injective since x and =’ were arbitrary. O

Main Problem.

Proof. First suppose that A and B are each well-ordered, which follows from the well-ordering
theorem. Also suppose that A and B do not have the same cardinality so that it suffices to show
that either B has greater cardinality than A or vice versa. If A = & then it cannot be that B = & as
well since then they would have the same cardinality (& would be a trivial bijection between them).
Hence B # @ so that clearly B has greater cardinality than A. Thus in what follows assume that
A+ o.

Suppose that there is an injection from A to B. Then there cannot be an injection from B to A since,
if there were, then A and B would have the same cardinality by the Cantor-Schroeder-Bernstein
Theorem (shown in Exercise 7.6 part (b)). Thus B has greater cardinality than A by definition.

On the other hand, if there is no injection from A to B then there is no surjection from B to A by
Lemma 10.11.1 since they are both well-ordered and A # @. It then clearly follows that no section
of B can be a surjection onto A since then any extension of such a function to all of B would also be
a surjection onto A. From this we have by Exercise 10.10 that there is a unique function h: B — A
with the property that

h(x) = smallest[A — h(S,)],
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where of course S, is the section of B by =z.

We claim that h is injective. So consider any y and 3’ in B where y # . Without loss of generality
we can assume that y <y (by the well-ordering on B). It then follows that y € Sy so that clearly
h(y) € h(Sy ). However, we have that h(y’) is the smallest element of A — h(S,/) so that obviously
h(y') ¢ h(S, ). Hence it must be that h(y) # h(y’), which shows that & is injective since y and y’
were arbitrary.

Therefore there is an injection from B to A but none from A to B so that A has greater cardinality
than B by definition. This shows the desired result since these cases are exhaustive. O

811 The Maximum Principle

Exercise 11.1

If a and b are real numbers, define a < b if b — a is positive and rational. Show this is a strict partial
order on R. What are the maximal simply ordered subsets?

Solution:

Lemma 11.1.1. If B is a maximal simply ordered subset of a nonempty partially ordered set A,
then B is nonempty.

Proof. Since A is nonempty, there is an a € A. Clearly @ is vacuously simply ordered. However,
it cannot be maximal since clearly the set {a} properly contains & as a subset but is also clearly
vacuously simply ordered by <. Hence, since B is maximal it must be that B # & as desired. O

Main Problem.

First we show that < is a strict partial order.

Proof. First consider any a € R so that a —a = 0, which is not positive and hence it is not true that
a < a. Therefore < is nonreflexive. Now consider a,b,c € R where a < b and b < ¢. Then we have
that £ = b — a and y = ¢ — b are positive and rational. It then clearly follows that

c—a=(c=b+(b—-a)=y+=z

is also rational and positive since both x and y are. Thus a < ¢, which shows that < is transitive.
Since < was shown to be nonreflexive and transitive, this shows that it is a strict partial order as
desired. O

For any element x € R, define the set A, = {y € R |z —y € Q}. We then claim that the collection
A= {A.;}, g is exactly the set of all maximal simply ordered subsets.

Proof. Suppose that B is the set of maximally simply ordered subsets of R. Then we show that
A=B.

To show that A C B consider any X € A so that X = A, for some z € R. Now consider any distinct
y and z in X = A, so that by definition x — y and x — z are both rational so that z —z = —(x — 2) is
also rational. Then clearly z —y = (2 — ) + (x — y) is rational as is y — z = —(z —y). Since y and z
are distinct, we have that z —y and y — z are nonzero and that either y < z or z < y. In the former
case we have that z —y is a positive rational number and in the latter y — z is. Thus either y < z or
z <y, which shows that X = A, is simply ordered since y and z were arbitrary. Now consider any
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y€ A, and z ¢ A, so that x — y is rational but « — z is irrational so that z —z = —(z — 2) is also
irrational. Since a rational added to an irrational is also irrational (which is trivially easy to prove),
it follows that z —y = (z — x) + (x — y) is irrational as is y — z = —(z — y). Hence it cannot be that
either y < z or z < y. Since y € X and z ¢ X were arbitrary, this show that X is a maximal simply
ordered set so that X € B. This shows that A C B since X was arbitrary.

Now suppose that X € B so that X is a maximal simply ordered set. It follows from Lemma 11.1.1
that X is nonempty so that there is an z € X, and we claim that in fact X = A,. So consider any
y€e X. Clearlyify =z thenx —y =2 —x =0 € Q so that y € A,. If y # = than either x < y or
y < z since X is simply ordered by <. In the former case we have that y — x is positive and rational
so that ¢ —y = —(y — x) is negative and rational, and hence y € A,. In the latter case we have
that = — y is positive and rational so that clearly again y € A,. Since y was arbitrary this shows
that X C A,. Now consider any y € A, so that xt —y € Q. If y = x then clearly y € X. If y # x
then either y — x or x — y is positive, and also clearly rational since = — y is rational. Hence either
x <y ory < x. It then follows from the fact that X is maximally simply ordered that y must be in
X since otherwise y would not be comparable with z. Since again y was arbitrary this shows that
A, C X. Hence X = A, so that clearly X € {AQE}IG]R = A. Since X was arbitrary this shows that
BcC A

Therefore we have shown that A = B, which shows that A is exactly the complete set of maximally
simply ordered subsets. O

As an example of a particular maximally well-ordered set we have Q = Ag itself.

Exercise 11.2

(a) Let < be a strict partial order on the set A. Define a relation on A by letting a < b if either a < b
or a = b. Show that this relation has the following properties, which are called the partial order
arioms:

(i) a<aforallac A
(i) a<band b<a = a=0b.
(iii) axband b2 c=a=<c

(b) Let P be a relation on A that satisfies properties (i)-(iii). Define a relation S on A by letting a.Sb

if aPb and a # b. Show that S is a strict partial order on A.

Solution:
(a)
Proof. We show that < satisfies the three partial order axioms:

(i) Consider any a € A. Since obviously a = a we have by definition that a =< a.

(ii) Suppose that a < b and b < a. Then either a < b or a = b, and either b < a or b = a. So suppose
that a # b so that it must be that a < b and b < a. Since < is a strict partial order, it is transitive
so that a < a since a < b and b < a. But this contradicts the nonreflexivity of <. Hence it must be
that a = b as desired.

(iii) Suppose that a < b and b < ¢. Hence either a < b or a = b, and either b < cor b = c.

Case: a < b. If b < ¢ then clearly a < ¢ since < is transitive (since it is a strict partial order). If
b = c then we have that a < b= c.
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Case: a =b. If b < ¢ then we have that a = b < ¢. If b = ¢ then we have that a = b = c.

Hence in all cases and sub-cases we have that a < ¢ or @ = ¢, and thus a < ¢ by definition. O

(b)

Proof. We show that S satisfies the two strict partial order axioms:

Nonreflexivity. Consider any a € A. Since a = a it follows that it is not true that a # a and hence
not true that aSa. Thus S is nonreflexive since a was arbitrary.

Transitivity. Suppose that aSb and bSc. Hence by definition aPb and a # b, and bPc and b # c.
Then, by the transitivity property of the partial order axioms, which is property (iii), we have that
aPc. Suppose for a moment that a = ¢. Then we would have aPb and bPa (since bPc and ¢ = a).
Then by partial order axiom (ii) we have that a = b, which contradicts the fact that a # b. So it
must be that a # ¢. Thus aPc and a # ¢ so that aSc, which shows that S is transitive. O

Exercise 11.3

Let A be a set with a strict partial order <; let € A. Suppose that we wish to find a maximal simply
ordered subset B of A that contains z. One plausible way of attempting to define B is to let B equal
the set of all those elements of A that a comparable with x:

B={y|y€ A and either z <y or y < z} .

But this will not always work. In which of Examples 1 and 2 will this procedure succeed and in which
will it not?

Solution:

First, it seems that, as defined above, B does not actually contain x itself! This is because it is not
true that z < = by the nonreflexivity of the partial order <. We assume that this was an oversight,
which is easily remedied by defining

B'={y € A|eitherx <yory<ax}
and B = B’ U {z}.
For Example 1, a circular region in R? is clearly

Cxorr = {Xx ER? | |x —x0| <71},

where the point xq € R? is the center of the circle, r € Ry is the radius, and |(z,y)| = /22 + ¢? is
the standard vector magnitude. Then the collection A is the set of all circular regions:

A= {Cxopr |x0o €R* and r e Ry } .

Then let C = {C(o,0), | 7 € R4} be the set of circles centered at the origin, which is a maximal
simply ordered subset according to the example (and this is not difficult to show). Arbitrarily
choose X = Cg,0),1, that is the circular region of radius 1 centered at the origin, so that clearly
X € C. Since the partial order in this is example is “is a proper subset of”, define

B={YeA|lYCXorXCY}

and B = B’ U {X}. The question is then whether B = C. We claim that, for this example, this is
not the case.

Page 121



Proof. Consider the set C(; )2 and any x € X = C(g,0),1 so that [x — (0,0)| < 1. Then we have
= (1,0)] < Jx— (0,0 +(0,0) — (1,0)] < 1+|(~1,0)| =1+1=2,

where we have utilized the ever-useful triangle inequality. Therefore x € C(; )2 so that X C C(10) 2
since x was arbitrary. However, clearly the point (1,0) € Cy )2 but we have that (1,0) ¢ C(o,0),1 =
X since |(1,0) —(0,0)| = [(1,0)] = 1 > 1. This shows that X C C(1,),2 so that by definition
Ca,0),2 € B' and therefore C(1 gy 2 € B = B'U{X}. But clearly C(y g2 ¢ C since it is not centered
at the origin. This shows that B # C as desired. O

Hence it would seem that this method of attempting to define a maximal simply ordered subset
containing X has failed in this example. It is easy to come up with an analogous counterexample
that shows the same result of the other example of a maximal simply ordered subset of circles
tangent to the y-axis at the origin.

Regarding Example 2, recall that the order < is defined by

(w0, 90) < (z1,91)

if yo = y1 and zg < 1 for (zo,y0) and (x1,91) in R2. It is then claimed (which is again easy to
show) that maximal simply ordered subsets are horizontal lines in the plane, that is sets

Ly, = {(x,y) € R? ly = yO}
for some yo € R. So counsider any such yo € R and let x = (0,yp). Now define
B ={yeR’|[x<yory<x}

and B = B’ U {x}. In contrast to Example 1, we here claim that B = L, which is to say that B
does define the maximal simply ordered subset.

Proof. Consider any (z,y) € B = B’ U {x} so that either (z,y) € B’ or (z,y) = x. Clearly if
(x,y) =x = (0,y0) then (z,y) € Ly, since y = yo. On the other hand, if (x,y) € B’ then (z,y) < x
or x < (z,y). In the former case we have that (z,y) < x = (0,y0) so that, by definition y = yo
and z < 0. Clearly then (z,y) = (z,y0) € Ly, by definition. In the latter case we also have y = yj
(though this time 0 < ) so that again (x,y) € L,,. Since (z,y) was arbitrary, this shows that
BC Ly,

Now consider any (z,y) € L, so that y = yo. If x = 0 then (z,y) = (0,y0) = x so that obviously
(x,y) € {x}. If 0 < = then (z,y) = (z,%0) < (0,40) = x so that (x,y) € B’. Similarly, if x < 0,
then x = (0,y0) < (z,y0) = (z,y) so that again (x,y) € B’. Hence in all cases either (z,y) € B’
or (z,y) € {x} so that (z,y) € B’ U {x} = B. This shows that L,, C B since again (z,y) was
arbitrary.

Thus we have shown that B = L, as desired. O

So it would seem that, in this example, this naive technique does work!

Exercise 11.4
Given two points (g, yo) and (x1,%1) of R?, define

(z0,%0) < (1,91)

if xo < 21 and yo < y1. Show that the curves y = 2% and y = 2 are maximal simply ordered subsets of
R?, and the curve y = 2 is not. Find all maximal simply ordered subsets.
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Solution:

First define
A={(zy) eR* |y=2"}.

We show that it is a maximal simply ordered subset of R2.

Proof. First we show that A is simply ordered by <. Consider distinct (zg, o) and (z1,y1) in A so
that yo = 23 and y; = 3. Since they are distinct, it has to be that xg # x1 or yo # y1. The latter
case actually implies the former since the function f(z) = 2® is a well-defined function. Hence we
can assume that xg # x1, from which we can also assume without loss of generality that zo < z7.
Since f(z) = 2? is also a monotonically increasing function (which is easy to show), it then follows
that yo = 23 < 23 = y;. Thus we have that zop < 21 and yo < y1 so that (zo,y0) < (21,%1) by
definition. Since (zo,yo) and (x1,y;) were arbitrary, this shows that < is a simple order on A.

To show that it is maximal suppose that B is any proper superset of A so that there is an (z,y) € B
where (r,7) ¢ A. Therefore clearly y # 2® by definition. Now let z = 2% so that y # 2° = 2
but (z,z) € A. Clearly it is not true that < x so that it can neither be that (z,y) < (z, 2) nor
(x,z) < (z,y). Hence (z,y) and (z,z) are incomparable in <. This shows that B is not simply
ordered and thus that A is maximal since B was an arbitrary superset. O

Now redefine

A={(z,y) eR? |y =2},

which we also show is a maximal simply ordered subset of R2.

Proof. To show that A is simply ordered consider distinct (zg,yo) and (x1,y1) in A so that yo =
y1 = 2. Since these points are distinct and yyo = ys is must be that zg # x1, from which we can
assume that zy < 1 without loss of generality. But then clearly it is true that zg < 27 and yg <1
so that (zo,yo) < (21,y1). Since these points were arbitrary this shows that A is simply ordered by
<.

To show that it is maximal suppose that B is any proper superset of A so that there is an (x,y) € B
where (z,y) ¢ A. It then follows that y # 2 so that the point (z,2) € A but (z,2) # (x,y). Clearly
it can be that neither (z,2) < (z,y) nor (x,y) < (z,2) since it is not true that z < x. Hence (z,y)
and (z,2) are incomparable in <. This shows that B is not simply ordered by <. Since B was an
arbitrary superset this shows that A is maximal. O

Now let
A={(z,y) eR* |y =2} .

We claim that this subset is not simply ordered by < and therefore cannot be a maximal simply
ordered subset.

Proof. Consider the clearly distinct points (—1,1) and (0,0). Clearly since 0 = 0% and 1 = (—1)?
these are both in A. However, since 1 > 0 it is not true that —1 < 0 and 1 < 0, and therefore it
is not true that (—1,1) < (0,0). Similarly since 0 > —1 it is not true that 0 < —1 and 0 < 1, and
therefore it is not true that (0,0) < (—1,1). Hence the two distinct points are both in A but are
not comparable. This suffices to show that A is not simply ordered by <. O

Page 123




We now claim that the maximal simply ordered subsets of R? as ordered by < are exactly the
collection of sets of the form

A ={(z,y) eR? |y = f(x)}

for some function f : (a,b) — R, where (a,b) is an open interval of R, noting that it could be that
a = —oo and/or b = co. The function f must also satisfy the following properties:

(i) It is non-decreasing. Recall that this means that z < y implies that f(z) < f(y) for any
x,y € (a,b).

(ii) If b < oo then its image is unbounded above.

(iii) If a > —oo then its image is unbounded below.

Now, let A be the collection of all these subsets and let B denote the set of all maximal simply
ordered subsets. We show that A = B.

Proof. (C) First consider any Ay € A so that f : (a,b) — R with the properties above for some
open interval (a,b). To show that Ay is simply ordered by < consider any distinct (z,y) and
(',y') in Ay so that y = f(z) and v’ = f(a’). Since these are distinct it follows that « # 2’ or
f(z) =y #y = f(2). In the latter case it also follows that x # 2’ as well for otherwise f would
not be a function. Hence we can, without loss of generality, assume that x < z’. Since f is non-
decreasing it follows that also y = f(z) < f(2') = ¢/, and therefore by definition (z,y) < (/,y').
Since these elements of Ay were arbitrary, it follows that A is simply ordered by <.

To show that Ay is maximal consider any proper superset A of Ay so that there is an (z,y) € A
where (z,y) ¢ Ay. There are a few possible ways in which (z,y) can fail to be an element of Ay.

Case: = € (a,b). Then it must be that y # f(x) since (z,y) ¢ Ay. Since it is not true that
x < x, it has to be that neither (z,y) < (z, f(z)) nor (z, f(z)), (x,y). Hence (z,y) and (z, f(x))
are incomparable elements of A (noting that clearly (z,(f(z)) € Ay C A) so that A is not simply
ordered by <.

Case: z > b. Note that this is only possible if b < co so that b € R. Thus in this case we have that
the image of f is unbounded above by property (ii). Hence there is a y, € reals where ¢y > y and
y' is in the image of f. Thus there is also an 2’ € (a,b) where y = f(2') so that (2/,y") € Ay C A.
Now, we have ' < b < x but ¥’ > y so that it is not true that ¢’ <y, and hence it cannot be that
(2',y") < (x,y). Similarly is it is clearly not true that < 2’ so that it cannot be that (z,y) < (2, y")
either. This shows that (z,y) and (2’,y’) are incomparable elements of A so that A is not simply
ordered.

Case: < a. An argument analogous to the previous case shows that a > —oo so that the image of
f is unbounded below. From this it follows again that A is not simply ordered.

Thus in all cases A is not simply ordered so that Ay is a maximal simply ordered subset of R? since
A was an arbitrary proper superset. This shows that Ay € B so that A C B since Ay was arbitrary.

(D) Now consider any B € B so that B is a maximal simply ordered set by <. Define
X ={zeR|(z,y) € B for some y € R} .
We prove that B has the following properties:

(1) If (zo,yo) and (x1,y1) are in B and g < x1 then yg < y;.

(2) For every x € X there is a unique y € R where (z,y) € B.
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To show show (1) consider (zg,yo) and (z1,y1) in B and suppose that xg < x1. Since B is simply
ordered, it must be that either (zg,yo0) < (z1,v1) or (z1,y1) < (2o, Y0). Since z¢ < x7 it clearly
must be that (zg,yo) < (z1,y1) and hence also yo < y;.

To show (2) consider any z € X. Clearly there is a y € R where (z,y) € B by the definition of X.
To show that this y is unique, suppose that (z,yo) and (z,y1) are both in B but that yo # y1 so
that (z,y0) and (z,y1) are distinct. Since B is simply ordered they must be comparable in < but
they clearly cannot be since it is not true that x < x. As this is a contradiction, it must be that
Yo = Y1-

With that out of the way, let b be the least upper bound of X if it is bounded above and b = oo
otherwise. Similarly let a be the greatest lower bound if X is bounded below and a = —oo otherwise.
Now we claim that X is equal to the open interval (a,b).

So consider any = € X so that then clearly a < x < b since a and b are lower and upper bounds
of X, respectively. Clearly if b = oo then it cannot be that @ = b (since z € R) so assume that
beRand x =b. Then b = x € X so that by property (2) there is a unique y € R where (b,y) € B.
Clearly then (b+1,y) ¢ B, since b+1 ¢ X, so that the set B’ = BU{(b+ 1,y)} is a proper superset
of B. Now consider any (z’,y") € B so that clearly 2’ € X and hence 2’ < b < b+ 1. By property
(1) above it also follows that 3y’ < y, and so we have that (z/,y) < (b + 1,y). Since (z/,y’) was
arbitrary, this shows that (b + 1,y) is comparable to every element of B and hence B’ is simply
ordered by <. But this is not possible since B is maximal and B’ is a proper superset. Hence it
must be that x # b. An analogous argument shows that x # a as well and hence a < z < b. Since
x was arbitrary this shows that X C (a,b).

Now consider any x € (a,b) so that a < x < b. Since b is the least upper bound of X, it has to
be that z is not an upper of X so that there is an z, € X where < x4 < b (clearly the existence
of x4 also follows when b = oo since then X is unbounded above). Clearly then there is also a
yg € R where (z4,y,) € B. It then follows that the set Y; = {y € R | (z,y) € B for some = < z < b}
is nonempty. By an analogous argument there is an (x;,y;) € B where a < x; < x so that the
set ¥, = {y € R| (2,y) € B for some a < z < x} is nonempty. Now, for any y € Y,, we have that
(z,y) € B for some x < z < b. Therefore x; < x < z and by property (1) of B we have that y; < y.
Since y was arbitrary this shows that y; is a lower bound of Y, and hence it has a greatest lower
bound y,. So suppose that ¢ X so that there is not a y € R where (x,y) € B. Then we have that
the set B U {(z,y,)} is a proper superset of B. However, consider any (2’,y’) € B so that 2’ € X
but =’ # x.

Case: 2/ < z. Then it has to be that a < 2’ < x so that ¥’ € ¥;. Then, for any y € Y, we again
have that (z,y) € B for some & < z < b. Hence ' < & < z so that ¥’ < y by property (1) since
(',y') € B and (z,y) € B. Since y was arbitrary, this shows that 3’ is a lower bound of Y;. Since
Yy is the greatest lower bound of Yy, we have that ¢y’ < y,. Then clearly (2/,y’) < (z,y,) since also
' < .

Case: 2’ > x. Then it has to be that < 2’ < b so that y’ € Y,. It then follows that y, < ¢’ since
Yy is the greatest lower bound of Y;. Hence we have that (z,y,) < (2/,y’) since z < 2’ as well.

Therefore in all cases we have that (z,y,) and (2/,y’) are comparable in <. Since (z/,y’) was
arbitrary, this clearly shows that BU{(z,y,)} is simply ordered. But this cannot be possible since it
is a proper superset and B is maximal! So it has to be that in fact there is a y € R where (z,y) € B,
and hence x € X. Since = € (a,b) was arbitrary, this shows that (a,b) C X. This completes the
rather long proof that X = (a,b).

Now, by property (2) there is a unique y € R for every z € X = (a,b) where (z,y) € B. So we
define a function f : (a,b) — R by simply setting f(z) = y. Clearly based on the way this function
is defined and the fact that (a,b) = X we have that B = Ay. We must now show that f has the
properties (i) through (iii) above.
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Property (i) follows almost immediately from property (1) of B. To see this, consider any z,y € (a, b)
where z < y. Then (z, f(z)) and (y, f(y)) are in B and hence f(z) < f(y) by property (1). For
property (ii) suppose that b < oo but that the image of f is bounded above. Hence it image has an
upper bound, say y, € R, so that clearly BU {(b+ 1,y,)} is a proper superset of B. So consider
any (x,y) € B so that y = f(x) for some = € (a,b). Then clearly f(z) is in the image of f so that
y = f(z) <y, since ¥, is an upper bound of the image. Since also we must have z < b < b+ 1, it
follows that (x,y) < (b+1,y,). Since (z,y) € B was arbitrary, this shows that BU{(b+ 1,y,)} is
simply ordered, which cannot be possible since it is a proper superset and B is maximal. So it has
to be that in fact the image of f is unbounded above when b < oo, which shows property (ii). An
analogous argument shows property (iii).

Since f has all of the required properties and B = Ay, this shows that B € A. Clearly then B C A
since B was arbitrary. This shows that A = B as desired. O

Lastly, note that the example curves y = 2> and y = 2 are clearly in A = B since they are non-
decreasing functions on R, (R being the same as the open interval (—oo, o)), while the curve y = 2>
is not since it is decreasing when x < 0.

Exercise 11.5

Show that Zorn’s Lemma implies the following:

Lemma (Kuratowski). Let A be a collection of sets. Suppose that for every subcollection B of A that is
simply ordered by proper inclusion, the union of the elements of B belongs to A. Then A has an element
that is properly contained in no other element of A.

Solution:

Proof. First, we know that C is a strict partial order on A, which is trivial to show. So consider
any simply ordered subset B of A and let A = J B so that we know that A € A. Clearly for any set
B € B we have that B C |JB = A so that, since B was arbitrary, A is an upper bound of B in the
strict partial order C. Since B was arbitrary, this shows the hypothesis of Zorn’s Lemma so that A
has a maximal element A. Then clearly A is not properly contained in any other element of A. [

Exercise 11.6

A collection A of subsets of a set X is said to be of finite type provided that a subset B of X belongs
to A if and only if every finite subset of B belongs to .A. Show that the Kuratowski lemma implies the
following:

Lemma (Tukey, 1940). Let A be a collection of sets. If A is of finite type, then .4 has an element
properly contained in no other element of A.

Solution:

Proof. Suppose that A is a collection of sets of finite type. Let B be a subcollection of A that is
simply ordered by C. Consider next any finite subset B of | JB. Then, for every b € B, b € |JB so
that we can choose a set By, € BB such that b € B,. Note that this does not require the choice axiom
since we need to make only a finite number of choices. Then the set B’ = {B;, | b € B} is clearly a
finite set of elements of B. Since B is simply ordered by C, it follows that B’ is as well and so has a
largest element C' since it is finite.
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Hence, for any b € B, we have that b € B, C C so that b € C, and so B is a finite subset of C.
Since C € B and B C A, clearly C € A. Since A is of finite type and B is a finite subset of C, it
follows that B € A also. Since B was an arbitrary finite subset of | J B, it then follows that |JB is
also in A since it is of finite type. It then follows from the Kuratowski lemma (Exercise 11.5) that
A has an element that is properly contained in no other element of A as desired. O

Exercise 11.7

Show that the Tukey lemma implies the Hausdorff maximum principle. [Hint: If < is a strict partial
order on A, let A be the collection of all subsets of A that are simply ordered by <. Show that A is of
finite type.]

Solution:

Proof. Following the hint, suppose that the set A has strict partial order < and let A be the collection
of all subsets of A that are simply ordered by <. We show that A has finite type, i.e. that a subset
B C Aisin A if and only if every finite subset of B is.

(=) Suppose that B C A is in A so that it is simply ordered by <. Clearly any finite subset of B
is also simply ordered by < so that it is also in A, which shows the result.

(<) Now suppose that B C A and that every finite subset of B is in .A. Now consider two distinct
element = and y of B. Clearly then the set {z,y} is a finite subset of B and hence is in .A. Then
this means that {z,y} is simply ordered by < so that clearly 2 and y are comparable. Since z and
y were arbitrary this shows that B is simply ordered by < and hence B € A.

We have thus shown that A is of finite type so that it has a set C' such that is properly contained in
no other element of A. Since C' € A, it is simply ordered by <. It is also maximal since, if D is any
proper superset of C then it cannot be that D is simply ordered for then we would have D € A and
C € D, which would contradict the definition of C'. Hence C is the maximal simply ordered subset
of A that shows the maximum principle. O

Exercise 11.8

A typical use of Zorn’s lemma in algebra is the proof that every vector space has a basis. Recall that if
A is a subset of the vector space V', we say a vector belongs to that span of A if it equals a finite linear
combination of elements of A. The set A is independent if the only finite linear combination of elements
of A that equals the zero vector is the trivial one having all coefficients zero. If A is independent and if
every vector in V' belongs to the span of A, then A is a basis for V.

(a) If A is independent and v € V' does not belong to the span of A, show AU {v} is independent.
(b) Show the collection of all independent sets in V' has a maximal element.
(c¢) Show that V has a basis.

Solution:
(a)

Proof. We show this by contradiction. Suppose that A is independent and v € V does not belong
to the span of A. Also let B = AU {v} and suppose that B is not independent. Then

i Bibi =0
i—1
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for some nonzero coefficients [3;, where each b; is in B. Now, it must be that one of the b; vectors is
v and the rest in A since otherwise they would all be in A and then A would not be independent.
Hence this can be expressed as

n—1
Z aja; +yv =10
i=1

for nonzero coefficients «; and = and vectors a; € A. However clearly then we would have

1 n—1 n—1 o
U:—Zalaizz< al)ai
v i=1

=1 v

so that v is a linear combination of vectors in A and hence is in the span of A. This is a contradiction
so that it must be that in fact B = AU {v} is independent as desired. O

(b)

Proof. Let A be the collection of all independent sets in V. We know that C is a strict partial order
on A. Now let B be any subset of A that is simply ordered by C. We claim that | JB is an upper
bound of B that is in A. So first consider any B € B and any b € B so that clearly then b € | B.
Hence B C |JB since b was arbitrary. Since B € B was arbitrary, this shows that [ JB is an upper
bound of B by C.

Next we show that (JB is also in \A. To this end consider any finite set B of elements of |JB so
that B is a set of vectors in V. Now, for each b € B we have that b € |JB so that we can choose
any set By € B where b € By. Note that this does not require the axiom of choice since B is finite.
Then, since each By, is in B, which is simply ordered by C and {By | b € B} is finite, it follows that
it has a largest element C so that B, C C for any b € B. Hence B C C since each b € B, and
By, C C. Also C € A since C' € B and B C A so that C is independent. Hence the only linear
combination of the vectors in B that is the zero vector must have all zero coefficients since they are
all in the independent set C. Since B was an arbitrary set of vectors in |J B, this shows that |J B is
independent and therefore in A.

Since B was an arbitrary simply ordered subset of A, it follows that every such subset has an upper
bound in A. Thus by Zorn’s Lemma A has a maximal element as desired. O

(c)

Proof. Again let A be the collection of all independent sets in V', which we know has a maximal
element A from part (b). We claim that A is a basis for V. Suppose to the contrary that it is not
so that, since we know that A is independent (since it is in \A), there must be a vector v € V that
is not in the span of A. Then by part (a) we have that A U {v} is also independent and so in .A.
We also have that v ¢ A since otherwise it would clearly be in the span of A. Hence A C AU {v}.
However, this contradicts the fact that A is a maximal element of A, so that it must be that in fact
A is a basis for V' as desired. O

SWO Supplementary Exercises: Well-Ordering

Exercise WO.1

Theorem (General principle of recursive definition). Let J be a well-ordered set; let C' be a set. Let F
be the set of all functions mapping sections of J into C. Given a function p : F — C, there is a unique
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h:J — C such that h(a) = p(h | S,) for each o € J. [Hint: Follow the pattern outlined in Exercise 10
of §10.]

Solution:
Following the hint, we follow the pattern of Exercise 10.10. In what follows denote by (x) the
property
h(a) = p(h [ Sa)
for a function h from J or a section of J to C.

Lemma WO.1.1. If h and k map sections of J, or all of J, into C and satisfy (x) for all z in
their respective domains, then h(x) = k(x) for all x in both domains.

Proof. First suppose that the domains of A and k are sets H and K where each is either a section
of J or J itself. Since this is the case, we can assume without loss of generality that H C K and so
H is exactly the domain common to both h and k. Now suppose that the hypothesis we are trying
to prove is not true so that there is an z in both domains (i.e. x € H) where h(x) # k(z). We can
also assume that x is the smallest such element since H C J and J is well-ordered. It then clearly
follows that S, C H is a section of J and that h(y) = k(y) for all y € S,. From this we clearly have
that h [ S =k [ S, so that

h(z) = p(h | Se) = p(k | Sz) = k(x)

since both h and k satisfy (%) and z is in the domain of both. This contradicts the supposition
that h(z) # k(x) so that it must be that no such z exists and hence h and k are the same in their
common domain as desired. O

Lemma WO.1.2. If there exists a function h : S, — C satisfying (x), then there exists a function
k: S, U{a} — C satisfying (x).

Proof. Suppose that h : S, — C'is such a function satisfying (). Now let S, = S, U {a} and we
define k£ : S, — C as follows. For any = € S, set

2) = h(z) z €8,
k@) {p(h) r=a.

We note that clearly S, and {«a} are disjoint so that this is unambiguous. We also note that & is a
function from a section of J to C so that h € F and p(h) € C is therefore defined.

Now we show that k satisfies (x). First, clearly i [ S, = k [ S, for any x < a since k(y) = h(y) by
definition for any y € S, C S,. Now consider any = € S,. If z = a then by definition we have

k(z) = p(h) = p(h | Sa) = p(k | Sa) = p(k | S)

since clearly h = h [ S, since S, is the domain of h. On the other hand, if x € S, then x < « so
that

k(z) = h(z) = p(h | Sz) = p(k | S)
since h satisfies (). Therefore, since x was arbitrary, this shows that k also satisfies (x). O

Lemma WO.1.3. If K C J and for all a € K there ezists a function h, : Sq — C satisfying (x),
then there exists a function

kil Sa—cC

acK

satisfying (x).
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Proof. Let

k= ha,

acEK

which we claim is the function we seek.

First we show that k is actually a function from (J, ., So to C. So consider any x in the domain
of k. Suppose that (z,a) and (z,b) are both in k so that there are o and 8 in K where (z,a) € hq
and (z,b) € hg. Since h, and hg both satisfy (x), it follows from Lemma WO.1.1 that a = hq(z) =
hg(z) = b since clearly « is in the domain of both. This shows that k is indeed a function since (z, a)
and (x,b) were arbitrary. Also clearly the domain of & is |, ¢ s Sa since, for any z € {J ¢ x Sa, we
have that there is an o € K where z € S,. Hence x is in the domain of h, and so in the domain of
k. In the other direction, clearly if x is in the domain of k then it is in the domain of h, for some
«a € K. Since this domain is S,, clearly « € |J Sq. Lastly, obviously the range of k can be C'
since this is the range of every h,.

acK

Now we show that k satisfies (). So consider any x € (J,cx Sa so that x € S, for some a € K.
Clearly we have that k(y) = ha(y) for every y € S, since h,, C k. It then immediately follows that
k(z) = h(z) and k | Sy = ho [ Sy since S, C S,. Then, since h,, satisfies (x), we have

k(z) = ho(z) = p(ha | Sz) = p(k | Se).
Since z was arbitrary, this shows that k satisfies (%) as desired. O

Lemma WO.1.4. For every B € J, there exists a function hg : Sg — C satisfying (x).

Proof. We show this by transfinite induction. So consider any 5 € J and suppose that, for every
x € Sga, there is a function h, : S, — C satisfying (*). Now, if 8 has an immediate predecessor
o then we claim that Sg = S, U {a}. First if z € Sz then < 8 so that # < « since « is the
immediate predecessor of 5. If + < « then € S, and if ¢ = « then z € {a}. Hence in either
case we have that © € S, U {a}. Now suppose that x € S, U {a}. If x € S, then z < a < f so
that s € Sg. On the other hand if x € {a} then z = o < § so that again « € Sg. Thus we have
shown that Sg C S, U {a} and S, U {a} C Sz so that Sg = S, U {a}. Since a € Sp it follows
that there is an h, : S, — C that satisfies (x). Then, by Lemma WO.1.2, we have that there is an
hg : Sg = Sq U{a} — C that also satisfies (x).

If B does not have an immediate predecessor then we claim that Sz = U7 <5 Sy So consider any
x € Sg so that x < 8. Since x cannot be the immediate predecessor of 3, there must be an a where
x < a< f. Then z € S, so that, since a < 3, clearly x € U7<ﬁ S,. Now suppose that = € U7<ﬂ

so that there is an a@ <  where x € S,. Then clearly © < a < 8 so that also z € S3. Thus we
have shown that Sg C (J, 55, and J,_55, C Sp so that Sg = J,_55,. Now, clearly S5 is a
subset of J where there is an h, : S, — C satisfying (x ) for every x € Sg. Then it follows from

Lemma WO.1.3 that there is a function hg from (J, g, Sy =, <3Sy = S to C that satisfies (x).

Therefore, in either case, we have shown that there is an hg : Sg — C that satisfies (x). The desired
result then follows by transfinite induction. O

Main Problem.

Proof. First suppose that J has no largest element. Then we claim that J = (J,; So. For any
x € J there must be a y € J where x < y since x cannot be the largest element of J. Hence x € 5,
so that also clearly (J ¢ ; Sa- Then, for any x € J,¢; Sa, there is an a € J where x € S,,. Clearly
Sa C J so that 2 € J also. Hence J C {J,c; S and J,c; Sa C J so that J = J,c; Sa. Since we
know from Lemma WO.1.4 that there is an h,, : S, — C that satisfies (x) for every a € J, it follows
from Lemma WO.1.3 that there is a function h from J,; Sa = J to C that satisfies (x).
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If J does have a largest element § then clearly J = Sz U {f}. Since we know that there is an
hg : Sg — C that satisfies (x) by Lemma WO.1.4, it follows from Lemma WO.1.2 that there is a
function h from S U {8} = J to C that satisfies (*). Hence the desired function h exists in both
cases. Lemma WO.1.1 also clearly shows that this function is unique. O

Exercise W0O.2

(a) Let J and E be well-ordered sets; let h : J — E. Show that the following statements are equivalent:
(i) h is order preserving and its image is E or a section of E.
(ii) h(e) = smallest [E — h(S,)] for all .
[Hint: Show that each of these conditions implies that h(S,) is a section of F; conclude that it
must be the section by h(a).]

(b) If E is a well-ordered set, show that no section of E has the order type of E, nor do two different
sections of E have the same order type. [Hint: Given J, there is a most one order preserving map
of J into E whose image is E or a section of E.]

Solution:
(a)

Proof. First, for any a € J and 8 € E, let S, denote the section of J by «, and T3 denote the section
of E by . To avoid ambiguity, also suppose that < is the well-order on J and < is the well-order
on E. We show that each of these conditions are equivalent to the condition that h(Sa) = Th(qa) for
every a € J. Call this condition (iii). This of course also shows that the conditions are equivalent
to each other.

First we show that (i) implies (iii). So suppose that h is order preserving and its image is F or a
section of E. Consider any o € J and any y € h(S,) so that there is an = € S, where y = h(zx).
Then z < avand y = h(z) < h(«) since h preserves order. Therefore y € Tj, (o) so that h(Sa) C Th(a)
since y was arbitrary. Now consider y € Tj(,) so that y < h(a). Since also clearly y € E (since
Th(ay C E), y is in the image of h if its image is all of . If the image of h is some section of E, say
T, then clearly h(«) € T since h(a) is obviously in the image of h. Hence we have y < h(a) < 3
so that y € T and hence in the image of h. Since y is in the image of h in either case, there is an
x € J such that y = h(z). Then h(x) = y < h(«) so that © < « since h preserves order. Hence
r € S, so that y € h(S,) since y = h(z). This shows that T},(q) C h(Sa) since y was arbitrary.
Therefore h(S,) = Th(q) so that condition (iii) is true since a was arbitrary.

Next we show that (iii) implies (i). So suppose that h(Sa) = Tj(q) for all a € J. First, it is easy to
see that h preserves order since, if z,y € J where x < y, then we have that x € S, so that clearly
h(z) € h(Sy) = Th(y), and hence h(x) < h(y). To show that the image of h, i.e. h(.J), is either E or
a section of F, consider the set E — h(J).

Case: E — h(J) = @. Then clearly for any y € E we must have that y € h(J) since otherwise it
would be that y € E — h(J). Thus E C h(J) since y was arbitrary. Also clearly h(J) C E since E
is the range of h. This shows that h(J) = E.

Case: E — h(J) # @. Then clearly E — h(J) is a nonempty subset of E so that it has a smallest
element f since E is well-ordered, noting that clearly 8 ¢ h(J). We claim that h(J) = Tz. So
consider any y € h(J) so that there is an « € J where y = h(z). Suppose for a moment that
B =< y. Now it cannot be that 8 = y since y € h(J) but § ¢ h(J), and so 8 < y. But then
B €Ty = Thz) = h(S,) since x € J. Then f3 is in the image of h since clearly h(S;) C h(J). As this
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contradicts the fact that 5 ¢ h(J), it must be that y < 5 so that y € Ts. This shows that h(J) C Tj
since y was arbitrary. Suppose now that y € T3 so that y < 3. Since  is the smallest element of
E—h(J), it follows that y ¢ E—h(J). Since clearly y € E (since T C E), it must be that y € h(J).
This shows that T C h(J) since y was arbitrary. Hence we have shown that h(J) = Tg.

Therefore in every case either the image of h is E or a section of F as desired. This completes the
proof of (i).

Now we show that (ii) implies (iii). So suppose that h(«) is the smallest element of E — h(S,,) for
every o € J. First we show that h is injective. So consider any z,y € J where x # y. We can
assume without loss of generality that + < y so that « € S, and hence h(z) € h(S,). However since
we have that h(y) is the smallest element of E — h(S,), clearly h(y) ¢ h(Sy,). Therefore we have
that h(x) # h(y) so that h is injective.

Now consider any a € J so that clearly h(a) is the smallest element of E — h(S,). Suppose that
y € h(S,) so that there is an « € S, where y = h(x), and therefore x < . Consider the possibility
that h(a) < h(z) = y. It cannot be that h(a) = h(z) = y since x # « and h is injective, so it
must be that h(a) < h(z). It then follows that h(a) ¢ E — h(S;) since h(x) is the smallest element
of E — h(S;). Thus h(a) € h(Sy) since clearly h(a) € E. It then follows from the fact that h is
injective that @ € S, so that we have a < & < «a, which is clearly a contradiction. So it must be
that y = h(x) < h(a) so that y € Tj(q). This shows that h(Sy) C T () since y was arbitrary.

Now suppose that y € Tj o) so that y < h(a). Since h(a) is the smallest element of E — h(S,),
it follows that y ¢ E — h(S,). Since clearly y € FE, it must be that y € h(S,). This shows
that T},(q) C h(Sa) since y was arbitrary, and hence h(S,) = Tj(a), Which shows (iii) since o was
arbitrary.

Lastly, we show that (iii) implies (ii). So suppose that h(S,) = T}(q) for every a € J and consider
any such . Clearly we have that h(c) € E but h(a) ¢ Th(a) = h(Sa) so that h(a) € E — h(Sa).
Suppose for the moment that h(a) is not the smallest element of E — h(S,) so that there is a
B € E—h(S,) where 3 < h(a). Then 8 € Tj () so that it must be that 3 ¢ £ —Tjq) = E — h(Sa)
since h(Sy) = Th(a)- Clearly this is a contradiction so that it must be that h(a) really is the smallest
element of £ — h(S,), which shows (ii) since o was arbitrary. O

Exercise W0O.3

Let J and F be well-ordered sets; suppose there is an order preserving map k : J — E. Using Exercises 1
and 2, show that J has the order type of F or a section of E. [Hint: Choose ¢y € E. Define h: J - E
by the recursion formula

h(a) = smallest [E — h(Sq)] if h(Sa.) # F,

and h(a) = eg otherwise. Show that h(«) < k(«) for all «; conclude that h(S,) # E for all o]

Solution:

Proof. First, if E = @ then it must be that J = & as well so that they vacuously have the same
order type. Otherwise, following the hint, choose ey € E and define h : J — E by

h(c) = smallest [E — h(Sq)] if h(Sa) # E,

and h(a) = ep otherwise, noting that this function is uniquely defined by the general principle of
recursive definition (Exercise WO.1). We show that h(a) < k(«) for all @ € J using transfinite
induction (see Lemma 10.10.1). So consider a € J and assume that h(z) < k(z) for all z € S,,.
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Since k preserves order we have that h(z) < k(z) < k() when < «. In particular, this means
that h(z) # k(o) for all z € S, so that k(o) € E — h(S,). Hence E — h(S,) is not empty
so that h(S,) # E. Thus h(a) is the smallest element of E — h(S,) and so h(a) < k(a) since
k(o) € E — h(Sy). This completes the induction.

Therefore, for any o € J and any x < a we have h(x) < k(r) < k(a) since k preserves order so
that h(x) # k(a). As in the induction step above, it follows that h(S,) # E. Hence, since o was
arbitrary,

h(c) = smallest [E — h(Sq,)]

for all @« € J. It then follows from Exercise WO.2 part (a) that h is order preserving and maps J
onto E or a section of F. This clearly shows that J has the order type of E or a section of E as
desired. O

Exercise WO .4
Use Exercises 1-3 to prove the following:

(a) If A and B are well-ordered sets, then exactly one of the following three conditions holds: A and
B have the same order type, or A has the order type of a section of B, or B has the order type of
a section of A. [Hint: Form a well-ordered set containing both A and B, as in Exercise 8 of §10;
then apply the preceding exercise.]

(b) Suppose that A and B are well-ordered sets that are uncountable, such that every section of A and
B is countable. Show that A and B have the same order type.

Solution:
(a)

Proof. First, we can assume that A and B are disjoint since, if not, we can form A’ = {(x,1) | x € A}
and B’ = {(z,2) | x € B}, which clearly are disjoint and have the same order types as A and B if
ordered in the same way. So let < be the order on AU B as in Exercise 10.8 with all the elements
of A before the elements of B. From the exercise, we know that A U B is well-ordered by <. Now,
clearly the identity function ig with A U B as the range is an order-preserving function from B to
AU B so that B is the same order type as AU B or a section of AU B by Exercise WO.3.

If B has the same order type as AU B, then there is a an order preserving bijection g : AUB — B.
Let b be the smallest element of B so that y = ¢g(b) € B. Since b is the smallest element of B, clearly
the section S, = {r € AUB |z < b} = A. Also clearly g(A) = g(Sy) = Sy = {zr € B|z <y} so
that A has the same order type as a section of B since g preserves order.

If B has the same order type as a section of A U B then there is an order preserving bijection
f:B— 8, for some a € AU B. If a € A then clearly S, lies entirely in A and is a section of A so
that B has the same order type as a section of A. So now suppose that a € B. If « is the smallest
element of B then again it has to be that S, lies in A and is in fact the entirety of A so that B and
A have the same order type. If « is not the smallest element of B then S, contains elements of both
A and B. So let b be the smallest element of B so that b € S,, and let y € B be such that f(y) = b,
which exists since f is surjective. We also have that S, = A since b is the smallest element of B. It
then follows that f(S,) = S, = A since f(y) = b so that A has the same order type as the section
Sy of B since f preserves order.

Hence in all cases one of the desired results always follows. To show that exactly one of these is the
case, note that if A and B have the same order type then clearly it cannot be that A has the same

Page 133



order type as a section of B since then B would also have the same order type is its own section,
which would violate Exercise WO.2 part (b). Similarly B cannot have the same order type as a
section of A since then A would have the same order type as its own section. Now suppose that A
has the same order type as a section S, of B. Then A and B cannot have the same order type since
then B would have the same order type as its section Sp. Also B cannot have the same order type
as a section S, of A since then the section .S;, and therefore A, would have the same order type as
a smaller section of A. An analogous argument shows the result when B has the same order type
as a section of A. O

(b)

Proof. Suppose that A has the same order type as a section of B. Then there would be a bijection
from A, an uncountable set, to a section of B, which is countable. A similar contradiction arises if
B were to have the same order type as a section of A. By part (a), the only remaining possibility
is that A and B have the same order type as desired. O

Exercise WO.5

Let X be a set; let A be the collection of all pairs (A, <), where A is a subset of X and < is a well-ordering
of A. Define

(4,<) < (4, <)
if (A, <) equals a section of (A4’,<’).

(a) Show that < is a strict partial order on .A.
(b) Let B be a subcollection of A that is simply ordered by <. Define B’ to be the union of the sets

B, for all (B, <) € B; and define <’ to be the union of the relations <, for all (B,<) € B. Show
that (B’, <’) is a well-ordered set.

Solution:
(a)

Proof. For any (A, <) € A we have that it is not equal to a section of itself since then it would then
clearly have the same order type as its own section, which would violate Exercise WO.2 part (b).
Hence it is not true that (A, <) < (4, <) by definition, which shows that < is nonreflexive.

Now consider (4, <), (4’,<’), and (A”,<") in A where (A4, <) < (4’,<’) and (4',<’) < (A", <").
Then (A, <) is a section of (A’, <’). Also (A’, <’) is a section of (A”, <") so that clearly any section
of (A’,<’) is also a section of (A”,<”). Since (A4, <) is such a section we have that (4, <) is a
section of (A”,<") so that (A, <) < (A", <). This shows that < is transitive.

This completes the proof that < is a strict partial order. O

(b)

Proof. First we must show that B’ is simply ordered by <’.

First consider any (x,y) €<’ so that there is a (B, <) € B where (z,y) €< and z,y € B. Clearly
then z and y are in the union B’ so that (z,y) € B’ x B’. This shows that <'C B’ x B’ so that <’
is a relation on B'.

Next consider any x and y in B’ where = # y. Then there are well-ordered sets (B, <1) and (Bz, <3)
in B where € By and y € Bs. Since B is simply ordered by < we have that (B1,<1) < (B2, <2)
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or (B, <2) < (B, <1). Without loss of generality we can assume the former case (since otherwise
we can just swap the roles of z and y). Then (B; <1) is a section of (Bz, <2) and is thus also a
subset so that x,y € Bs, It then follows that x and y are comparable by <5 since x # y and <5 is
a well-order and therefore a simple order. Thus (x,y) or (y,x) are in <s. Since <’ is the union of
all relations < where (B, <) € B, clearly we have that (z,y) or (y,x) are in <’ since <3 is such a
relation. Thus shows that <’ has the comparability property.

Now consider any x € B’ so that there is a (B, <) € B where z € B. Consider also any (B”,<") € B.
Then, since B is simply ordered, it follows that (B,<) and (B”,<”) are comparable in <. If
(B, <) < (B"”,<"”) then (B, <) is a section of (B”,<") so that x € B” as well. Then it cannot be
that x <" z since <” is a simple order. If (B”,<") < (B, <) then (B”,<") is a section of (B, <). If
x € B” then again it cannot be that z <” x since <” is a simple order. If ¢ B” then (z,z) ¢<”
since it is a relation on B”. Thus in all cases and sub-cases it is not true that @ <” x so that x <’
does not hold since <" was arbitrary and <’ is their union. This shows that <’ is nonreflexive.

Lastly, suppose that @ <’ y and y <’ z. Then it has to be that there is a (By,<;) and (Bz, <2) in
B where z <1 y and y <2 z. Then (Bj,<;) and (Bsg, <3) are comparable in < since B is simply
ordered. Hence one is a section of the other so that, in either case, it follows that * < y and y < z
where either <=<; or <=<5. Then clearly x < z since both <; and <5 are transitive since they
are simple orders. Thus x <’ z since <’ is the union of all the orders in B and < is such an order.
This shows that <’ is transitive.

This completes the proof that <’ is a simple order on B’. To show that it is a well-order, consider
any nonempty subset A C B’. Then there is an z € A so that x € B’ as well. It then follows that
there is a (B, <) € B where € B. Then clearly B N A is a nonempty subset of B since € B and
x € A. Let b be the <-smallest element in B N A, and we claim that this is the smallest element of
A by <’. First, obviously b € A since b € BN A. Next consider any y € A so that y € B’ as well.
Then there is a (B”,<") € B where y € B”. Since B is simply ordered by < we have that (B, <)
and (B”, <" are comparable. Hence (B, <) is a section of (B”, <") or vice-versa.

In the first case we have that both b and y are in B”. If y € B then also y € BN A so that b <y
since it is the smallest element of BN A by <. If y ¢ B then b <" y since B is a section of B”,
and therefore b <" y is true. In the second case in which (B”,<") is a section of (B, <) we have
that both b and y are in B and hence in BN A. Then, again b < y since b is the smallest element
of BN A by <. Hence in all cases either b < y or b <” y. Either way it follows that b <’ y as well
since <’ is the union. This shows that b is the smallest element of A by <’ as desired. Since A was
an arbitrary nonempty subset, this shows that B’ is well-ordered by <’. O

Exercise WO.6

Use Exercises 1 and 5 to prove the following:

Theorem. The maximum principle is equivalent to the well-ordering theorem.

Solution:

Proof. First suppose that the maximum principle is true and let X be any set. Then let A be the
collection of all pairs (A, <), where A C X and < is a well-ordering of A as in Exercise WO.5. Define
the relation < on A also as in Exercise WO.5, i.e (4, <) < (A, <') if (4, <) is a section of (A’, <’).
It was then shown in that exercise that < is a strict partial order on A so that, by the maximum
principle, there is a maximal simply ordered subset B C A. Now let (B’, <’) be the unions of the
corresponding elements of B so that we know that <’ well-orders B’ by part (b) of Exercise WO.5.

We claim that B’ = X. Suppose that this is not the case so that there is a x € X where z ¢ B’ (since
we know that B’ C X). Then define B” = B’ U {z} and the relation <"=<"U{(V,z) |V € B'}. It
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is then easy to see (and trivial but tedious to show) that B” is well-ordered by <”. Also, clearly
B’ is the section of B” by x so that, for any B € B, we have B < B’ < B”. Since B was arbitrary,
this shows that the set BU {B"} is simply ordered by < and is a subset of A. Since « ¢ B’ we have
that © ¢ B for any B € B (since B’ is their union) so that B” # B since x € B. It follows that
B C BU{B"}, but this contradicts the maximality of B! So it has to be that in fact B’ = X itself so
that <’ is a well-ordering of X. Since X was an arbitrary set, this shows the well-ordering theorem.

Now suppose the well-ordering theorem and that A is a set with strict partial ordering <. Then we
know that A has a well-ordering, say <. Now, for any function f from a section S, (by <) to P (4),
define

_ JUf(Sz)U{x} if <is asimple order on |J f(S:) U {z}
pU) = {U f(Sz) otherwise .

Then by the general principle of recursive defamation (Exercise WO.1) there is a unique function
h:A— P (A) such that h(a) = p(h [ S,) for all a € A.

First we show that, for o, 8 € A where o < 3, we have h(«) C h(8). So consider any = € h(a) =
p(h ] Sy), and hence either z € |Jh(Sy) U {a} or x € |Jh(S,). Either way obviously = € |Jh(S,)
so that there is a set X € h(S,) where z € X. Then there is a v € S, where X = h(y). Since we
have o < 3, clearly also v € Sg and hence X € h(Sg). Then also clearly both x € |Jh(Sg) U {8}
and z € |Jh(Sp) so that for sure = € p(h | Sg) = h(B). Since z was arbitrary this shows that
h(a) C h(B) as desired.

Next we show by transfinite induction that h(«) is simply ordered by < for every a € A. So consider
a € A and suppose that h(8) is simply ordered by < for every 5 < a. If |Jh(S,) U {a} is simply
ordered by < then clearly h(«a) is since then h(a) = p(h | Sy) = [JR(Sa) U {a}. So suppose that
this is not the case so that h(a) = p(h | Sa) = Jh(Sa). Consider then any z,y € h(a) = |Jh(Sa)
where & # y so that there are X and Y in h(S,) where z € X and y € Y. Then there is a § and
v in S, where X = h(B) and Y = h(7). If 3 = v then = and y are both in X = h(8) = h(vy) =Y,
which is simply ordered by the induction hypothesis so that = and y are comparable in <. If 5 < ~
then by what was shown above we have that © € X = h(8) C h(vy) so that z and y are both in
h(v), which is simply ordered by the induction hypothesis so that again x and y are comparable. A
similar argument shows that z and y are both in h(8) and thus are comparable when 8 > ~. This
completes the induction since x and y are comparable in all cases so that h(a) is always simply
ordered.

We then claim that the set B = J,c 4 h(a) is a maximal simply ordered (by <) subset of A, which
of course shows the maximum principle. First, it is obviously a subset of A since each h(a) € P (A)
so and so is a subset of A. To show that that B is simply ordered by <, consider « and y in B where
x # y so that there is an a and 8 in A where © € h(a) and y € h(B). Without loss of generality
we can assume that o < 8 so that h(a) C h(8) by what was shown below. Then both x and y are
in h(f), which is simply ordered by what was shown above. Hence = and y are comparable in < so
that B is simply ordered.

To show that B is maximal, suppose that B C Z and Z C A is simply ordered by <. Then there
is a z € Z where z ¢ B. Now let = € |Jh(S,) so that there is an X € h(S,) where x € X. Then
there is an « € S, where x € X = h(a). Hence clearly © € B so that also x € Z and so x and
z are comparable in < since Z is simply ordered. Since x was arbitrary this shows that the set
(JA(S,)U{z} is simply ordered so that h(z) = p(h [ S,) = Uh(S;) U{z}. However, then we have
that z € h(z) so that z € B, which is a contradiction. So it must be that there is no such set Z and
hence B is maximal. O

Exercise WO.7
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Use Exercises 1-5 to prove the following;:

Theorem. The choice axiom is equivalent to the well-ordering theorem.

Proof. Let X be a set; let ¢ be a fixed choice function for the nonempty subsets of X. If T is a subset
of X and < is a relation on T, we say that (T, <) is a tower in X if < is a well-ordering of T" and if for
eachx € T,

z=c(X - 5,(T)),
where S, (T) is the section of T' by .

(a) Let (T1,<1) and (T2, <2) be two towers in X. Show that either these two ordered sets are the
same, or one equals a section of the other. [Hint: Switching indices if necessary, we can assume
that h : Ty — Ty is order preserving and h(7T}) equals either T or a section of Ty. Use Exercise 2
to show that h(z) = x for all z.]

(b) If (T, <) is a tower in X and T # X, show that there is a tower in X of which (T, <) is a section.
(c) Let {(Tk, <) | k € K} be the collection of all towers in X. Let

T= UTk and <= U(<k)

keK keK

Show that (7, <) is a tower in X. Conclude that T' = X.

Solution:
(a)

Proof. Since (T, <1) and (75, <2) are both well-ordered sets, it follows from Exercise WO.4 part (a)
that either they have the same order type, 77 has the same order type as a section of 15, or vice-
versa. We can assume that either they have the same order type of 77 has the same order type as
a section of T5 since, in the third case, we can just swap the roles of 77 and T5. Thus there is an
order preserving function h : T3 — T5 whose image is either all of T5 or a section of T5. Given this,
it was shown in the proof of Exercise WO.2 part (a) that h(S.(11)) = Sh(a)(12) for all x € T7.

We show that h(x) = x for all x € T} by transfinite induction. So suppose that h(y) = y for all
y < x, i.e. for all y € S, (T1) so that clearly h(S.(T1)) = Sz(T1). Then, since both T} and T» are
towers in X and h(x) € T, we have

h(z) = c(X = Sh(a)(T2)) = (X = h(S(T1))) = c(X — Sz(T1)) = .

This completes the induction. Since h(x) = x for all x € T and h preserves order, it follows that
T, is equal to T5 or a section of T, as desired. O

(b)

Proof. Since T # X, it follows that X — T is nonempty. So let a = ¢«(X —T), T" = T U {a}, and
<'=< U{(z,a) | z € T}. Then clearly a is the largest element of 7" and an upper bound of T so
that T'= S,(T"), and hence a = ¢(X —T) = ¢(X — S, (1”)). Since T is a tower, it then follows that
T’ is also a tower in X and that T is a section of 7" as desired. O

(c)
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Proof. First we need to show that < is even a well-ordering of T" as this is not obvious. To show
that it is a simple order, consider x,y € T where x # y. It follows that x € T} and y € T; for some
k,l € K by the definition of T. Since T} and T} are both towers in X, it follows from part (a) that
they are equal or one is a section of the other. So, without loss of generality, we can assume that
Ty C T; and also <, C<;. It then follows that both xz and y are in T} so that either z <; y or y <; x
since z # y and <; is a simple order. Then clearly < y or y < x from the definition of <. This
shows that < has the comparability property.

Now suppose that there is an z € T where x < x. Then there is a k € K where © <j; x, which
violates the fact that < is a simple order. Hence it must be that < is nonreflexive.

Lastly consider x,y,z € T where x < y and y < z. Then there k,l € K where x <; y and y <; 2
and it must then be that x,y € Ty and y,z € T;. Again, since these are both towers, they are
either equal or one is a section of the other by part (a). So we can assume that T}, C T} and <;C<;
without loss of generality so that we have x,y,z € T} and © <; y <; z. From this clearly z <; 2
since it is a simple order and therefore transitive. Hence we have x < y, which of course shows that
< is transitive as well. This all shows that < is indeed a simple order by definition.

To show that < is a well-ordering, consider any nonempty subset Y of T. Then there is a b € Y
so that also b € T. It follows that there is a k£ € K such that b € T}, and also that Y N T} is a
nonempty subset of Tj. It then follows that Y N7} has a smallest element a since T}, is well-ordered
by <k. We claim that in fact a is the smallest element of all of Y. To see this, consider any other
x € Y so that also x € T. Hence there is an [ € K where x € T;. Now, since both T} and T; are
towers in X, it follows from part (a) that they are equal or one is a section of the other.

Case: Ty and T; are equal. Then both a and x are in Tj and so both in Y NT}. Then a <j x since
a is the smallest element of Y N T}.

Case: T} is a section of T;. Then, if a € Ty then the argument in the previous case shows that
a <j z. On the other hand, if a ¢ T}, then it has to be that that x <; a since z € Ty, and T} is a
section of Tj.

Case: T is a section of T}. Then T; C T}, so that both a and z are in T} and thus in Y NT}. Hence
again a <j x since a is the smallest element of Y N T}.

In all cases a <,, = for some m € K and hence a < z. Since x was an arbitrary element of Y, this
shows that a is in fact the smallest element of Y. Since Y was an arbitrary nonempty subset of T',
this shows that T is well-ordered by <.

Next we digress for a moment to show, for any k € K and « € T}, that S, (1) = Sz(T). So consider
such k and x and suppose that y € S, (T}) so that y <; x. Then clearly also y < = by the definition
of < and hence y € S, (T'). This shows that S, (T)) C S.(T) since y was arbitrary. Now suppose
y € Sz(T) so that y < x. Then there is an | € K where y <; . Hence z,y € T}, and by part (a)
either T; and T}, are equal, or one is a section of the other. If they are equal or 7} is a section of T}
then clearly we have <;C<} so that y < x. If T} is a section of T; then, since y <; x and z € Ty},
it has to be that also y € T}, since T} is a section of T;. Hence it must be that y <, z. Since this is
true in all cases it follows that y € S;(T%), which shows that S;(T") C S;(Tk). This completes the
proof that S, (Ty) = S, (T).

With this having been shown, we can easily show that T  is a tower in X. For any x € T there is a
k € K where x € Ty. Since T} is a tower in X we have

T = C(X - Sm(Tk)) = C(X - SCE(T)>

by what was just shown. Thus suffices to show that T is a tower in X.

Lastly, we claim that T'= X. To see this, suppose that it is not the case so that by part (b) there
is a tower S in X such that T is a section of S. From this we have that T' = S,(5) for some a € S
and that of course a ¢ T. However, since S is a tower and {(T%, <) | k € K} is the collection of all
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towers in X, it follows that there must be a k € K such that S = T. Then we have that a € S = T},
so that of course a € T by definition, which is a contradiction. So it must be that in fact T = X as
desired.

This of course shows that < is a well-ordering of X = T so that the choice axiom implies the
well-ordering theorem since X is an arbitrary set. In contrast to the previous proof, it is easy to
prove that the well-ordering theorem implies the choice axiom. For a collection of nonempty sets B
define X = |JB. Then X can be well-ordered by the well-ordering theorem. Then we simply define
a choice function ¢ on B in the following way: any B € B is clearly a nonempty subset of X and so
has a smallest element a since X is well ordered. So simply set ¢(B) = a, from which it is clear that
¢(B) € B and so ¢ is a valid choice function. O

Exercise WO.8

Using Exercises 1-4, construct an uncountable well-ordered set, as follows. Let A be the collection of all
pairs (A, <), where A is a subset of Z, and < is a well-ordering of A. (We allow A to be empty.) Define
(A, <) ~ (A, <) if (A,<) and (A’, <’) have the same order type. It is trivial to show that this is an
equivalence relation. Let [(A, <)] denote the equivalence class of (A, <); let E denote the collection of
these equivalence classes. Define

[(4, )] < (4", <))
if (A, <) has the order type of a section of (A’, <’).
(a) Show that the relation < is well defined and is a simple order on E. Note that the equivalence

class [(@, @)] is the smallest element of E.

(b) Show that if & = [(4,<)] is an element of E, then (4, <) has the same order type as the section
So(E) of E by a. [Hint: Define a map f : A — E by setting f(z) = [(Sz(A), restriction <)] for
each x € A/]

(¢) Conclude that FE is well-ordered by <.

(d) Show that F is uncountable. [Hint: If h : E — Z is a bijection, then h gives rise to a well-ordering
of Z+]

Solution:
(a)

Proof. First, to show that < is well defined, suppose that [(4, <)] < [(A’,<)] and that (B, <) €
[(4,<)] and (B’,<’) € [(4’,<’)]. Then (4, <) has the same order type as a section of (4’, <’)
so that there is an order-preserving map h from A onto a section of A’. We also then have that
(B, <) has the same order type as (A, <) since they are in the same equivalence class. Thus there
is an order-preserving bijection f : B — A. Likewise there is an order-preserving bijection from
g: B’ — A’. Tt is then trivial to show that ¢~ ! o h o f is bijection from B onto a section of B’ that
preserves order. Hence (B, <) has the same order type as a section of (B, <’). Since (B, <) and
(B, <) were arbitrary elements in their respective equivalence classes, this shows that < is well
defined such that it does not matter which representatives we use from the equivalence classes.

Now consider any equivalence class [(A, <)] in E. Then clearly it cannot be that [(4, <)] < [(4, <)],
since this would mean that A has the same order type as a section of itself, which would contradict
what was shown in Exercise WO.2 part (b). Thus < is nonreflexive.

Next consider two distinct equivalence classes [(4, <)] and [(A4’, <’)]. Then it cannot be that (A4, <)
and (A’,<’) have the same order type, for then they would be the same equivalence class. Then,
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by Exercise WO.4 part (a), it must be that either (A, <) has the same order type as a section of
(A’, <) or vice-versa. Clearly then, in the former case [(4, <)] < [(4', <’)], and in the latter case
[(A", <)] < [(4, <)]. This shows that < has the comparability property.

Lastly, suppose that [(4, <)] < [(A’,<’)] and [(4’, <")] < [(A”,<")]. Then (A, <) has the same
order type as section of (A’, <’) so that there is an order-preserving bijection f from A onto a section
of A’ Likewise there is an order-preserving bijection g from A’ onto a section of A”. It is then trivial
to show that fog is an order-preserving bijection from A onto a section of A”. It then clearly follows
that [(A4, <)] < [(A”, <")], which shows that < is transitive.

Hence we have shown that < satisfies all the requirements of a simple order. O

(b)
Proof. Following the hint, define the map f: A — E by setting
f(z) = [(Sz(A), restriction <)]
for any « € A, noting that clearly S, (A) is well-ordered by the restricted < so that the equivalence

class is valid and in F.

Consider any « and y in A where x < y. Then clearly € Sy(A) but « ¢ S;(A) (since it is not true
that ¢ < x) so that S;(A) and S, (A) are distinct sets. We also clearly have that S;(A) = S;(Sy(4))
so that S;(A) has the same order type (the identity function is the required order-preserving map)
as a section of Sy (A). Hence

f(z) = [(Sz(A), restriction <)] < [(Sy(A4), restriction <)] = f(y)

so that f preserves order since x and y were arbitrary.

Now we show that f is onto S, (E). So consider any equivalence class [(B, <)] in S, (EF) and hence
(B, <)] < a=[(4 <)

so that by definition (B, <) has the same order type as some section S;(A). Hence [(B,<)] and
[(Sz(A), restriction <)] are the same equivalence class! Therefore

f(z) = [(Sz(A), restriction <)] = [(B,<)],

which of course shows the desired property since [(B, <)] was arbitrary.

This shows that f is an order-preserving map from A onto S, (E) so that they have the same order
type. O

(c)

Proof. Consider any nonempty subset D C E. Thus there is an a = [(4,<)] € D. If « is the
smallest element of D then we are done, so assume that this is not the case so that thereis a g € D
where f < . Now, it was shown in part (b) that (A, <) has the same order type as the section
So(E) so that this section must be well-ordered since A is. Also we have that 3 € S,(F) since
B < a. Thus 8 € DN S,(F) so that DN S,(F) is a nonempty subset of S, (E) so has a smallest
element v since S, (F) is well-ordered. In particular, we of course have that v <« 8, where we use
< to denote < or equal to.

We claim that v must be the smallest element of D. If not, then there is a § € D where § < . Of
course we also then have that § < v <« f < « and hence 6 € S, (E). Therefore § € DN S, (E), but
since ¢ < v this contradicts the definition of y as the smallest element of D NS, (F). So it must be
that in fact v is the smallest element of D, which shows that E is well-ordered by < since D was
an arbitrary subset. O
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(d)

Proof. Following the hint, suppose that E is countable so that there is a bijection h : E — Z,. This
of course gives rise to a well-ordering < of h(F) = Z, by simply ordering its elements according to
its bijection with E, which was shown to be well-ordered in part (c). Then we have that (Z4, <) is
an element of A since Z is a subset of itself. Thus the equivalence class a = [(Z4, <)] is an element
of E. But we know from part (b) that (Z,, <) then has the same order type as the section S, (E).
Since we also know that (Z., <) has the same order type as F itself, it follows that E has the same
order type as its section So(FE). This was shown not to be possible in Exercise WO.2 part (b) so
that a contradiction has been reached. So it must be that in fact F is uncountable as desired! [

Chapter 2 Topological Spaces and Continuous Functions

8§13 Basis for a Topology

Exercise 13.1

Let X be a topological space; let A be a subset of X. Suppose that for each = € A there is an open set
U containing x such that U C A. Show that A is open in X.

Solution:

Proof. For each ©z € A we can choose an open set U, containing x such that U, C A. We then
claim that (J,., U, = A. So first consider any y € (J,c 4 U. so that there is an 2 € A such that
y € Up. Then clearly also y € A since U, C A. Hence |J,., U, C A since y was arbitrary. Now
consider y € A so that clearly y € U,. Then obviously y € J,c4 Uz so that A C |J,c 4 Us since y
was arbitrary. Thus we have shown that (J,. 4 U = A, and since each U, is open, it follows from
the definition of a topology that the union (J, ., U, = A is open as well. O

Exercise 13.2

Consider the nine topologies on the set X = {a,b,c} indicated in Example 1 of §12. Compare them;
that is, for each pair of topologies, determine whether they are comparable, and if so, which is finer.

Solution:

We label each of the topologies in Figure 12.1 with an ordered pair (i,5) where 1 <4, j < 3, 7 is the
row, j is the column, and (1,1) is the upper left corner. The following matrix lists which of each
pair is finer, or “Inc” if they are incomparable.

(L1 | (1,2) | (1,3) | (2,1) | (2,2) (
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We know that C forms a strict partial order on these topologies. So we can also list all the maximal
simply ordered subsets, each in order:

(L1) < (2,2) € 3,3)
LDHSBDS(1,2)¢3,2) <63
LDSE)S1,3)S((2,3) <63
LSS (13)S(23) <63

(LD S22 <63

Exercise 13.3

Show that the collection 7, given in Example 4 of §12 is a topology on X. Is the collection
Teo = {U | X — U is infinite or empty or all of X}

a topology on X7

Solution:

Recall that T, from Example 12.4 is the set of all subsets U of X such that X — U either is countable
or is all of X. First we show that 7, is a topology on X.

Proof. First, clearly @ € T, since X — @ = X is all of X. Also X € T, since X — X = @ is
countable. Now suppose that A is a subcollection of 7, so that X — U is countable (or all of X') for
every U € A. Then we have that

X-JAa=x-JA=Nx-4

AcA AcA
is countable (or all of X) since every X — A is countable (or all of X). Therefore | JA € T, by
definition.

Now suppose that Uy, ..., U, are nonempty elements of 7T, so that X — U; is a countable subset of
X or X itself for each i € {1,...,n}. Then we have

n n

xX-Nui=Jx -

i=1 i=1

is a finite union of sets that are either countable subsets of X, or X itself. It then follows that the
union is countable or X itself so that (;_, U; € T, by definition. This completes the proof that T
is a topology on X. O

Now we claim that the collection 75, as defined above is not always a topology on X.

Proof. As a counterexample, let X = Z and suppose that T, is a topology on X. Clearly if U is
a finite subset of X, then X — U is infinite since X is infinite so that U is open. Now consider the
subcollection

A={{i}|i€Zyandi>1}={{2},{3},..}.

Then clearly we have that |JA = {2,3,...} so that X — |JA = {1} is neither infinite, empty, nor
all of X. Therefore | J.A cannot be open, which violates property (2) of a topology. So it must be
that 74 is not a topology, which of course contradicts our supposition that it is! O
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Exercise 13.4

(a) If {7,} is a family of topologies on X, show that ()7, is a topology on X. Is | J 7, a topology on
X7

(b) Let {74} be family of topologies on X. Show that there is a unique smallest topology on X
containing all the collections 7,, and a unique largest topology contained in all 7.

(¢) If X ={a,b,c}, let
T ={9,X,{a},{a,b}} and To ={2,X,{a},{b,c}}.

Find the smallest topology containing 77 and 72, and the largest topology contained in 7; and 7s.

Solution:

(a) First we show that (7, is a topology on X.

Proof. First, clearly since & and X are in every 7, since they are topologies, they are both in (] 7,
so that property (1). Now suppose that A is a subcollection of () 7,. Consider any 73 and any
A € A. Then A is also in ()7, since A C () 7a. It then follows that A is in our specific Tg.
Since A was arbitrary it follows that A is a subcollection of 7 so that |J.A € T3 also since 73 is a
topology. Since Tp was also arbitrary it follows that |J.A € () 7. Lastly, since the subcollection .4
was arbitrary, this shows property (2) for () 7.

Finally, suppose that Ui,...,U, are sets in (|7,. Consider any 73 so that clearly then U; € T3
for every i € {1,...,n}. It then follows that (),_, U; € Tp since T3 is a topology. Since Tz was
arbitrary, this shows that (_, U; € () Ta, which shows property (3) for () 7,. This completes the
proof that (7, is a topology on X since all three properties have been shown. O

Now we claim that |7, is not generally a topology.

Proof. As a counterexample consider the set X = {a,b,c}, the topologies T; = {2, X, {a}} and
T2 = {2, X, {b}}, and the collection of topologies C = {71, 72}. Then we clearly have that | JC =
TiUTy ={2,X,{a},{b}}, which is not a topology since A = {{a},{b}} is a subcollection of | JC
but |JA = {a,b} is not in | JC. O

(b) First we show that there is a unique smallest topology that contains each 7.

Proof. Tt was proven in part (a) that | 7, is not necessarily a topology. However, it is clearly always
a subbasis for a topology since clearly X € |J 7, since it is in each 7, since they are topologies.
Hence obviously then |J(|J7.) = X so that |J 7, is a subbasis by definition. Then let 75 be the
topology generated by the subbasis |J7,. We claim that 7, is then the smallest topology that
contains all the 7, as subsets.

First, from the proof following the definition of a subbasis, we know that the set B of finite inter-
sections of elements of |7, is a basis for the topology T;, and that 7 is the set of all unions of
subcollections of B.

We first show that every 7, is indeed contained as a subset of 7;. So consider any specific 73 and
any U € Tg. Then clearly U € |JT7, so that U € B since U = ({U} is a finite intersection of
elements of | J 7. It then follows that U € T since U = | J{U?} is the union of a subcollection of 5.
Since U was arbitrary, this shows that 73 C 7T, which shows the result since 73 was arbitrary.

Now we show that 7 is the smallest such topology as ordered by C. So suppose that 7 is a topology
that contains every 7T, as a subset. Consider any U € T, so that U = |JC for some subcollection
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C C B. Now consider any Y € C so that also Y € B. Then Y = (', Y; where each Y; € J7,.
Then each Y; is in some 73 C T so that also ¥; € 7. Since 7 is a topology, it follows that the finite
intersection (), ¥; =Y is also in 7. Since Y was arbitrary, this shows that C C T so that C is a
subcollection of 7. It then follows that | JC = U is also in T since T is a topology. Since U was
arbitrary, we have that 75 C 7, which shows that 7 is the smallest topology since T was arbitrary.

It is easy to see that 7, is unique since, if both 77 and 7, are the smallest topologies that contain
each 7, as subsets, then we would have that both 7; C 75 and T3 C 77 so that 73 = 7T5. Really this
follows from the more general fact that smallest elements in any order are always unique. O

Next we show that there is a unique largest topology that is contained in each 7.

Proof. Tt was shown in part (a) that 7, = [ 7, is a topology on X. We claim that in fact this is the
unique largest topology contained in all 7,. First, clearly 7, = () 7, is contained in each 7, since
the intersection of a collection of sets is always a subset of every set in the collection. Now suppose
that 7 is a topology that is contained in every 7,, i.e. T C T, for every 7,. Then clearly for any
U € T we have that U € T, for every T, so that U € (T, = 7;. Thus T C 7, since U was arbitrary.
This shows that 7; is the largest such topology since T was arbitrary.

Clearly also 7; is unique since, if 73 and 75 are two such largest topologies that are contained in
every T,. Then we would have 7; C T3 and T3 C 77 so that 73 = T5. This also follows from the fact
that the largest element in any ordered set (or collection of sets in this case) is unique. O

(c) Note that the proofs in part (b) are constructive so that we can construct these topologies as
done in the proof. For the smallest topology containing 7; and 72 we have that

U{T, T2} = TH U Tz = {2, X, {a} , {a,b} . {b,c}}

is a subbasis for the smallest topology 75. Then the collection of all finite intersections of elements
of this set is a basis for 7;:

B={2,X {a},{b},{a,b},{b,c}} .
Then the topology 75 is the set of all unions of subcollections of B:
Ts = {gva {a}’{b} ) {a»b}v{bvc}} =B

so that evidently the basis and the topology are the same set here!
For the largest topology contained in 77 and 75 we have simply

T=({T. T} =TinT2={2,X,{a}} .

Exercise 13.5

Show that if A is a basis for a topology on X, then the topology generated by A equals the intersection
of all topologies on X that contain 4. Prove the same if A is a subbasis.

Solution:

Suppose that 7 is the topology generated by basis A, and C is the collection of topologies on X
that contain A as a subset.

First we show that 7 = [C.
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Proof. Consider U € T and any 7. € C so that A C T.. Then, since A generates 7T, it follows from
Lemma 13.1 that U is the union of elements of A. Clearly then each of these elements of A is in
T. since A C 7 so that their union is as well since 7 is a topology. Hence U € 7. so that T C 7T,
since U was arbitrary. Hence T is contained in all elements of C so that 7 C (C. Also, clearly T is
a topology that contains A so that 7 € C. Clearly then [(C C T so that 7 = [C as desired. O

Next we show the same thing but when A is a subbasis.

Proof. Let B be the set of all finite intersections of elements of A, which we know is a basis for T
by the proof after the definition of a subbasis. We show that B C 7. for all 7, € C. So consider any
set B € B so that B is the finite intersection of elements of A. Also consider any 7. € C so that
each of these elements is in 7, since A C T.. Since 7. is a topology, clearly the finite intersection of
these elements, i.e. B, is in 7.. Hence B C 7T, since B was arbitrary.

It then follows from what was shown before that 7 = () C since T is the topology generated by the
basis B and B is contained in each topology in C. O

Exercise 13.6

Show that the topologies of R; and Ry are not comparable.

Solution:

Proof. Let T, and Tx be the topologies of R; and Ry, respectively. Also let B; and Bx be the
corresponding bases.

Consider z = 0 € R and B; = [0, 1), which clearly contains 0 and is a basis element of B;. Let Bx
be any basis element of By that contains 0. Then B is either (a,b) or (a,b) — K for some a < b. In
either case it must be that a < 0 < b so that clearly a < a/2 < 0 < b. Also a/2 ¢ K since a/2 < 0
so that we have a/2 € (a,b) and a/2 € (a,b) — K. Clearly also a/2 ¢ [0, 1) so that it cannot be that
By C B;. We have therefore shown that

Jz € RIB, € B[z € BiAVBk € Bk (x € Bk = Bk ¢ B))]
Jr € RIB, € By[x € BiAVBg € Bg (v ¢ Bk V Bx ¢ By)]
Jx € RIAB, € By [x € By A—3Bk € Bi (x € Bk AN Bk C B))
dx e RIAB, € Bi—[x ¢ B,V IBk € Bx (x € Bx AN Bk C By)
Jx € RIB, € B~ [z € By = 3Bk € Bk (x € Bk AN Bk C B,
—Vz € RVB; € By [x € By = 3Bk € B (x € Bxk AN Bg C B;

—Vax € RVB; € By [x € B = 3Bk € Bk (x € Bk C By)]

]
]
)]
)]
This shows by the negation of Lemma 13.3 that Tx is not finer than 7;.

Now consider again x = 0 € R and Bg = (—1,1) — K, which clearly contains 0 and is a basis element
of Bi. Let B; be any basis element of B; that contains 0 so that B; = [a, b) where a < 0 < b. Clearly
we have that 1/b > 0 and there is an n € Z; where n > 1/b since the positive integers have no
upper bound. We then have

0<1/b<n
0<1l<bn (since b > 0)
0<1l/n<b (since n > 1/b > 0)
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so that 1/n € [0,b) = B;. However, clearly 1/n € K so that 1/n ¢ (—1,1) — K = Bg. Hence it
must be that B; ¢ Bg. This shows that 7; is not finer than 7x by the negation of Lemma 13.3 as
before.

This completes the proof that Tx and 7; are not comparable. O

Exercise 13.7

Consider the following topologies on R:

71 = the standard topology,

T2 = the topology of Ry,

T3 = the finite compliment topology,

T4 = the upper limit topology, having all sets (a, b] as basis,

Ts = the topology having all sets (—o0,a) = {z | < a} as basis.

Determine, for each of these topologies, which of the others it contains.

Solution:
We claim that 73 C 71 € 72 € Ta and 75 € 71 € T2 € 74 but that 73 and 75 are incomparable.

Let By, Bo, By, and Bs be the given bases corresponding to the above topologies, noting that 73 is
defined directly rather than generated from a basis.

First we show that 73 C 77.

Proof. Consider any U € T3 so that R — U is finite or U = R. Clearly in the latter case U € 77 since
it is a topology. In the former case R — U is a finite set of real numbers so that its elements can be

enumerated as {x1,2a,...,2,} for some n € Z; where 21 < 29 < -+ < z,,. Then clearly we have
that
n—1
U= (—00,z1) U [U (xk;,xk+1)‘| U (2, 00) .
k=1

Each of these sets is an interval (a,b) or the union of such intervals. For example, the set (—oo,z1)
can be covered by the countable union of intervals

(ml—k—l,xl—k—i—l)
k=1

and similarly for the interval (z,,00). Hence the union U is an element of 7; by Lemma 13.1. Since
U was arbitrary, this shows that 73 C 77.

Now, clearly the interval (—1,1) is in 77 since it is a basis element. However, we also have that
R —(-1,1) = (—o0,—1] U [1, 00) is neither finite nor all of R. Hence (—1,1) ¢ T3. This shows that
71 cannot be a subset of T3 so that 73 C 77 as desired. O

Next we show that 75 C 77 also.

Proof. Consider any = € R and any basis element Bs € Bs containing x. Then Bs = (—o00, a) where
x < a. Let By = (z — 1,a), which is a basis element in B;. Also clearly B; contains x and is a
subset of Bs. This proves that 7; C 7; by Lemma 13.3.
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Now consider = —1 and basis element By = (—2,0) in B;, noting that obviously = € B, and
hence —2 < x < 0. Let By be any element of B containing = so that Bs = (—00,a) where z < a.
Clearly then —3 < —2 < z < a so that —3 € Bs. However, since —3 ¢ (—2,0) = By, this shows that
Bs ¢ By. This suffices to show that 7; ¢ 75 by the negation of Lemma 13.3. Therefore 75 C 77 as
desired. ]

Now we show that 73 and 75 are not comparable.

Proof. First consider the set U = R — {0} so that U € T3 since R — U = {0} is obviously finite.
Now suppose that U € T5 as well. Then, since clearly 1 € U, there must be a basis element B € Bs
where 1 € Bs and Bs C U by the definition of a topological basis. Then Bs = (—00, a) where 1 < a.
However, since 0 < 1 < a as well, it must be that 0 € Bs, and hence 0 € U since B C U. As this
clearly contradicts the definition of U, it has to be that U is not in fact in 75 so that T3 ¢ Ts.

Now consider the set U = (—o0,0), which is clearly in 75 since it is a basis element. However, since
R—U = [0,00) is clearly neither all of R nor finite, it follows that U ¢ T3. This shows that 75 ¢ Ts,
which completes the proof that the two are incomparable. O

Now, the fact that 73 C 72 was shown in Lemma 13.4. All that remains to be shown is that 7o C 7y
since the rest of the relations follow from the transitivity of proper inclusion.

Proof. First consider any basis element By € By and any @ € By. Either B is (a,b) or (a,b) — K
for a < bso that a < < b with z ¢ K. In the former case clearly the set By = (a,x] is in By,
x € By, and By C Bs. In the latter case we have the following:

Case: © < 0. Then here again By = (a,z| is in By, © € By, and By C By since y ¢ K for any y € By
since then a <y < x < 0.

Case: © > 0. Then let n be the smallest positive integer where n > 1/x, which exists since Z has
no upper bound and is well-ordered. It then follows that 0 < 1/n < x and there are no integers m
such that 1/n < 1/m < x. So let @’ = max(a,1/n) and set By = (a/, ] so that, for any y € By,
botha <a <y <z <band 1/n < a <y < z, and hence y € (a,b) and y ¢ K. Therefore
y € (a,b) — K = Bsy. Since y was arbitrary, this shows that B4 C Bs, noting that also clearly x € By
and By € By.

Hence in any case it follows that 7o C 7 from Lemma 3.13.

Now let z = —1 and By = (-2, —1] so that clearly « € By and By € B4. Then let By be any basis
element in By that contains x. Then we have that Bs is either (a,b) or (a,b) — K where a < 2 < b
and z ¢ K.

Case: 0 <b. Thena < x = —1 < 0 < bso that 0 is in both (a,b) and (a,b) — K since clearly 0 ¢ K,
and thus 0 € Bs. However, clearly 0 ¢ (—2,—1] = By.

Case: 0> 0. Thena <z < (r+b)/2 < b <0 so that (z +b)/2 € By since (x + b)/2 is not in K.
Clearly also though (z + b)/2 ¢ (—2,2] = By since z < (z +b)/2.

Thus in either case we have that By ¢ By. This shows the negation of Lemma 13.3 so that T4 ¢ 7Ts.
Hence T2 C T4 as desired. O

It is perhaps a rather surprising fact that, though it has been shown that the K and lower limit topol-
ogy are incomparable (Exercise 13.6), the K topology and the upper limit topology are comparable
as was just shown.

Exercise 13.8
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(a) Apply Lemma 13.2 to show that the countable collection
B ={(a,b) | a <b, a and b rational}

is a basis that generates the standard topology on R.
(b) Show that the collection

C ={la,b) | a < b, a and b rational}

is a basis that generates a topology different from the lower limit topology on R.

Solution:
(a)

Proof. Let T be the standard topology on R. First, clearly B is a collection of open sets of 7 since
each element is a basis element in the standard basis (i.e. an open interval). Now consider any
U € T and any « € U. Then there is a standard basis element B’ = (a/,b’) such that € B’ and
B’ C U since T is generated by the standard basis. Then o’ < x < b’ so that, since the rationals
are order-dense in the reals (shown in Exercise 4.9 part (d)), there are rational a and b such that
a <a<xz<b<ll. Let B=(a,b) so that clearly x € B, B C B’ C U, and B € B. This shows
that B is a basis for 7 by Lemma 13.2 since U and x € U were arbitrary. O

(b)

Proof. First we must show that C is a basis at all. Clearly, for any x € R we have that there is an
element in C containing x, for example [z, z + 1). Now suppose that C1 = [a1,b1) and Cy = [ag, bs)
are two elements of C and that x € C; N Cy. Then obviously a1 < x < by and ag < = < by. Let
a = max(a,az) and b = min(by, b2) and C = [a,b) so that clearly C € C. Also clearly a < x < b
since both a1 < x < b; and as < = < by, a is ay or az, and b is by or by. Therefore C contains z.
Now consider any y € C' so that a1 <a <y <b<by and as < a <y < b < by and hence y € C;
and y € Cy. This shows that C' C C; N Cy since y was arbitrary. By definition this suffices to show
that C is a basis for a topology.

So let T be the topology generated by C and 7; be the lower limit topology. Now consider U =
[z,2 4+ 1) where z is any irrational number, for example 2 = . Let C be any basis element in C
containing z so that C' = [a,b) where a and b are rational. It must be that a # x since a is rational
but z is not. Also, since C contains x it has to be that a < x. So it has to be that a < x, but then
a € Cbuta¢[r,x+1)=U. This shows that C is not a subset of U. Hence we have shown

JxelUVCelC(zeC=C¢gU)
JzreUVC eC(z g CVC ¢gU)
VzxeUaCeCzxeCANCCU).

This shows that U ¢ T by the definition of a generated topology. However, clearly we have that
U € 7T, since it is a lower limit basis element. This suffices to show that 7 and 7; are different
topologies. O

8§16 The Subspace Topology

Exercise 16.1

Show that if Y is a subspace of X and A is a subspace of Y, then the topology A inherits as a subspace
of Y is the same as the topology it inherits as a subspace of X.

Page 148



Solution:

Proof. Let T be the topology on X and Ty be the subspace topology that Y inherits from X. Also
let T4 and T} be the topologies that A inherits as a subspace of Y and X, respectively. Therefore
we must show that 74 = 74. Now, by definition of subspace topologies we have that,

Ty ={YNU|UeT} Ta={ANU|U €Ty} Ti={ANU|UeT}.

Now suppose that W € T4 so that W = ANV for some V € Ty. Then we have that V =Y NU for
some U € T, and hence

W=ANV=An(YNU)=(ANY)NU =ANU

since we have that ANY = A since A C Y. Since U € T this clearly shows that W € T} so that
Ta C T} since W was arbitrary.

Then, for any W € T4, we have that W = ANU for some U € T. Let V=Y NU so that clearly
V € Ty. Then as before we have that A = ANY since A C Y so that

W=ANU=(ANY)NU=AN(YNU)=ANV,

and thus W € T4 since V € Ty. Since W was arbitrary this shows that 74 C T4, which completes
the proof that 74 = T}. O

Exercise 16.2

If 7 and 7" are topologies on X and 7" is strictly finer than 7, what can you say about the corresponding
subspace topologies on the subset Y of X7

Solution:

Let Ty and Ty be the subspace topologies on Y corresponding to 7 and 77, respectively. We claim
that Ty is finer than 7y but not necessarily strictly finer.

Proof. First, we have that
Ty ={YNU|UeT} Ty ={YnU|UeT'}

by the definition of subspace topologies. So for any V' € Ty we have that V =Y NU where U € T.
Then also U € T’ since T is finer than 7. This shows that V € Ty since V=Y NU where U € T".
Hence 7y is finer than 7y since V' was arbitrary.

To show that it is not necessarily strictly finer, consider the sets X = {a,b,c} and Y = {a, b} so
that clearly Y C X. Consider also the topologies

T ={2,X {a,b}} T'={2,X,{a,b} {c}}
on X so that clearly 7~ is strictly finer than 7. This results in the subspace topologies
Ty ={2,Y} Ty ={2,Y},

which are clearly the same so that 7y is not strictly finer than 7y, noting that it is technically still
finer. However, if we instead have the topologies

T = {2, X, {a,b}} T ={2,X.{a,b},{b}}
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then
Ty = {gvy} T)L = {gayv {b}}

so that 7y is strictly finer than 7y. Thus we can say nothing about the strictness of relation of the
subspace topologies. O

Exercise 16.3

Consider the set Y = [—1, 1] as a subspace of R. Which of the following sets are open in Y'? Which are
open in R?

A={z| 3 <l|z| <1},

B={z|3;<|z| <1},

C={x]3<lz| <1},

D={x|3<lal<1},

E={z|0<z|<land 1/z ¢ Z,}.

Solution:

Lemma 16.3.1. If a,b € R such that 0 < a < b then the following are true:
{reR]|a<|z| <b} =(-b,—a)U(a,b) {r eR|a<|z| <b} =[-b,—a]U]a,b
{reR|a<|z| <b} =(-b,—a]U]la,b) {reR]|a<|z| <b}=][-b —a)U(a,b].

Proof. We prove only the first of these as the rest follow from nearly identical arguments. Let
A={zxeR|a<|z| <b} and B = (—b,—a)U (a,b) so that we must show that A = B.

So consider z € A so that a < || < b. If x > 0 then || = x so that a < x < b and hence x € (a,b).
If x < 0 then |z| = —z so that a < —x < b, and thus —a > x > —b so that € (—b,—a). Thus in
either case z € B so that A C B.

Now let 2 € B so that either z € (—b, —a) or x € (a,b). In the former case we have that © < —a <0
since a > 0 so that |x| = —z and therefore

z€(=b—a)=-b<z<—-a=b>-z=|z|>a=z€A.
In the latter case we have that > a > 0 so that |z| = z and therefore
r€(a,b)=a<z=lz|<b=>zxe€A.
This shows that B C A since x was arbitrary, and thus A = B as desired. O

Lemma 16.3.2. Suppose that X is a topological space and Y C X with the subspace topology. Then,
if a set U CY is open in X, then it is also open in Y.

Proof. So suppose that U C Y is open in X. Then we have that Y N U = U is also open in Y by
the definition of the subspace topology. O

Main Problem.
First we claim that A is open in both R and Y.
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Proof. We have from Lemma 16.3.1 that A = (—1,—1) U (1,1) which is clearly the union of basis
elements so that A is open in R. We also have that A C Y so that A is open in Y by Lemma 16.3.2

since it is open in R. O
Next we claim that B is open in Y but not in R.

Proof. By Lemmma 16.3.1 we have that B = [-1,—3) U (3,1]. First, consider the sets (—2,—3)
and (%,2), which are clearly both basis elements and therefore open in R. We then have that
(=2,-3)NY =[-1,-1) and (3,2) NY = (3, 1] so that these sets are open in Y by the definition
of the subspace topology. Clearly then their union B = [—1, —%) U (%, 1] is then also open in Y.

It is also easy to see that B is not open in R. For example, —1 € B but for any basis element
B’ = (a,b) containing —1 we have that a < —1 < b so that a < (a — 1)/2 < —1 < b and hence
(a —1)/2 € B'. Clearly though (a — 1)/2 ¢ B so that B’ cannot be a subset of B. Thus suffices to

show that B is not open by the definition of the topology of R generated by its basis. O
We claim that C' is open neither in R nor Y.

Proof. By Lemmma 16.3.1 we have that C = (—1,—3] U [3,1). If B is the standard basis on R,
then, by Lemma 16.1, the set By = {BNY | B € B} is a basis for the subspace Y. So consider the
point z = % and any basis element By € By containing x. Then we have that By = Y N Bx for
some basis element By = (a,b) in B, and thus a < = < b since « € Bx. Let o’ = max(a, —1) and

set y = (@’ + x)/2 so that
a<d <(d+x))2=y<z<b,
and hence y € (a,b) = Bx. Also we have
—1<-i<d<(@+a)2=y<z=1i<1

so that y € [-1,1] =Y. Therefore y € Y N Bx = By. However, since —% <y< %, clearly y ¢ C
so that By cannot be a subset of C. Since the basis element By € By was arbitrary, this suffices
to show that C cannot be open in Y since By is a basis. Since also clearly C' C Y, it follows from
the contrapositive of Lemma 16.3.2 that C' is not open in R either. O

Next we claim that D is also not open in R or Y.

Proof. This follows from basically the same argument as the previous proof, again using the point
T = % to show that any basis element of Y that contains x cannot be a subset of D. O

Lastly, we claim that F is open in both R and Y.

Proof. First, it is trivial to show that
E={zeR|0<|z|<1}-K=[(-1,00U(0,1)] - K,

where we have used Lemma 16.3.1. Now consider any = € E so that « € (—1,0) U (0,1) and
x ¢ K. If x € (—1,0) then clearly the basis element (—1,0) contains  and is a subset of E since
(-1,00NK = 2.

On the other hand, if € (0,1) then « ¢ K so that 1/x ¢ Z,. From this it follows from Exercise 4.9
part (b) that there is exactly one positive integer n such that n < 1/x < n + 1. We then have that
1/(n+1) <z <1/n. Solet B=(1/(n+1),1/n) so that clearly x € B, BNK = &, and B is a basis
element of the standard topology on R. Since BN K = @ and clearly 0 < 1/(n+1) < 1/n < 1, it
also follows that B C E.

Hence in either case there is a basis element of R that contains = and is a subset of E. This suffices

to show that F is open in R. Since clearly E C Y, we also clearly have that E is open in Y by
Lemma 16.3.2. O

Page 151




Exercise 16.4

A map f: X — Y is said to be an open map if for every open set U of X, the set f(U) is open in Y.
Show that m : X XY — X and 75 : X XY — Y are open maps.

Solution:

Proof. Suppose that U is an open subset of X x Y. Consider any = € 71 (U) so that thereisay € Y
such that (z,y) € U. Then there is a basis element A x B of the product topology on X x Y where
(z,y) € Ax B CU. Then A and B are open sets of X and Y, respectively, since A x B is a basis
element of the product topology. Clearly we have that € A since (z,y) € A x B. Now, for any
' € A, we have that (2/,y) € A x B so that (a/,y) € U. Hence 2’ = m(2',y) € m (U), which
shows that A C 71 (U) since 2’ was arbitrary. Then, since A is an open subset of X, there is a basis
element A" where z € A’ C A C m(U). This suffices to show that 71 (U) is an open subset of X
since x was arbitrary. An analogous argument shows that 7o is also an open map. O

Exercise 16.5

Let X and X’ denote a single set in the topologies T and T, respectively; let Y and Y’ denote a single
set in the topologies U and U’, respectively. Assume these sets are nonempty.

(a) Show that if 7/ O 7 and U’ D U, then the product topology on X’ x Y’ is finer than the product
topology on X x Y.

(b) Does the converse of (a) hold? Justify your answer.

Solution:

In what follows let 7;’ and 7, denote the product topologies on X’ x Y’ and X x Y, respectively.
(a)

Proof. Consider any W € 7, and any (x,y) € W, noting that obviously W C X x Y. Then there
is a basis element U x V' of 7, such that (z,y) € U x V and U x V. C W. By the definition of the
product topology, we have that U and V are open sets in T and U, respectively. Then we also have
that U € 7" and V € U" since T C 7" and U C U'. Hence U x V' is also a basis element of 7. Since
we know that (z,y) e U x V, U x V C W, and (z,y) € W was arbitrary, this suffices to show that
W is an open subset of X’ x Y’ and hence W € 7. This in turn shows that 7, C 7, since W was
arbitrary. O

(b) We claim that the converse does not always hold.

Proof. As a counterexample consider A = {a,b, c,d} so that clearly
T ={2,A,{a,b},{c,d}}
T ={9,A,{a,b},{c,d},{c},{d},{a,b,c},{a,b,d}}
are topologies on A. Clearly also 7 is not finer than 7. Similarly let B = {1,2, 3,4} so that
U ={2,B,{1,2},{3,4}}
Uu={o,B,{1,2},{3,4},{3},{4},{1,2,3},{1,2,4}}

are topologies on B, also noting that clearly ¢’ is not finer that &. Now let X = X’ = {a, b} and
Y =Y’ = {1,2} so that clearly X and X’ are in topologies 7 and T’, respectively, and Y and Y’
are in U and U’, respectively.
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Then the bases for the product topologies 7, on X x Y and 7, on X’ x Y" are then
B={9,X xY} B ={20,X'xY'}={0,X xY} =8,

respectively, since there are no subsets of X in 7 or 7' other than @ and X itself, and similarly no
subsets of Y in ¢ or U’ other than @ and Y. Since their bases are the same, clearly 7, = 7, so that
it is true that 7, is finer than 7, (though not strictly so). O

Exercise 16.6

Show that the countable collection
{(a,b) x (¢,d) | a < band ¢ < d and a, b, ¢,d are rational}

is a basis for R2.

Solution:
Proof. It was proven in Exercise 13.8 part (a) that the set
B ={(a,b) | @ <b, a and b rational}
is a basis for the standard topology on R. It then follows that
D={BxC|B,CecB}
is a basis for the standard topology on R? by Theorem 15.1. Clearly we have
D ={(a,b) x (¢,d) |a < band ¢ < d and a,b, ¢, d are rational} ,

which shows the desired result. O

Exercise 16.7

Let X be an ordered set. If Y is a proper subset of X that is convex in X, does it follow that Y is an
interval or a ray in X7

Solution:

We claim that Y is not always an interval or a ray in X.

Proof. As a counterexample consider X = Q and the proper subset ¥ = {x €eQla?< 2}. We
claim that Y is convex but not an interval or a ray.

First, consider a,b € Y where a < b, thus a?,b> < 2. Also consider x € (a,b) so that a < x < b. If
2 >0then 0 < 2 < bsothat 22 < b2 < 2. If £ < 0 then a < £ < 0 so that 2 > a? > z2. Thus
in either case x2 < 2 so that x € Y. Since x was arbitrary, this shows that (a,b) C Y so that Y is
convex since a and b were arbitrary.

Now, clearly Y cannot be a ray with no lower bound since then there would be an z in the ray where

x < —2 so that 2 > 4 > 2 and hence x ¢ Y. Similarly Y cannot be a ray with no upper bound
since then the ray would contain an x > 2 so that x> > 4 > 2 and thus x ¢ Y. So suppose that
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Y = [a,b] for some a,b € X = Q where a < b. Now, it cannot be that v?> = 2 since then b = /2,
which is not rational. Similarly it cannot be that a? = 2 for the same reason.

Case: b? < 2. Then there is a rational p where b < p < /2 since the rationals are order-dense in
the reals. Let @ = max(0,p) so that b < p < z and hence x ¢ [a, b]. However, if 0 < p then z = p so
that 22 = p? < 2, and if 0 > p then x = 0 so that 22 = 0 < 2. Thus either way z € Y and = ¢ [a, b],
which shows that Y cannot be [a, b].

Case: b? > 2. Then v/2 < b since 0 < 2 < b%. If v/2 < a then clearly for any x € [a,b] we have that
0 < V2 < a< zsothat 2 < 22 and hence x ¢Y. Ifa< V/2 then there is a rational p such that
a < V2 < p < bsince the rationals are order-dense in the reals. Hence 2 < p? so that p ¢ Y. Either
way there is an = € [a,b] where x ¢ Y so that ¥ cannot be [a, b].

Similar arguments show that neither Y = (a,b), Y = [a,b), nor Y = (a,b] for a,b € X = Q and

a < b. Hence Y cannot be an interval. Thus Y is convex but neither an interval nor a ray in X.
This shows the desired result. O

Exercise 16.8

If L is a straight line in the plane, describe the topology L inherits as a subspace of Ry x R and as
subspace of Ry x Ry. In each case it is a familiar topology.

Solution:

First, let R, denote the reals with the upper limit topology, with a basis containing all intervals (a, b]
for a < b. Also let Rydenote the reals with the discrete topology, which can clearly be generated by
a basis containing intervals [a,b] for a < b. This is easy to see as [a,a] = {a} is a basis element so
that any subset of R can be considered a union of such basis elements. It is then easy to show that
Ryand R,are both strictly finer than the standard topology on R (this was shown in Lemma 13.4
for Ry), but that Ryand R,are incomparable. Clearly Ryis strictly finer than both of these since it
is the finest possible topology on R.

Now, regarding the main problem, we do not yet have the tools show formally show how topologies
on a line L compare to topologies on R, so we will have to discuss this informally. We can see that,
in some sense, a line L in the plane is like a copy of the real line so that we can discuss topologies
on L is being in some sense the same as topologies on R.

The product topology R, x R is the topology is generated by the basis containing sets of the form
[a,b) X (c,d) where a < b and ¢ < d by Theorem 15.1. Then, for a line L in the plane, it can intersect
such a basis element in a variety of ways, which are illustrated below:
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(d)

Clearly the intersection of L and these basis elements results in some kind of interval on L. Such
intervals then form the basis for the subspace topology on L by Lemma 16.1 since they are the
intersection of L and a basis element in the superspace. Another point is that the orientation of the
line L with regard to the way in which it is a copy of R is important. For example, in Figure (a)
above, if L is oriented in the natural way with the negative reals on the left and the positive reals
on the right, then the resulting intervals are of the form [a, b), which would result in a topology like
Ry. The opposite orientation results in intervals of the form (a,b] as basis elements, generating a
topology like R,,.

Now, for a line L such as that illustrated in Figure (a), every possible basis element of R, x R
that intersects L results the half-open intervals as described above depending on the orientation
of L. This is not the case for all lines, however, and is dependent on its slope in the plane. For
example, lines with positive slope can intersect basis elements as in Figure (c), which result in half
open intervals [a, b) (or (a,b] depending on orientation), or they can intersect them as in Figure (d),
which result in open intervals (a,b). However, since the topologies Ryand R, are strictly finer than
the standard topology, the subspace topology formed on L would be like these (which depends on
orientation) rather than like the standard topology. Lastly, we note that, for any appropriate interval
on the line L, we can clearly always find a basis element B in R, X R such that the intersection of B
with L is the interval. For this reason, these intervals form the basis elements of the topology on L.

With all these considerations in mind, we list the topologies on R that the subspace topologies on
L are like based on line directions and orientations for product topologies R, x R and Ry x Ry:

L Rg x R Rz X Re
— Rg Rg
e Ry R,
T R R,
’\ Ru IEgd
— R, R,
| Ry Ry,
] R Ry,
hV Ry Rq

We note that R simply denotes the standard topology.

Exercise 16.9

Show that the dictionary order topology on the set R x R is the same as the product topology on Rz x R,
where Ry denotes R in the discrete topology. Compare this topology with the standard topology on R2.

Solution:

In what follows let T4 denote the dictionary order topology on R x R, and let 7, denote the product
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topology on R4 x R. Also let < denote the dictionary ordering of R x R. First we show that 73 = 7.

Proof. First we note that clearly the dictionary order on R x R has no largest or smallest elements
so that, by definition, 74 has as basis elements intervals ((z,y), (2’,y’)), that is the set of all points
z € R x R where (z,y) < z < (¢/,y'). Clearly the set {{z} | 2 € R} is a basis for R;. Hence, by
Theorem 15.1, the set B, = {{z} x (a,b) | z € R and a < b} is a basis for the product topology 7.

So consider any (z,y) € R x R and any basis element By = ((a,b), (a’, b)) of T4 that contains (z,y).
Hence (a,b) < (z,y) < (a/, V).

Case: a = x: Then since (a,b) < (z,y), it has to be that b < y.

Case: a = ¢ = a’. Then it also has to be that y < ¥’ since (z,y) < (a’,b'). Then the set
B, = {z} x (b,V) is a basis element of 7, that contains (x,y) and is a subset of By.

Case: a = x < a’. Then it is easy to show that the set B, = {x} x (b,y+1) is a basis element
of 7, that contains (z,y) and is a subset of By.

Case: a < z:

Case: x = @’. Then it has to be that y < b’ since (x,y) < (a/,V'). Then it is easy to show
that the set B, = {z} x (y —1,b) is a basis element of 7, that contains (z,y) and is a subset
of Bd.

Case: a = x < d/. Then it is easy to show that the set B, = {z} x (y — 1,y + 1) is a basis
element of 7, that contains (z,y) and is a subset of By.

In every case and sub-case it follows from Lemma 13.3 that 74 C 7.

Now suppose (z,y) € Rx R and B, = {z} X (a,b) is a basis element of 7, containing (z,y). Also let
By be the interval in the dictionary order ((z,a), (x,b)), which is clearly a basis element of 7. It is
then trivial to show that B, = By so that x € B4 C B,, which shows that 7, C 74 by Lemma 13.3.
This suffices to show that 7; = 7, as desired. O

We now claim that this topology 74 = 7, is strictly finer than the standard topology on R x R. We
denote the latter by simply 7.

Proof. Since it was just shown that 75 = 7, it suffices to show that either one is strictly finer than
the standard topology. It shall be most convenient to use the product topology 7,. So first consider
any (z,y) € R? and any basis element B = (a,b) X (c,d) of T containing (x,y). Hence a < x < b
and ¢ < y < d. It is then trivial to show that the set {x} x (¢,d), which is clearly a basis element
of 7,, contains (x,y) and is a subset of B. This shows that 7, is finer than 7 by Lemma 13.3.

To show that it is strictly finer, consider the point (0, 0) and the set B, = {0} x (—1, 1), which clearly
contains (0,0) and is a basis element of 7,. Now consider any basis element B = (a,b) X (¢,d) of
T that also contains (0,0). It then follows that a < 0 < b and ¢ < 0 < d. Consider then the point
x = (a+0)/2 =a/2 so that clearly a < z < 0 < b and hence = € (a,b). Thus the point (z,0) € B,
but also (x,0) ¢ B, since & < 0 so that « # 0. This shows that B cannot be a subset of B,. Since
B was an arbitrary basis element of 7T, this shows that 7 is not finer than 7, by the negation of
Lemma 13.3.

This suffices to show that 7, is strictly finer than 7 as desired. O

Exercise 16.10

Let I = [0, 1]. Compare the product topology on I x I, the dictionary order topology on I x I, and the
topology I x I inherits as a subspace of R x R in the dictionary order topology.
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Solution:

First, we assume that the product topology on I x [ is the product of I with the order topology as
this seems to be the standard when no topology is explicitly specified. Denote this product topology
by 7T,. Let T4 denote the dictionary order topology on I x I, and let 7, denote the subspace topology
on I x I inherited as a subspace of R x R in the dictionary order topology. Lastly, let < denote the
dictionary order on I x I and R x R. To avoid ambiguity we also use the notation x x y to denote
the ordered pair (x,y) and reserve parentheses for open intervals.

First we claim that 7, and 74 are incomparable.

Proof. First, consider the point 0 x 1 € I x I and B, = [0,1/2) x (1/2,1], which is a basis element
of 7, that clearly contains 0 x 1. Note that B, is a basis element because [0,1/2) and (1/2,1] are
both basis elements in the order topology on I since 0 and 1 are the smallest and largest elements
of I, respectively. Now consider any interval By = (a x b,a’ x ¥’) in the dictionary order on I x T
that contains 0 x 1, which is of course a basis element of 7;5. Then we have that a x b and a’ x b’ are
inIxIwithaxb<0x1=<a xb. Hence 0 <a' or0=a" and 1 <¥. As 1 is the largest element
of I, the latter case is not possible so that it must be that 0 < a’. Let z = (0+a’)/2 = d//2 so that
clearly 0 < < a/. Then we have that a x & <  x 0 < a’ x b’ so that the point  x 0 is in By.
However, clearly 0 ¢ (1/2,1] so that x x 0 ¢ B,,. This shows that By cannot be a subset of B,,.

Here we note that, in the dictionary order on I x I, the smallest element is 0 x 0 while the largest
is 1 x 1. With this in mind, the above argument for an open interval also applies to the half-open
intervals [0 X 0,a x b) and (a x b,1 x 1], which are of course also basis elements of 7. This then
shows that 74 is not finer than 7, by the negation of Lemma 13.3.

Now consider the point 0 x 1/2 and the interval By = (0x 0,0 x 1) in the dictionary ordering, which
is therefore a basis element of 7y, and clearly also contains 0 x 1/2. Consider also any basis element
B, = A x B of T, that contains 0 x 1/2. Since 0 € A and A must be a basis element of the order
topology on I, it has to be that A = [0,a) for some 0 < a < 1. Then let z = (0 + a)/2 = a/2
so that 0 < = < a, and thus x € A. Then, since 1/2 € B (since 0 x 1/2 € A x B), we have that
x x1/2 € Ax B = B, as well. However, we also clearly have that 0 x 1 < = x 1/2 since 0 < x so
that © x 1/2 ¢ (0 x 0,0 x 1) = B;. This shows that B, cannot be a subset of B;. As B, was an
arbitrary basis element of 7,, this shows by the negation of Lemma 13.3 that 7, is not finer than

Ta.
This suffices to show that 74 and 7, are incomparable. O

Next we claim that 7y is strictly finer than 7.

Proof. Consider any  xy € I x I and suppose that B, = A x B is a basis element of 7, that contains
x X y. First suppose that A = (a,b) and B = (¢,d) so that of course a,b,c,d € I, a < x < b, and
¢ <y < d. It is then trivial to show that the interval B; = (x X ¢,z X d) in the dictionary order also
contains x X y, is a basis element of 7, (since By C I x I so that B;N (I x I) = B,), and is a subset
of B,. A similar argument can be made if A is an interval of the form [0,a) or (a,1]. If B = (¢, 1]
and A is still (a,b), then let X be the interval (z X ¢,z x 2) in the dictionary order so that we have
B, =XN(IxI)={z} x(c1] is a basis element of 7, that contains z x y and is a subset of B,,.
A similar argument applies if B = [0,d) and/or when the interval A is half-open. This shows that
Ts is finer than 7, by Lemma 13.3.

The argument above that shows that 7, is not finer than 74 using the negation of Lemma 13.3
applies equally well to show that 7, is not finer than 7;. This of course suffices to show the desired
result that 7; is strictly finer than 7,. O

Lastly, we claim that 7 is also strictly finer than 7.

Page 157




Proof. First consider any point x X y in I X I and let By be a basis element of T; that contains z X y
so that it is some kind of interval with endpoints a X b and a’ x b’ in I x I. We note here that, since
R x R has no smallest or largest elements, basis elements of the dictionary order topology there can
only be open intervals. Now, if By is an open interval in I x I then clearly then the same interval
B = (a x b,a’ x V') is a basis element in the dictionary order topology of R x R, though though
the two intervals can in general be different sets. For example the interval (0 x 0,1 x 1) in R x R
contains the point 0 x 100 whereas the same interval in I x I does not since 0 x 100 ¢ I x I. Tt is,
however, trivial to show that BN (I x I) = By so that By is basis element of 7.

If we have that By is the half-open interval [0 x 0,a’ x b’) then let B = (0 x —1,a’ x V'), which
is clearly a basis element of the dictionary order topology on R x R. It is then easy to see that
BN(IxI)= By again so that it is a basis element of 7. If By is the half-open interval (a x b, 1 x 1],
then the open interval (a x b,1 x 2) is a basis element of the dictionary order topology on R x R
and has the same result. Hence in all cases By is also a basis element of 7, and that it trivially is
a subset of itself, and it contains x x y. This shows that 7 is finer than 7; by Lemma 13.3.

To show that it is strictly finer, consider the point 0 x 1 and the open interval B = (0 x 0,0 x 2),
which is clearly a basis element of the dictionary order topology in R x R. It is then easy to prove
that Bs = BN (I x I) = {0} x (0,1] = (0 x 0,0 x 1] so that B; is a basis element of 7;. Now
consider any basis element B, of T4 that contains 0 x 1 so that By is some type of dictionary-order
interval with endpoints a x b and @’ x ', both in I x I. The only way the interval can be closed
above is if @’ x " = 1 x 1, in which case clearly 1 x 1 € By but 1 x 1 ¢ B,. So assume that it is
open above so that 0 x 1 < a’ x b, and hence either 0 < a’ or 0 = ¢/ and 1 < ¥'. The latter case
cannot be since 1 is the largest element of I and o' € I. Therefore it has to be that 0 < a’. So let
x=(0+da")/2=ad"/2sothat 0 <z <a and thus 0 x 1 <2 x 0 < a’ x b'. From this it follows that
x x 0 is in By. However, clearly « x 0 ¢ B; since 0 x 1 < x x 0.

Hence in any case we have shown that, while they both contain 0 x 1, By cannot be a subset of Bs.
Since By was an arbitrary basis element, this shows that 7; is not finer than 7; by the negation of
Lemma 13.3. This shows the desired result that 7y is strictly finer than 7. O

817 Closed Sets and Limit Points

Exercise 17.1

Let C be a collection of subsets of the set X. Suppose that @ and X are in C, and that finite unions
and arbitrary intersections of elements of C are in C. Show that the collection

T={X-C|CeC)}

is a topology on X.

Solution:

Proof. First, clearly @ and X are in T since @ = X — X and X = X — @ and both X and @ are in
C. This shows the first defining property of a topology.

Now consider an arbitrary sub-collection A of 7. Then, for each A € A, we have that A= X — B
for some B € C since also A € T. Solet B={B cC|X — B € A}. Then we have that

Ua=UA=J&x-B=x-(B=x-(B

AcA BeB BeB
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by DeMorgan’s law. By the definition of C we have that (B € C since it is an arbitrary intersection
of elements of C. It then follows that | JA =X — (B isin 7 by definition. This shows the second
defining property of a topology.

Lastly, suppose that A is a nonempty finite sub-collection of 7, which of course can be expressed as
A={Ag | ke{l,...,n}} for some positive integer n. Then, again we have that that Ay = X — B,
for some By, € C for all k € {1,...,n} since Ay, € T. Then we have

A= (N4r=(X-By)=X-|J Bk
k=1 k=1 k=1

by DeMorgan’s law. Then clearly | J;_, By is in C by definition since it is a finite union of elements
of C. It then follows that (VA = X — (J;_, By is in T by definition. Since A was an arbitrary
finite sub-collection, this shows the third defining property of a topology. Hence 7T is a topology by

definition.

O

Exercise 17.2

Show that if A is closed in Y and Y is closed in X, then A is closed in X.

Solution:

Proof. Since A is closed in Y, it follows from Theorem 17.2 that A = BNY where B is some closed

set in X. Hence by definition X — B is open in X. Also, since Y is closed in X, we have that X —Y

is open in X by definition. We then have
X-A=X-(BNnY)=(X-B)U(X-Y)

by DeMorgan’s law. Since both X — B and X — Y are open in X, clearly their union must also be

open since we are in a topological space. Hence X — A is open in X so that A is closed in X by

definition.

O

Exercise 17.3

Show that if A is closed in X and B is closed in Y, then A x B is closed in X x Y.

Solution:

Proof. We show this via logical equivalences:

(z,y) e X xY -AxB&
reXANyeY)A
reEXANyeY)A(x

reX—-ANyeY)V

y) € (

&
&
&
&
& X
& (z,y) € (X

as desired.

Lemma 17.3.1. If X, Y, A, and B are sets then X XY —

—A) XYV (x,

(z,
(
(
(reXNhNyeYAxg¢g AV
(
(z,
(z, —AxYUXx (Y —-B)

AxB=(X—-A)xYUX x (Y - B).

y) €EX XY A (z,y) ¢ AXx B
—(xr€e ANy € B)

¢ AVy¢ B)

(reXANyeY Ayé¢B)
(xeXANyeY —B)

y) € X x (Y - B)
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Main Problem.

Proof. Since A is closed we have that X — A is open in X. Since also Y itself is open in Y, we have
that (X — A) x Y is a basis element in the product topology by definition, and is therefore obviously
open. An analogous argument shows that X x (Y — B) is also open in the product topology since
B is closed in Y. Hence their union is also open in the product topology, but by Lemma 17.3.1 we
have

(X-A)xYUXx(Y-B)=XxY—-AxB

so that X xY — A x B is also open in the product topology. It then follows by definition that A x B
is closed as desired. O

Exercise 17.4
Show that if U is open in X and A is closed in X, then U — A is open in X, and A — U is closed in X.

Solution:

Lemma 17.4.1. If A, B, and C are sets then A— (B—C)=(A—B)U(ANC).
Proof. We show this by a sequence of logical equivalences:

r€A-(B-C)eozeANx¢B-C
sSreAN-(zxeBAx¢C)
srxeAN(x¢ BVxel)
S xeANxg¢B)V(xeArxel)
sSreA-Bvrze AnC
szre(A-B)U(ANQ)

as desired. 0

Corollary 17.4.2. If AC X and B=X — A, then A= X — B.

Proof. By Lemma 17.4.1, we have that
X-B=X-(X-A)=X-X)UXnNA)=gUXnNA)=XNA=A

since A C X. O

Main Problem.

Proof. First, since A is closed in X, we have that B = X — A is open in X, and it follows from
Corollary 17.4.2 that A = X — B. Then we have that

U-A=U—-(X-B)=U-X)uUnB)
by Lemma 17.4.1. Since U C X, it follows that U — X = &, and hence
U-A=guUUnNB)=UNB.

Then, since both U and B are open, their intersection is as well and therefore U — A is open.
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Next, we have by Lemma 17.4.1
X-(A-U)=(X-AUuXnU)=BU(XNnU)=BUU.

since U C X so that X NU = U. Since both B and U are open, clearly their union is as well and
hence X — (A — U) is open. This of course means that A — U is closed by definition. O

Exercise 17.5

Let X be an ordered set in the order topology. Show that (a,b) C [a,b]. Under what conditions does
equality hold?

Solution:

Proof. First, the closed interval [a,b] is closed (hence why it is called such!) because clearly its
compliment is

X - [aa b] - (700, a) U (bv OO)

and we know that open rays are always open so that their union is as well. Clearly also [a, b] contains
(a,b). Hence [a, b] is a closed set containing (a,b). Since (a, b) is defined as the intersection of closed
sets that contain (a,b) clearly we have that (a,b) C [a,b] as desired. O

The conditions required for equality are such that [a,b] is also a subset of (a,b) and, in particular
both a and b must be in (a, b). Since clearly a,b ¢ (a,b), it has to be that they are both limit points
of (a,b). This is equivalent to the condition that a has no immediate successor and b no immediate
predecessor. We show only the first of these since the second is analogous.

Proof. (=) We show the contrapositive of this. So suppose that a does have an immediate successor
c¢. Then the open ray (—oo,c) is an open set that contains a but does not intersect (a,b). This is
easy to see, because if they did intersect, there would be an x € (a, b) where also z € (—o0, ¢). From
these it follows that a < x < ¢, which contradicts the fact that ¢ is the immediate successor of a.
Hence by definition a is not a limit point of (a,b).

(<) Suppose that a is not a limit point of (a,b). Then there is an open set U containing a that
does not intersect (a,b). From this it follows that there is a basis element B containing a such that
B C U, and thus B also cannot intersect (a,b) (as, if it did, then so would U). Suppose that B is
the open interval (¢, d) so that ¢ < a < d. It also must be that d < b for otherwise, for any element
of x of (a,b), we would have ¢ < a < < b < dso that z € (¢,d) = B and B and (a,b) would not be
disjoint. We claim that d is the immediate successor of a. If this is not the case then there would be
an x such that ¢ < a < z < d and hence z € (¢,d) = B. Also a < x < d < b so that also z € (a,b).
Therefore B and (a,b) would not be disjoint. Similar arguments can be made if B are other types
of basis element in the order topology. (Actually B cannot be of the form (e, f] for largest element
f of X since then any element of (a,b) would also be in B and they would not be disjoint.) O

It is also worth noting that the Hausdorff axiom (and therefore also the T} axiom since it is implied
by the Hausdorff axiom) is not sufficient for general equivalence of [a, b] and (a,b). For example the
order topology on Z results in the discrete topology so that every subset is both open and closed.
Thus for any pair x1, 25 in Z, the sets {z1} and {z3} are neighborhoods of z; and x5, respectively,
that are disjoint. This shows that this topology is a Hausdorff space. However, the fact that a has
an immediate successor in Z is sufficient to show that [a, b] # (a,b) per what was just shown above.
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Exercise 17.6

Let A, B, and A, denote subsets of a space X. Prove the following:
(a) If AC B, then A C B.
(b) AUB=AUB.
(c) UAs D JAs; give an example where equality fails.

Solution:
(a)

Proof. Suppose that A C B and consider any x € A. Consider any neighborhood U of x so that U
intersects A by Theorem 17.5 part (a). Hence there is a point y € U N A so that y € U and y € A.
But then clearly y € B also since A C B. Therefore y € U N B so that U intersects B. Since U was
an arbitrary neighborhood of z, this shows that # € B, again by Theorem 17.5 part (a). This of
course shows that A C B as desired since 2 was arbitrary. O

(b)

Proof. (C) We show this by contrapositive. So suppose that z ¢ AU B. Then clearly x ¢ A and
x ¢ B. Thus, by Theorem 17.5 part (a), there is an open set U, such that U, does not intersect A,
and likewise an open Up that does not intersect B. Let U = U4 N Up, which is clearly open since
Uy and Ug are. We also note that U contains x since both U4 and Ug do. Then it must be that
U does not intersect A since, if it did, then U4 would also intersect A since U C Uy. Similarly, U
cannot intersect B. Thus, for all y € U, y ¢ A and y ¢ B. This is logically equivalent to saying
that there is no y € U where y € A or y € B, therefore there is no y € U where y € AU B. Hence
U and AU B do not intersect. Since U is open and contains x, this shows that = ¢ AU B, again
by Theorem 17.5 part (a). Therefore, by contrapositive, z € AU B implies that € AU B so that
AUBC AUB.

(D) Consider any 2 € AU B and any neighborhood U of z. If 2 € A then U intersects A by
Theorem 17.5 part (a). Hence thereisay € UNAso that y € U and y € A. Then clearly y € AUB
so that y is also in U N (AU B). Hence U intersects AU B. An analogous argument shows that this
is also true if z € B instead. Since U was an arbitrary neighborhood, this shows that x € AU B by
Theorem 17.5 part (a). Hence AU B C AU B since = was arbitrary. O

(c)

Proof. Consider any z € |J A, so that there is a particular 3 where x € Ag. Suppose that U is
any open set containing z so that U intersects Ag by Theorem 17.5 part (a) since z € Ag. Then
clearly U also intersects | J A, since Ag C |JA,. Since U was an arbitrary open set containing z,
this shows that x € |J A, by Theorem 17.5 part (a). This shows that |J A, C |J A, since x was
arbitrary, which is of course the desired result. O

As an example where equality fails, consider the standard topology on R and the sets A,, = (1/n, 2]
for n € Z4. It is then trivial to show that |J A, = (0,2] so that clearly 0 is a limit point of |J A,,
and hence 0 € m However, for any n € Z, the open interval (—1,1/n) is clearly an open set
containing 0 that is disjoint from (1/n,2] = A,. This shows that 0 ¢ A, for every n € Zy by
Theorem 17.5 part (a), from which it follows that 0 ¢ |J A,,. Hence |J 4,, is not a subset of |J 4,
and thus (J A, # J 4n.

Exercise 17.7
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Criticize the following “proof” that | J A, C | Aa: if {44} is a collection of sets in X and if x € | Aq,
then every neighborhood U of z intersects [ J A. Thus U must intersect some A, so that z must belong
to the closure of some A,. Therefore, x € |J A,.

Solution:

The problem with this “proof” is that, just because every neighborhood U intersects some A, it
does not mean that every U intersects a single A,, which is what is required for x to be in A,.
This is illustrated in the counterexample above at the end of Exercise 17.6 part (c). There, every
neighborhood of 0 clearly intersects some set A, = (1/n,2], but, for any given n € Z, not every
neighborhood of 0 intersects 4,,, for example the neighborhood (—1,1/n) does not.

Exercise 17.8

Let A, B, and A, denote subsets of a space X. Determine whether the following equations hold; if an
equality fails, determine whether one of the inclusions D or C holds.

(a) ANB=AnNB.

(b) nAa = ﬂZa-
(c) A-B=A-B.
Solution:

(a) We claim that AN B C AN B but equality is not always true.

Proof. Consider any € AN B and any open set U containing 2. Then by, Theorem 17.5 part (a),
U intersects A N B, from which it immediately follows that U intersects both A and B. However,
since U was an arbitrary neighborhood of z, it follows from Theorem 17.5 part (a) again that x is
in both A and B. Hence x € AN B, which shows that AN B C AN B since = was arbitrary.

Now consider the standard topology on R with A = [—1,0) and B = (0,1]. As these are clearly
disjoint, we have that AN B = @ so that AN B = & also. However, since we also clearly have that
A=1[-1,0] and B = [0, 1], it follows that AN B = {0}. Thus clearly ANB =@ # {0} = A— B as
desired. O

(b) We again claim that (| A, C () A, but that equality is not generally true.

Proof. Consider any x € (] A, and any open set U of x. Then, by Theorem 17.5 part (a), U intersects
() Aa so that, for any _particular Ag, U intersects Ag. This shows that x € Ag by Theorem 17.5
part (a) so that © € A, for every « since 5 was arbitrary. Hence z € (] A,, which shows that
N A, C [ As since z was arbitrary.

As in part (a), equality fails if we have A; = [—1,0) and Ay = (0, 1] in the standard topology on R.
By the same argument as in part (a) it follows that ﬂizl A, =2 #{0} = ﬂi:l A, O

(c) Here we claim that A — B D A — B but that the converse does not always hold.

Proof. Consider any x € A — B and any open set U containing . Then = € A so that every open
set containing z intersects A by Theorem 17.5 part (a). Also x ¢ B so that there is an open set V'
containing = that does not intersect B, also by Theorem 17.5 part (a). Let W =U NV so that W
contains x since both z € U and x € V. Now, since W is also an open set containing x, W intersects
A so that there is a y € W where also y € A. It also cannot be that y € B since we havey e W C V
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so that then V would intersect B. Therefore y € A — B. Also we have y € W C U so that also
y € U. Hence U intersects A — B, which shows that x € A — B by Theorem 17.5 part (a) since U
was an arbitrary neighborhood of . Therefore A — B D A — B as desired since x was arbitrary.

As a counterexample to equality, consider the standard topology on R with A = [0, 2] and B = (1, 3].
Then clearly A = A = [0,2] and B = [1, 3], from which it is easily shown that A — B = [0,1). But
we also have A — B = [0,1] so that obviously A — B = [0, 1] as well. Therefore A — B = [0,1] #
[0,1) = A — B as desired. O

Exercise 17.9
Let A C X and B C Y. Show that in the space X x Y,

AxB=AxB.

Solution:

Proof. (C) Consider (z,y) € A x B. Also suppose that U and V are any open sets in X and Y,
respectively, that contain x and y, respectively. Then U x V is a basis element of the product
topology on X x Y, by definition, that contains (z,y). It then follows from Theorem 17.5 part (b)
that U x V intersects A x B and hence there is a point (w, z) € U xV where also (w, z) € Ax B. Then
w € U and w € A so that U intersects A, and hence z € A by Theorem 17.5 part (a) since U was an
arbitrary neighborhood of x. An analogous argument shows that y € B. Therefore (x,y) € A x B
so that A x B C A x B since x was arbitrary.

(D) Now suppose that (x,%) is any point in A x B so that x € A and y € B. Suppose also that
U x V is any basis element of X x Y that contains (z,y) so that by definition U and V are open in
X and Y, respectively. Since z € A and U is an open set where x € U, it follows from Theorem 17.5
part (a) that U intersects A. Thus there is w € U where w € A as well. An analogous argument
shows that V intersects B so that there is a z € V where also z € B. We therefore have that
(w,2) € U xV and (w, z) € A x B so that U x V intersects A x B. Since U x V was an arbitrary
basis element containing (z,y), it follows from Theorem 17.5 part (b) that (x,y) € A x B. This
shows that A x B C A x B since the point (z,y) was arbitrary. O

Exercise 17.10

Show that every order topology is Hausdorff.

Solution:

Proof. Suppose that X is an ordered set with the order topology. Consider a pair of distinct points
x1 and x5 in X. Since X is an order, 1 and zo must be comparable since they are distinct, so we
can assume that x7 < xo without loss of generality.

Case: x7 is the immediate successor of 1. Then, if X has a smallest element a then clearly the set
Uy = [a, z2) is a neighborhood (because it is a basis element) of z7. If X has no smallest element then
there is an a < z; so that U; = (a,2) is a neighborhood of x;. Similarly Us = (21,b] or Uy = (x1,b)
is a neighborhood of x5, where b is either the largest element of X or x5 < b, respectively. Either
way, for any y € U; we have that y < x5 so that y < z; since x5 is the immediate successor of xy.
Hence it is not true that y > x1 so that y ¢ U,. This shows that U; and U, are disjoint.
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Case: x9 is not the immediate successor of 1. Then there is an x € X where 1 < x < 3. So
let Uy = [a,x) (or Uy = (a,z)) for the smallest element a of X (or some a < 7). Similarly let
Us = (z,b] (or Uy = (x,b)) for the largest element b of X (or some zo < b). Either way U and Us
are neighborhoods of z; and x4, respectively. If y € U; then y < x so that clearly it is not true that
y > x so that x ¢ Us. Hence again Uy and Us are disjoint.

Thus in either case we have shown that X is a Hausdorff space as desired since z; and xs were an
arbitrary pair. O

Exercise 17.11
Show that the product of two Hausdorff spaces is Hausdorff.

Solution:

Proof. Suppose that X and Y are Hausdorff spaces and consider two distinct points (z1,y1) and
(z2,y2) in X x Y. Since these points are distinct, it has to be that x1 # 29 or y1 # y2. In the first
case 1 and xo are distinct points of X so that there are disjoint neighborhoods Uy and U, of x1 and
To, respectively. This of course follows from the fact that X is a Hausdorff space. Then we have that
Uiy xY and Us; x Y are both basis elements, and therefore open sets, in the product space X x Y
since Y itself is obviously an open set of Y. Clearly also (x1,y1) € Uy XY and (z2,y2) € Uz X Y so
that U; x Y is a neighborhood of (z1,y1) and Uy x Y is a neighborhood of (z2, y2).

Then, for any (z,y) € Uy x Y we have that x € U; so that « ¢ U, since they are disjoint. Then it
has to be that (z,y) ¢ Uz x Y. This suffices to show that U; x Y and Us x Y are disjoint since (z,y)
was arbitrary. Thus X x Y is a Hausdorfl space since the points (x1,y;) and (x2,y2) were arbitrary.
An analogous argument in the case in which y; # yo shows the same result. O

Exercise 17.12

Show that a subspace of a Hausdorff space is Hausdorff.

Solution:

Proof. Suppose that X is a Hausdorff space and that Y is a subset of X. Consider any two distinct
points y; and y2 in Y so that of course also y1,y2 € X. Then there are neighborhoods U; and Us of
y1 and yo, respectively, that are disjoint since X is Hausdorff. Since U; is open in X, we have that
Vi =U;NY is open in Y by the definition of a subspace topology. Clearly also V; contains y; since
y1 € Uy and y; € Y. Similarly Vo = U NY is an open set of Y that contains y5. Then, for any
x € Vi clearly « € U; so that « ¢ Us since Uy and Us are disjoint. Then « ¢ UsNY = V5. Since x
was arbitrary, this shows that V; and V5 are disjoint, which then shows that Y is a Hausdorff space
as desired. O

Exercise 17.13
Show that X is Hausdorff if and only if the diagonal A = {x x x | x € X} is closed in X x X.

Solution:
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Proof. (=) Suppose that X is Hausdorff and consider any point  x y € X x X where x x y ¢ A.
Then it must be that « # y so that there are disjoint neighborhood U of x and V of y since X is
Hausdorff. Then U x V is a basis element of X x X, by the definition of a product topology, and is
therefore open. Now consider any point w x z € U x V so that w € U and z € V. Then it has to be
that w # z since U and V are disjoint, which shows that w x z ¢ A. Since w X z was an arbitrary
point of U x V, this shows that U x V' does not intersect A. Since also U x V is open and contains
x X y, this shows that x x y is not a limit point of A. Moreover, since x X y was an arbitrary element
of X x X that is not in A, it follows that A must contain all of its limit points and is therefore
closed by Corollary 17.7.

(<) Now suppose that A is closed and suppose that x and y are distinct points in X. Then xxy ¢ A
so that 2 x y cannot be a limit point of A (since it contains all its limit points by Corollary 17.7).
Hence there is an open set T in X X X that contains x X y and does not intersect A. It then follows
that there is a basis element U x V of X x X containing x x y where U x V. C T. Then U and V'
are both open in X by the definition of the product topology, and clearly x € U and y € V. It also
follows that U x V' does not intersect A since, if it did, then 7" would as well.

Suppose that U and V' are not disjoint so that there is a z € U where also z € V. Then clearly
z X z € U xV but we also have that z x z € A so that U x V intersects A. As we know that
this cannot be the case, it has to be that U and V are disjoint. This shows that X is Hausdorff
as desired since U is a neighborhood of x, V is a neighborhood of y, and x and y were arbitrary
distinct points of X. O

Exercise 17.14

In the finite compliment topology on R, to what point or points does the sequence x,, = 1/n converge?

Solution:

We claim that this sequence converges to every point in R.

Proof. Suppose that this is not the case so that there is point a € R where the sequence does not
converge to A. Then there is an open set U containing a such that, for every N € Z., there is
an n > N where x,, ¢ U. It is easy to see that z,, ¢ U for an infinite number of n € Z,. For, if
this were not the case, then there would be an N € Z, where z,, € U for every n > N. We know,
though, that there must be an n > N where z,, ¢ U.

Moreover, clearly every x, in the sequence is distinct so that there are an infinite number of points
not in U. Since each of these points are still in X, we have that X — U is infinite. As this is the
finite compliment topology and U is open, this can only be the case if X — U = X itself, in which
case it would have be that U = @ since U C X. This is not possible since U contains a. So it seems
that a contradiction has been reached, which shows the desired result. O

In fact, this is true for any sequence for which the image of the sequence {z, | n € Z; } is infinite.
This is to say that any such sequence converges to every point of R. Note also that this shows that
the finite compliment topology on R is not a Hausdorff space by the contrapositive of Theorem 17.10.

Exercise 17.15

Show the T axiom is equivalent to the condition that for each pair of points of X, each has a neighbor-
hood not containing the other.
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Solution:

Note that, though it does not say so above, the points must be distinct since any neighborhood
containing x obviously has to contain x.

Proof. (=) Suppose that a space X satisfies the 77 axiom and consider any two distinct points z
and y of X. Then the point {«} is closed since it is finite, and hence it also contains all of its limit
points by Corollary 17.7. Since the point y is not in {z} (since y # z), it cannot be a limit point of
{z}. Hence there is a neighborhood U of y that does not intersect {z:}. Hence 2 ¢ U. An analogous
argument involving {y} shows that there is a neighborhood V of  that does not contain y. Since z
and y were arbitrary points, this shows the desired property.

(<) Now suppose that, for each pair of distinct points in X, each point has a neighborhood that
does not contain the other point. As in the proof of Theorem 17.8, it suffices to show that every
one-point set is closed, since any finite set can be expressed as the finite union of such sets, which
is also then closed by Theorem 17.1. So let {z} be such a one-point set and consider any y ¢ {z}
so that clearly y # x. Then, since « and y are distinct, there is a neighborhood U of y such that U
does not contain x. Therefore U and {z} are disjoint. This shows that y is not a limit point of {x},
which shows that {«} contains all its limit points since y ¢ {x} was arbitrary. Hence {z} is closed
as desired by Corollary 17.7. O

Exercise 17.16
Consider the five topologies on R given in Exercise 7 of §13.

(a) Determine the closure of the set K = {1/n | n € Z} under each of these topologies.
(b) Which of these topologies satisfy the Hausdorff axiom? the T} axiom?

Solution:

Lemma 17.16.1. Suppose that T and T’ are topologies on X and T’ is finer than T. If T satisfies
the Ty axziom, then so does T'. Similarly, if T is Hausdorff, then so is T'.

Proof. First, suppose that 7T satisfies the T} axiom and consider any finite subset A of X. Then A
is closed in 7 by the 77 axiom so that by definition X — A is open in 7 and hence X — A € T.
Then X — A € T’ as well since T C T’ so that X — A is open in 7’. Hence A is closed in 7’ by
definition. Since A was an arbitrary finite set, this shows that 7’ also satisfies the T} axiom.

Now suppose that T is Hausdorff, and consider any two distinct points = and y in X. Then there
are neighborhoods U of z and V of y, both in 7, that do not intersect since 7 is Hausdorff. Then
clearly U,V € T’ as well since 7 C T'. Hence U and V are neighborhoods of z and y, respectively,
in 7’ that do not intersect. This shows that 7" is Hausdorff as desired since x and y were arbitrary
points of X. O

Main Problem.

First we summarize what we claim about these topologies on R for both parts:

Topology  Definition Ty  Hausdorff K
T Standard Yes Yes K U {0}
T2 Ry Yes Yes K
T3 Finite complement Yes No R
Ta Upper limit Yes Yes K
Ts Basis of (—o00,a) sets | No No {reR|0<a}
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Next we justify these claims for each part.
(a) First we show that K = K U {0} in T;.

Proof. (C) Consider any real number x and suppose that ¢ K U {0}, hence z ¢ K and z # 0.
Since = # 0, we have

Case: © < 0. Then clearly the open set (z — 1,0) contains x but does not intersect K since 0 < y
for every y € K, but y < 0 for every y € (z —1,0).

Case: © > 0. If 1 < z, then (1,2 + 1) contains & but does not intersect K since y < 1 for every
y€ K,but 1 <y forevery y € (1,z+1). If 1 > z it follows from the fact that ¢ K that there is
a positive integer n where n < 1/x < n+ 1, and hence 1/(n+ 1) < 2 < 1/n. Then clearly the open
set (1/(n+ 1),1/n) contains x, but we also have that it does not intersect K. If it did, then there
would be an integer m where 1/(n+1) < 1/m < 1/n so that n < m < n + 1, which we know is not
possible since n + 1 is the immediate successor of n in Z, .

Thus in all cases there is a neighborhood of x that does not intersect K. This of course shows that
r ¢ K by Theorem 17.5 part (a). We have therefore shown that = ¢ K U {0} implies that z ¢ K.
By contrapositive, this shows that K ¢ K U {0}.

(D) Now consider any neighborhood U of 0 so that there is a basis element (a, ) containing 0 that
is a subset of U. Then a < 0 < b. Clearly there is an n € Z, large enough where a <0 < 1/n <b
and hence 1/n € (a,b) C U. Since also 1/n € K, we have that U intersects K. Since U was an
arbitrary neighborhood, this shows that 0 is in K by Theorem 17.5 part (a). Since also clearly any
z € K is also in K, it follows that K > K U {0}. O

Next we show that K = K in 7T, which is to say that K is already closed.

Proof. First, clearly K C K basically by definition. Now consider any = ¢ K. Then clearly the set
B=(z—1,2+41)— K is a basis element of 73. Also it clearly contains = since ¢ K and also does
not intersect K since y € B means that y ¢ K. This shows that z is not in K by Theorem 17.5
part (b). Since x was arbitrary this shows that x ¢ K implies that z ¢ K. Thus K C K by
contrapositive. This suffices to show that K = K as desired. O

Now we show that K =R in 7.

Proof. Consider any real x and any neighborhood U of . Then U is open in 73 so that R — U must
be finite, noting that R — U cannot be all of R since U would then have to be empty since U C R,
whereas we know that x € U. It then follows that there are a finite number of real numbers not in
U. However, clearly K is an infinite set so that there must be an element of K that is in U. This
shows that K intersects U so that x is in K by Theorem 17.5 part (a) since U was an arbitrary
neighborhood. Hence R C K since x was arbitrary. Clearly also K C R so that K = R. O

Next we show that K = K in 73 so that K is closed.

Proof. Clearly K C K. So consider any real x where z ¢ K.

Case: < 0. Then the set B = (x — 1, z] is clearly a basis element of 74 that contains . For any
y € K we have that x <0 < y so that y ¢ B. Hence B does not intersect K.

Case: > 0. If 1 < z then it has to be that 1 <  since 1 =1/1 € K but « ¢ K, and hence = # 1.
Then B = (1, z] is clearly a basis element of 74 and contains x. This also clearly does not intersect
K since y < 1 for any y € K so that y ¢ B. On the other hand, if 1 > x then there is an integer
n where n < 1/x < n+1so that 1/(n+ 1) < < 1/n since « ¢ K. It then follows that the set
B =(1/(n+1),x] is a basis element of 74 that contains z and does not intersect K.

Page 168




Hence in all cases there is a basis element B containing = that does not intersect K. This shows
that x ¢ K by Theorem 17.5 part (b). Hence we have shown that = ¢ K implies that z ¢ K, which
shows by contrapositive that K C K. Therefore K = K as desired. O

Lastly we show that K = {z € R |0 < z} in T;.

Proof. First, let A= {z € R|0 <z} and consider any z € A and any basis element B = (—00,a)
containing z. Hence clearly 0 < z since z € A and = < a since x € B. Thus 0 < x < a so that there
is an integer n large enough that 0 < 1/n < a. Then 1/n € B and also clearly 1/n € K. Thus B
intersects K. Since B was any neighborhood of x it follows from Theorem 17.5 part (b) that = € K.
Hence A C K since z was arbitrary.

Now suppose that © ¢ A so that @ < 0. Then the set B = (—00,0) is clearly a basis element of 75
that contains . Since 0 < y for any y € K, it follows that y ¢ B, and thus B cannot intersect K.
Hence by Theorem 17.5 part (b) we have that x ¢ K. This shows that K C A by contrapositive,
which completes the proof that K = A. O

(b) First we show that 77, T2, and T3 are Hausdorff spaces and satisfy the 77 axiom.

Proof. First consider any two distinct points z,y € R. Without loss of generality, we can assume
that ¢ < y. Let z = (x+y)/2 so that clearly © < z < y. Then obviously the open intervals (x — 1, z)
and (z,y + 1) are disjoint open sets in 7; that contain z and y, respectively. This shows that 7T; is
a Hausdorff space and therefore also satisfies the T7 axiom by Theorem 17.8.

It then follows that T3 and 7 are also both Hausdorff and satisfy the 77 axiom. This follows from
Lemma 17.16.1 since it was shown in Exercise 13.7 that 7; C T3 C 7a4. O

Next we show that T3 satisfies the T} axiom but is not a Hausdorff space.

Proof. So first consider any finite subset A of R. Let U = X — A so that clearly A =X — (X — A) =
X —U. Then, since X —U = A is finite, it follows that U is open in 73 by the definition of the finite
complement topology. Hence by definition A is closed in T3 since X — A = U is open. This shows
that 73 satisfies the T axiom since A was an arbitrary finite subset of R.

To show that 73 is not Hausdorff, consider any open set U containing 0 and any open set V' containing
1. Tt then has to be that R — U is finite since it cannot be that R — U = R itself since then U would
have to be empty (which we know is not the case since 0 € U) since U C R. Likewise R — V is also
finite. Thus there are a finite number of real numbers that are not in U and a finite number that
are not in V. From this it clearly follows that there are a finite number of real numbers z where
x ¢ U orx¢V. Since we have

x¢UVeg¢Ve-(zreUAzeV)e-(zeUNV)esaxzg¢gUNV,

it has to be that there are a finite number of reals numbers that are not in U N V. But since R
is infinite, this means that there are an infinite number of real numbers that are in U N'V. Hence
UNYV # @, i.e. they intersect. Since U and V were arbitrary neighborhoods, this shows that 73 is
not Hausdorff by the negation of the definition. O

Lastly we prove that 75 is neither a Hausdorff space nor satisfies the 77 axiom.

Proof. First consider the distinct real numbers 0 and 1. Consider then any open set V' containing 1
so that there is a basis element B = (—o0, a) that contains 1 and is a subset of U. Clearly we have
that 0 € B since 0 < 1 < a and hence 0 € U since B C U. Since U was an arbitrary neighborhood
of 1, it follows there is no neighborhood of 1 that does not contain 0. Hence 75 does not satisfy the
T, axiom by the negation of Exercise 17.15. It also then follows that 75 is not a Hausdorff space by
the contrapositive of Theorem 17.8. O
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Exercise 17.17

Consider the lower limit topology on R and the topology given by the basis C of Exercise 8 of §13.
Determine the closures of the intervals A = (0,1/2) and B = (1/2,3) in these two topologies.

Solution:

Recall that C = {[a,b) | @ < b, a and b rational} from Exercise 13.8, noting that it was shown there
that this basis generates a topology different from the lower limit topology. Denote the lower limit
topology by 7, and denote the topology generated by C by 7.

Lemma 17.17.1. The closure of an open interval (a,b) is [a,b) in the lower limit topology on R.

Proof. First let A = (a,b) and C = [a,b) so that we must show that A = C.
(D) Consider any z € C.

Case: = a. Consider any basis element B = [c,d) that contains x = a so that ¢ <z =a < d. Let
e = min(b, d) so that a < e since both a < d and a < b. Then of course there is a real y between
a and e so that a < y < e. Thus we have c < a <y <e<dsothat ye B. Alsoa<y<e<b
so that y € A. Hence B intersects A so that # = a € A by Theorem 17.5 part (b) since B was an
arbitrary basis element.

Case: x # a. Then it has to be that € (a,b) = A so that x € A since obviously 4 C A.
This shows that C' C A since = was arbitrary.

(C) Now consider any real x where x ¢ C so that either z < a or > b. If © < a then the basis
element B = [z,a) clearly contains x but does not intersect A. If x > b then the basis element
B = [b,z+1) contains x and does not intersect A. Either way it follows from Theorem 17.5 part (b)
that 2 ¢ A. Since z was arbitrary, the contrapositive shows that A C C. O

Lemma 17.17.2. The closure of an open interval (a,b) in T. is [a,b) if b is rational and [a,b] if b
1s 1rrational.

Proof. Let A = (a,b). Consider any real x, and we shall consider an exhaustive list of cases that
will show whether x € A or x ¢ A.

Case: = < a. Obviously there is a rational p where p < x since the rationals are unbounded below.
Similarly, there is a rational ¢ where z < ¢ < a since the rationals are order-dense in the reals. The
set B = [p, q) is then clearly a basis element of 7. that contains x. It is also trivial to show that B
does not intersect A since ¢ < a, which shows that = ¢ A by Theorem 17.5 part (b) whether b is
rational or not.

Case: © = a. Consider any basis element B = [p,q) (where p and ¢ are rational) that contains = a
so that p <z =a < ¢. Let d = min(b, q) so that a < d since both a < ¢ and a < b. Then of course
there is a real y between a and d so that a < y < d. Thus we have p < a <y < d < ¢ so that
y € B. Alsoa <y <d<bsothat y € A. Hence B intersects A so that x = a € A by Theorem 17.5
part (b) since B was an arbitrary basis element. Note that this is true whether or not b is rational.

Case: a < z < b. Then clearly = € (a,b) = A so that z € A since obviously A C A.
Case: z = b.

Case: b is rational. Then there is another rational ¢ where ¢ > b since the rationals are
unbounded above. Then clearly the set B = [b,q) is a basis element of 7. that contains b.
Also clearly B does not intersect A since y € A implies that y < b and hence y ¢ B. This
shows that © = b ¢ A by Theorem 17.5 part (b).

Case: b is irrational. Then consider any basis element B = [p, ¢) containing b so that p and ¢
are rational. Thus p < b < ¢, but since p is rational but b is not, it has to be that p < b < q.
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Let ¢ = max(p,a) so that ¢ < b since both @ < b and p < b. There is then a real y where
c<y<bsothat a <c<y<bandhencey € A. Alsop <c <y <b<gsothat alsoy € B.
Therefore B and A intersect, which shows that = b € A by Theorem 17.5 part (b) since B
was arbitrary.

Case: > b. Then there are clearly rationals p and ¢ where b < p < z and = < g. Then clearly the
set B = [p, q) is a basis element that contains = and does not intersect A. This of course shows that
x ¢ A by Theorem 17.5 part (b) again, noting that this is true regardless of the rationality of b.

These cases taken together show the desired results. O

Main Problem.

First, it follows directly from Lemma 17.17.1 that that A = [0, \/5) and B = [\/5, 3)in T;. Tt is
worth noting that A and B are both basis elements of 7;, which is interesting since they are closures
and therefore closed. This of course implies that basis elements in 7; are both open and closed,
which is indeed the case and is easy to see after a little thought.

It also follows directly from Lemma 17.17.2 that A = [0,/2] and B = [v/2,3) in 7. since v/2 is
irrational and 3 is rational.

Exercise 17.18

Determine the closures of the following subsets of the ordered square:
A={(/m)x0|nez},
B={(1-1/n)xi|neZs},
C={zx0]0<z<1},
D={zxi|0<z<1},
E={ixy|l0<y<1}.

Solution:

We assume that the ordered square refers to the set X = [0, 1]> with the dictionary order topology.
Denote the dictionary order on X by <.

Definition 17.18.1. For a topology on R and some subset A C R, consider a point z € R. We say
that x is a limit point of A from above if every neighborhood containing x also contains a point y
where y € A and x < y. Similarly, a point x is a limit point of A from below if every neighborhood
containing x also contains a point y where y € A and y < x.

Note that a point can be a limit point from both below and above.

Lemma 17.18.2. Suppose that A is a subset of the real interval [0,1] and that B ={zx xb|x € A}
for some b € [0,1] so that B C X = [0,1]2. Then the point x x y is a limit point of B in the
dictionary order topology on the unit square if and only if either y = 1 and x is a limit point of A
from above or y =0 and = is a limit point of A from below in the order topology on [0, 1].

Proof. (=) We show this by contrapositive. So suppose that y # 1 or x is not a limit point of A
from above and that y # 0 or x is not a limit point from below.

Case: y # 0 and y # 1. Clearly then 0 < y < 1. If y = b then the dictionary order interval
(x x 0,z x 1) is a basis element that contains x x y and that does not contain any other points
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of B, if indeed z € A so that x X y = x x b is in B. If y < b then the dictionary order interval
(x x 0,2 x b) is a basis element with the same properties. Lastly, if y > b then the dictionary order
interval (z x b,z x 1) is a basis element that contains x X y but no points of B.

Case: y=0or y =1. If y = 0 then we have

Case: = 0. Then, if b = y = 0, we have that the dictionary order interval [0 x 0,0 x 1) is a
basis element containing z X y = 0 x 0 but no other points of B, if indeed z = 0 € A so that
xxy € B. If b#0 then 0 < b so that the interval [0 x 0,0 x b) is a basis element with the
same properties.

Case: x # 0. Then 0 < z and it has to be that x is a not a limit point of A from below.
Thus there is an interval (¢, d) or (¢, 1] (or [0,d) in which case let ¢ = 0 in what follows) that
contains x but no other points y € A where y < z. If b = y = 0 then it is easy to show that
(ex 1,z x1) (or (¢ x 1,z x 1] if # =1) is a basis element that contains z X y but no other
points of B, if indeed z € A so that © x y € B. If b # y = 0 then 0 < b so that (¢ x 1,z x b)
is a basis element with the same property.

If y = 1, then an analogous argument shows analogous results.

Thus in all cases and sub-cases it follows that x X y is not a limit point of B, which shows the desired
result by contrapositive.

(<) Now suppose that either y = 1 and z is a limit point of A from above or y = 0 and z is a limit
point of A from below. In the first case consider any dictionary order interval C = (a X ¢,d X ¢)
that contains x x y. Then it has to be that x < d since otherwise it would have to be that y =1 < e
since z X y < d X e, which is of course impossible. Then, since x is a limit point of A from above,
it follows that the open set [0,d) contains a point z € A where z < z so that * < z < d. It then
follows that the point z x b is in both C' and B, and is of course distinct from z X y since z < z.
The same argument can be made if C' is a basis element in the form of [0 x 0,d x e) or (a x ¢,1 x 1].
This suffices to show that  x y is a limit point of B since C' was an arbitrary basis element.

An analogous argument can be made in the case when y = 0 and z is a limit point of A from below,
which shows the desired result. O

Main Problem.
First we claim that A = AU {0 x 1}.

Proof. First, let K = {1/n|n € Z;} C[0,1] so that clearly A = {x x 0| z € K}. It is easy to show
that 0 is the only limit point of K and it is a limit point from above only. It then follows from
Lemma 17.18.2 that 0 x 1 is the only limit point of A so that A = AU {0 x 1} since the closure is
the union of the set and the set of its limit points. O

Next we claim that B = BU {1 x 0}.

Proof. This time let L = {1 —1/n|n € Zy} so that clearly B = {z x |z € L}. It is trivial to
show that 1 is the only limit point of L and that it is a limit point from below only. Hence 1 x 0 is
the only limit point of B by Lemma 17.18.2 so that the result follows. O

Now we claim that C = CU{l x 0}U{z x1]|]0<z < 1}.

Proof. First, we clearly have that C = {& x 0|2 € (0,1)}. It is easy to show that every point of
(0,1) is a limit point both from above and below, that 0 is a limit point from above only, and
that 1 is a limit point from below only. Thus it follows that the set of limit points of C' are then
{rx0]0<z<1}U{xx1|0<z <1} by Lemma 17.18.2. As many of these points are contained
in C itself, the result follows. O
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We claim that D=DU{zx0]|0<z<1}U{zx1|0<z<1}.

Proof. The limit points of D are the same as for C above for the same reasons, i.e. {x x0]0 <z <1}U
{z x1]0 <z < 1}. The result then follows. O

Lastly, we claim that £ = {1 x y |0 <y <1} = {1} x[0,1], noting that clearly E = {1} x (0,1).

Proof. Let F = {1} x [0,1] so that we must show that E = F.

(C) Consider any x x y where z x y ¢ F so that simply = # 3 since it has to be that y € [0,1]. If
T < % then the basis element [0 X O,% x 0) clearly contains x X y but no elements of E. If z > %
then the basis element (% x 1,1 x 1] clearly contains z x y but no elements of E either. This shows

that 2 x y is a not in £ by Theorem 17.5 part (b). Hence E C F by contrapositive.

(D) Consider any z x y € F so that = 4 and y € [0,1]. If y € (0,1) then z x y € E so that
xxy € E since obviously E C E. If y = 0 then consider any dictionary order interval F' = (axc, bxd)
containing x X y = % x 0. In particular we have that % x 0 < b x d so that either % <b,or b= %
and 0 < d. In the first case we have that % X % is in both F and E. In the second case let z = d/2
so that we have 0 < z < d < 1. Then clearly the point % X z is in I, but we also have that % X z is
in F since 0 < z < 1. The same argument applies if the basis element F is of the form [0 x 0,b x d)
or (a x ¢,1 x 1]. A similar argument shows an analogous result in the case when y = 1. This shows
by Theorem 17.5 part (b) that z x y € E since F' was an arbitrary basis element, which of course

shows that £ D F since & x y was arbitrary. O

Exercise 17.19
If A C X, we define the boundary of A by the equation

BdA=4AN(X—A4).

(a) Show that Int A and Bd A are disjoint, and A = Int A U Bd A.
(b) Show that Bd A = @ < A is both open and closed.
(c) Show that U is open < BdU =U — U.

(d) If U is open, is it true that U = Int (U)? Justify your answer.

Solution:
(a)

Proof. Consider any = € Int A so that there is a neighborhood of x that is entirely contained in A.
Then, for any y € U, we have that y € A and hence y ¢ X — A. This shows that U does not intersect
X — A, which suffices to show that z is not in the closure of X — A by Theorem 17.5 part (a). Thus

x is not in the boundary of A since Bd A = AN (X — A). This of course shows that Int A and Bd A
are disjoint since x was arbitrary.

To show that A = Int AUBd A, first consider any = € A. If 2 € Int A then clearly = € Int AUBd A,
so assume that z ¢ Int A. Consider any neighborhood U of X. Then it has to be that U is not a
subset of A since otherwise x would be in the union of open subsets of A and hence in the interior.
It then follows that there is a point y € U where y ¢ A and therefore y € X — A. This shows that
U intersects X — A so that x is in the closure of X — A since U was an arbitrary neighborhood.

Since also - € A, we have that z € AN (X — A) = Bd A. Hence clearly 2 € Int AU Bd A4 so that
A C Int AUBd A since x was arbitrary.
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Now consider any = € Int AUBdA. If z € Int A then also x € A since we have that Int A C
A C A. On the other hand, if + € BdA = AN (X — A) then of course x € A. This shows that
Int AUBdA C A in either case since x was arbitrary. Since both directions have been shown, it

follows that A = Int A U Bd A as desired. O

(b)

Proof. (=) First suppose that Bd A = @. Then by part (a) we have that A = Int AUBdA =
Int AUZ = IntA. Hence A C A = Int A so that A = Int A since it is also always the case that
Int A C A. This shows that A is open since Int A is always open. We also have A = Int A C A so
that A = A since it is always also the case that A C A. This of course shows that A is also closed
since A is always closed.

(<) Now suppose that A is both open and closed. It then follows that A = A = Int A. So consider
any € A so that also 2 € Int A. Then there is a neighborhood U of z contained entirely in A.
Thus, for any point y € U, we have that y € A so that y ¢ X — A, which shows that U does not
intersect X — A. Since U is a neighborhood of z, this shows that « ¢ X — A by Theorem 17.5
part (a). Then, since x was an arbitrary element of A, it follows that A and X — A are disjoint so

that BdA = AN (X — A) = @ as desired. O

(c)

Proof. (=) First suppose that U is open and consider any # € BdU. Then we have that z € U and
r € X — U since BAU = UN (X — U) by definition. Suppose for the moment that # € U so that U
itself is a neighborhood of z since it is open. For any y € U we have that y ¢ X — U, and hence U
does not intersect X — U. This shows that x is not in X — U by Theorem 17.5 part (a), which is a
contradiction since we know it is. Thus it must be that # ¢ U so that x € U — U. This of course

shows that BAU C U — U since = was arbitrary.

Now consider any = € U — U so that clearly # € U. Since also = ¢ U, it follows that € X — U so

that of course # € X — U as well. Hence z € UN (X — U) = Bd U, which shows that U —U C BdU

since x was arbitrary. This suffices to show that BAU = U — U as desired.

(<) Now suppose that BAU = U — U and consider any z € U. Then we have that 2 ¢ U — U =
BdU =UnN (X —U). Since we know that x € U (since U C U), it must be that z ¢ X — U. Thus,
by Theorem 17.5 part (a), there is a neighborhood of V' of x that does not intersect X — U. This
means that, for any point y € V', we have that y ¢ X — U. Since of course y € X, it follows that y
must be in U. This shows that V' C U since y was arbitrary. Hence V is a neighborhood of = that is
entirely contained in U so that « is in the union of open sets contained in U, hence « € Int U. Since
x was an arbitrary element of U, this shows that U C Int U. As it is always the case that Int U C U
as well, we have that U = Int U so that U is open since Int U is always open. O

(d) We claim that this is not generally true.

Proof. As a counterexample consider the set U = R — {0} in the finite complement topology on R.
Clearly U is open as its complement R — U = {0} is finite. It is also obvious that U is an infinite
set.

Now consider any real number z and any neighborhood V' of z. It cannot be that R — V is all of R
since then V would be empty, and we know that x € V. So it must be that R — V is finite since V is
open, which means that there are only a finite number of real numbers that are not in V. However,
since U is infinite, there must be an element of U that s in V' (in fact there are an infinite number
of such elements). Hence V intersects U so that = € U by Theorem 17.5 part (a). Since x € R was
arbitrary, it must be that U is all of R.
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Clearly R is open (since the a set is always open in any topology on that set) so that Int (U) =
Int R = R. Then, since 0 € R = Int (U) but 0 ¢ U, we have that U # Int (U). O

Exercise 17.20

Find the boundary and the interior of each of the following subsets of R2:

(a) A={axy|y=0}

(b) B={xxy|x>0andy=#0}
(¢ C=AUB

(d) D ={z xy| z is rational}

(e) E={zxy|0<a?—y*<1}
(f) F={zxy|lax#0and y <1/z}

Solution:

(a) It is easy to show that A is closed so that A = A, and that also R — A = A so that Bd A = A. Tt
is also easy to see that no basis element and therefore no neighborhood of any point in A is contained
entirely within A. From this it follows that Int A = @.

(b) It is easy to show that B is open so that Int B = B. It is likewise not difﬁcult to prove
that B = {x xy |z >0}. We then have from Exercise 17.19 part (c¢) that BB = B — B =
{zxylz=0}U{zxy|z>0andy=0}

(c) Here we have that C = AUB = {z x y | y = 0}U{z x y | & > 0}. It is then easy to show that the
closureis C = {zx x y |y =0}U{x x y | > 0}. Wealso have that R—C' = {& x y | < 0 and y # 0}
so that R — C' = {z x y | z < 0}. From these we clearly then have

BAC=CNR-C)={zxy|r<0andy=0}U{r xy|z=0}.

It is also not difficult to show that Int C = {x x y | > 0}.

(d) Clearly we have that D is all of R? as a consequence of the fact that the rationals are order-dense
in the reals. Also, since any neighborhood of any point in D will intersect a point z X y with irrational
x, it follows that no point of D is in its interior. Thus Int D = @ so that D = Int D UBdD =
@ UBd D = Bd D by Exercise 17.19 part (a), and hence Bd D = D = R2.

(e) It should be fairly obvious by this point that
BAE ={zxy|lyl= |z} U{zxy|z®—y*=1}

and Int E = {z x y | 0 < 2% — y*> < 1}. This would be easy but tedious to prove rigorously.

(f) First we clearly have that Int F = {z xy|x#0and y <1/z}. We also have that F =
{rxy|xz=0}U{z xy|x+#0andy <1/z}. By Exercise 17.19 part (a) we have that F' = Int F'U
BdF and that Int F N BdF = @ so that BAF = F — Int F. Thus we have that BdF =
{rxylx=0}U{zxy|z+#0andy=1/z}. Again these facts are not difficult to show rigorously
but would be tedious.

Exercise 17.21

(Kuratowski) Consider the collection of all subsets A of the topological space X. The operations of
closure A — A and complementation A — X — A are functions from the collection to itself.
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(a) Show that starting with a given set A, one can form no more than 14 distinct sets by applying these
two operations successively.

(b) Find a subset A of R (in its usual topology) for which the maximum of 14 is obtained.

Solution:

For the following we introduce the following notation to make things simpler. If A is a subset of a
topological space X then denote

cA=A zA=X-C
1tA=Int A bA=BdA.

We can consider these (¢, x, i, and b) as operators on sets that can be chained together in the
obvious way so that, for example, cxiA = X — Int A.

Lemma 17.21.1. For a subset A of topological space X, X = cAUix A, and cA and iz A are disjoint

Proof. First, it is obvious that cA Uiz A C X since each of the sets in the union is a subset of X.
Now consider any x € X and suppose that © ¢ cA = A. Then by Lemma 17.5 part (a) there is an
open set U containing = where U does not intersect A. For any y € U we thus have that y ¢ A and
hence y € X — A =z A. This shows that U C xA since y was arbitrary, which suffices to show that
x € Int (zA) = iz A since U is a neighborhood of z. This of course shows that € cAU iz A so that

X C cAUixA since x was arbitrary. This completes the proof that X = cA Uiz A.

To show that cA and iz A are disjoint, consider any x € cA. Consider any neighborhood U of x so
that U intersects A by Lemma 17.5 part (a). Hence there is a point y € U where also y € A, from
which it follows that y ¢ X — A = xA. This suffices to show that U is not a subset of xA. Since
U is an arbitrary neighborhood, this shows that x ¢ Int (xA) = iz A. This of course shows that cA
and iz A are disjoint as desired. O

Lemma 17.21.2. For a subsets A and B of topological space X where A C B, we have the following:

(a) cACcB (d) iiA =1iA (9) ©iA = cxA
(b) tACiB (e) zzA=A (h) icicA =icA
(¢) ccA=cA (f) xcA =izA (i) ciciA = ciA.

Proof. (a) This was shown in Exercise 17.6 part (a).

(b) Consider any x € iA so that there is a neighborhood U of x that is totally contained in A. Then
clearly U is also totally contained in B as well since, for any = € U, we have that x € A and hence
x € B since A C B. This shows that « € iB since U is a neighborhood of . Hence iA C iB since
x was arbitrary.

(c) Since cA = A is closed, we clearly have ccA = cA.
(d) Since iA = Int A is open, its interior is itself, i.e. 1A = i A.
(e) Obviously zzA =X — (X — A) = A since A C X.

(f) We have by Lemma 17.21.1 that X = cA U iz A where cA, and iz A are mutually disjoint. From
this it follows that iz A = X — cA = zcA.

(g) We have

cxA = zxcxA (by (e))
= zizzA (by (f))
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= ziA (by (e) again)

as desired.

(h) First we have that icA = iicA by (d). Also clearly icA = c(icA) = cicA since a set is always
a subset of its closure. Hence by (b) we have that icA = iicA = i(icA) C i(cicA) = icicA. Now,
we also have that icA = i(cA) C cA since the interior of a set is always a subset of the set.
Hence by (a) and (c) we have cicA = c(icA) C ¢(cA) = ccA = cA. Tt then follows from (b) that
icicA = i(cicA) C i(cA) = icA as well. This of course shows that icicA = icA as desired.

(1) Lastly, we have

ciciA = cicizz A (by (e))
= cicxcx A (by (f))
= cizicz A (by (g))
= cxcictA (by (f))
= zicict A (by (g))
= zictA (by (h))
= cxcrA (by (2))
= cizzA (by (f))
—ciA (by (¢))
as desired. O

Main Problem.
(a)

Proof. We are interested in sequences applying the operators ¢ and x to a subset A. By Lemma 17.21.2
(c¢) and (e) we have that ccA = cA and zxA = A. Thus there is no point in ever applying ¢ or
x twice in a row since that would clearly result in a set that we have seen before. We are then
interested only in sequences that apply alternating ¢ and z. If we apply the closure c first, we obtain

the following sequence:

A=A
cA=cA
rcA =iz A

cxcA = cizA
xcxcA = xcizA
=izizA
= icrzA

=icA

cxcrcA = cicA
rexcxcA = xcicA
= ixicA
= jcxcA
= icizA

If we apply the next operation we obtain

cxcxcrcA = cicizA

(by Lemma 17.21.2f)
(previous result)
(previous result)

(by Lemma 17.21.2f)

(by Lemma 17.21.2g)

(by Lemma 17.21.2¢)
(previous result)
(previous result)

(by Lemma 17.21.2f)

(by Lemma 17.21.2g)

(by Lemma 17.21.2f)

(previous result)
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= cizA, (by Lemma 17.21.2i)

which is the same as the fourth set above. Therefore we can get at most 7 distinct sets by applying
c first, including A itself. If we instead apply x first then we get the following sequence:

rA=zA

cxA =czA
xexA = izzA (corresponding result above)
=iA (by Lemma 17.21.2¢)
cxcxA = ciA (previous result)
xexcrA = xciA (previous result)
= jxiA (by Lemma 17.21.2f)
=icxA (by Lemma 17.21.2g)
crererA = cicx A (previous result)
zexcrexA = xzcicx A (previous result)
= ixiczA (by Lemma 17.21.2f)
= jcxcrA (by Lemma 17.21.2g)
= icizzA (by Lemma 17.21.2f)
=icA (by Lemma 17.21.2¢)

Again if we try to apply the next operation we get

cxcxcxcxA = ciciA (previous result)
=ciA (by Lemma 17.21.2i)

which as before is the same as the fourth set in the sequence. Hence we have at most 7 distinct sets
in this sequence for a total of 14 potentially distinct sets as desired. O

Note that this only shows that there can be no more than 14 distinct sets. It could be that there
are always less than 14 in general. While there are certainly sets that generate less than 14 distinct
sets, the next part shows the existence of a topology and a set that does result in 14 distinct sets.
This of course shows that 14 is the lowest possible bound in general.

(b) We claim that A = (=3,-2)U (—2,-1) U ([0,1] N Q) U {2} in the standard topology on R is a
set that results in 14 distinct sets when the operational sequences from part (a) are applied. We

do not prove each sequential operation as this is easy but would be prohibitively tedious. First we
enumerate the first sequence, starting with A.

Operations Set
A (737 *2) U(72771)U([07 1} QQ)U{2}
cA [—3,—-1]U[0,1] U {2}
xcA =ixA (=00, =3)U(-1,0) U(1,2) U (2,00)
cxcA = cizA (—o0,=3]U[-1,0] U [1,00)
xexcA =icA (—=3,-1)U(0,1)
cxexcA = cicA [-3,—1]U]0,1]
xexcxcA = icizA (—o0,—3) U (—1,0) U (1, 00)

Next we enumerate the next sequence of 7 sets, starting with zA:
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Operations Set
zA (—o0, =3 U{-2}U[-1,0) U ((0,1) —Q) U (1,2) U (2,00)
crA (—o0o = 3lU{-2}U[-1,00)
rexA =1A (=3,-2)U(-2,-1)
crexA = ciA [-3,-1]
xexex A = icrA (—o00,=3) U (-1, 00)
crcrexA = cicx A (=00, =3]U[-1,00)
rexcrcxA = iciA (-3,1)

It is easy to see that these are 14 distinct sets.

We do note that, in an interval containing only rationals (or only irrationals), such as [0,1]NQ used
as part of A, clearly every point in the interval is a limit point, including any irrational (or rational)
points. This is because any open interval containing any real always contains both rationals and
irrationals on account of QQ being order-dense in R. For the same reason no point of such an interval
of rationals (or irrationals) is in its interior. If, for example C' = [0, 1]NQ, this clearly then results in
¢C =10,1] and iC = @. Indeed this property of this part of A is crucial in its success in generating
14 distinct sets.

8§18 Continuous Functions

Exercise 18.1

Prove that for functions f : R — R, the e-d definition of continuity implies the open set definition.

Solution:

Recall that that f: R — R is continuous at a point & € R if, for every real ¢ > 0, there isareal § > 0
such that |f(y) — f(x)| < € for every real y where |y — x| < 6. We say that f itself is continuous if
it is continuous at every p € R.

Proof. Suppose that f: R — R is continuous by the e-§ definition above. We show that this implies
the open set definition by showing that f satisfies (4) in Theorem 18.1. So consider any z € R and
any neighborhood V' of f(x). Then of course there is a basis element (c¢,d) containing f(x) such
that (¢,d) C V. Let e = min(f(x) — ¢,d — f(z)), noting that € > 0 since ¢ < f(z) < d. It is then
trivial to show that (f(z) — ¢, f(z) +€) C (¢,d) C V and contains z.

Then, since f is continuous at z, there is 6 > 0 such that |y — z| < J implies that |f(y) — f(z)]| < e
for any real y. Let U = (z—4, z+3), which is clearly a neighborhood of z. Now consider any z € f(U)
so that z = f(y) for some y € U. Then we have that x —§ < y < x+4 so that clearly —0 < y—x < 9,
from which it follows that |y — x| < §. We then know that |z — f(x)| = | f(y) — f(z)| < € since f
is continuous. Hence —e < z — f(x) < € so that f(z) — € < z < f(z) + ¢, and thus z € V since
(f(x)—¢€, f(z)+€) C V. Since z € f(U) was arbitrary, this shows that f(U) C V, which shows that
(4) holds for f since = was also arbitrary. O

Exercise 18.2

Suppose that f: X — Y is continuous. If x is a limit point of the subset A of X, is it necessarily true
the f(z) is a limit point of f(A)?
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Solution:

This is not necessarily true.

Proof. As a counterexample consider a constant function f : X — Y defined by f(z) = yo for any
x € X and some yp € Y. It was shown in Theorem 18.2 part (a) that this is continuous. However,
clearly f(A) = {yo} for any subset A of X. So even if z is a limit point of A, no neighborhood of
f(x) can intersect f(A) in a point other than f(z) = yo since yg is the only point in f(A)! Therefore
f(z) is not a limit point of f(A). O

Exercise 18.3

Let X and X’ denote a single set in two topologies T and T, respectively. Let ¢ : X’ — X be the
identity function.

(a) Show that 7 is continuous < T is finer than 7.
(b) Show that ¢ is a homeomorphism < 7' = T.

Solution:

(a)

Proof. First note that clearly the inverse of the identity function is itself with the domain and image
reversed, and that for any subset A C X = X’ we have i(A) =i~ 1(A4) = A.

(=) Suppose that i is continuous and consider any open set U € 7. Then we have that i~}(U) = U
is open in T since 4 is continuous. Since U was arbitrary, this shows that 7 C 77 so that 7" is finer.

(<) Now suppose that T is finer so that 7 C T’. Consider any open set U € T so that also clearly
U € T, ie. Uisalso open in T'. Since i ~*(U) = U, this shows that i is continuous by the definition
of continuity. O

(b)

Proof. Clearly i is a bijection since its domain and image are the same set, and i~! = i. We then
have that

i is a homeomorphism < i and i~! are both continuous
< T is finer than 7 and T is finer than 7' (by part (a) applied twice)
eTcT andT' CT
sT =T

as desired. O

Exercise 18.4
Given zg € X and yy € Y, show that the maps f: X - X xY and g: Y — X x Y defined by

fl@) =2 xyo and g(y) =xo Xy

are imbeddings.
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Solution:

We only show that f is an imbedding of X in X x Y as the argument for g is entirely analogous.

Proof. First, it is easy to see and trivial to formally show that f is injective. The function f can
be of course be defined as f(x) = fi(z) x fo(x) where fi; : X — X is the identity function and
f2 : X = Y is the constant function that maps every element of X to yg. Since these have both
been proven to be continuous in the text, it follows that f is continuous by Theorem 18.4.

Now let f’ be the function obtained by restricting the range of f to f(X) = {z xyo | x € X}.
Since f is injective, it follows that f’ is a bijection. It follows from Theorem 18.2 part (e) that
f' is continuous. Clearly the inverse function f'~! is equal to the projection function m; so that
f'~Y(x,y) = 2. This was shown to be continuous in the proof of Theorem 18.4. This suffices to
show that f’ is a homeomorphism, which shows the f is an imbedding of X in X x Y. O

Exercise 18.5

Show that the subspace (a,b) of R is homeomorphic with (0,1) and the subspace [a,b] of R is homeo-
morphic with [0, 1].

Solution:

First we show that (a,b) is homeomorphic to (0, 1).

Proof. First let X = (a,b) and Y = (0, 1), and define the map f: X — Y by

fla)=2-2

T b—a

for any € X, noting that this is defined since a < b so that b — a > 0. It is trivial to show that f
is a bijection.

Now, f is a linear function that could just as well be defined as a map from R to R, and clearly this
would be continuous by basic calculus. It then follows from Theorem 18.2 part (d) that restricting
its domain to X means that it is still continuous. We also clearly have from basic algebra that its
inverse is the function f~!:Y — X defined by

') =a+yb-a)

for y € Y. As this is also linear, it too is continuous by the same argument. This suffices to show
that f is a homeomorphism. O

The exact same argument shows that [a,b] is homeomorphic to [0, 1] by simply setting X = [a, ]
and Y = [0,1] in the above proof. It is assumed that here again a < b even though the interval
[a, b] is valid if @ = b and simply becomes [a,b] = [a,a] = {a}. However, clearly this set cannot be
homeomorphic to [0, 1] since it is finite whereas [0, 1] is uncountable.

Exercise 18.6

Find a function f: R — R that is continuous at precisely one point.

Solution:
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For any real x define

_J0 €@
o-{0 758

We claim that this is continuous only at = = 0.

Proof. As it is easier to do so, we show this using the e-§ definition of continuity, which we know
implies the open set definition by Exercise 18.1. First we note that f(0) = 0 since 0 is rational. Now
consider any € > 0 and let § = €. Suppose real y where |y — 0| = |y| < §. If y is rational then y = 0 so
that |f(y) — f(0)] =10 — 0] = |0] =0 < e. If y is irrational then |f(y) — f(0)| =y — 0| =|y| <d =€
again. Since € was arbitrary this shows that f is continuous at x = 0.

Now consider any x # 0. Let € = |z| /2, noting that € > 0 since = # 0 so that |z| > 0. Now consider
any 0 > 0.

Case: = € Q. Then f(z) = 0 but there is clearly an irrational y close enough to z so that
ly — 2| < min(e, d), and hence both |y —z| < € and |y — x| < §. We also have that f(y) = y. We
then have that

2¢=z[ =]z -0 < |z —y|+ |y — 0] <e+ |yl
so that

e<lyl=1fWl=1f(y) =0l =I[fy) - f@)].

Case: ¢ Q. Then f(x) = z, and there is clearly a rational y close enough to z that |y — x| < 4.
We then also have f(y) = 0 so that

[f(y) = f(@)] = [0 — 2| = o] = 2¢ > ¢

since € > 0.

Hence in either case there is a y such that |y —z| < 0 but |f(y) — f(z)| > e. This suffices to show
that f is not continuous at x. O

Exercise 18.7

(a) Suppose that f: R — R is “continuous from the right,” that is
lim f(z) = f(a),

r—at

for each a € R. Show that f is continuous when considered as a function from R, to R.

(b) Can you conjecture what functions f : R — R are continuous when considered as maps from R to
R,? We shall return to this question in Chapter 3.

Solution:

Lemma 18.7.1. In the topology Ry, every basis element is both open and closed.

Proof. Consider any basis element B = [a, b), which is clearly open since basis elements are always
open. We then have that the complement of this set is C = R — B = (—00,a) U [b,00). We claim
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that this complement is also open so that B is closed by definition. To see this, define the sets
Cph=la—n—-1l,a—n+1)Ub+n—-1,b+n+1) for n € Z;. Clearly each C, is open since it is the
union of two basis elements. It is also trivial to show that C' = UnEZ+ C,,, which is then also open
since it is a union of open sets. O

Lemma 18.7.2. The only open sets in the standard topology on R that are both open and closed
are @ and R itself.

Proof. First, clearly both @ and R are both open and closed since they are compliments of each
other and are both open by the definition of a topology. Now suppose that U is a nonempty subset
of R that is both open and closed. Suppose also that U # R so that U C R and hence there is a
y € R where y ¢ U. We show that the existence of such a U results in a contradiction, which of
course shows the desired result since it implies that U = R if U # @. Since U is nonempty we have
that there is an 2 € U and it must be that x # y since x € U but y ¢ U.

If © < y then define the set A ={z > x| 2 ¢ U}. Clearly we have that A is nonempty since y € A,
and that z is a lower bound of A. It then follows that A has a largest lower bound a since this is a
fundamental property of R. It could be that a € U or a ¢ U. In the former case we have that any
basis element (¢, d) containing a is not a subset of U. To see this, we have that ¢ < a < d, which
means that d is not a lower bound of A since a is the largest lower bound. Hence there is a z € A
where d > z. We then have ¢ < a < z < d (noting that a < z since a is a lower bound of A) so
z € (¢,d) and z € A so that z ¢ U. Hence (c,d) is not a subset of U, which contradicts the fact that
U is open since the basis element (¢, d) was arbitrary.

In the latter case where a ¢ U then it has to be that x < a since x is a lower bound of A and a is
the largest lower bound (and it cannot be that a = x since x € U but a ¢ U). We clearly have that
a € R — U, which is open since U is closed. Now consider any basis element (¢, d) containing a so
that ¢ < a < d. Let b = max(x, ¢) so that b < a and hence there is a real z where c < b <z <a <d
and hence z € (¢,d). Now, since z < a it has to be that z ¢ A since otherwise a would not be a
lower bound of A. We also have that + < b < z so that it has to be that z € U since otherwise
it would be that z € A. Thus z ¢ R — U, which shows that (¢, d) is not a subset of R — U since
z € (¢,d). Since (¢, d) was an arbitrary basis element, this contradicts the fact that R — U is open.

It was thus shown that in either case a contradiction arises. Analogous arguments also show contra-
dictions when z > y, this time using the set A = {z < x| z ¢ U} and its least upper bound. Hence
it has to be that U = R, which shows the desired result. O]

Main Problem.

(a) Recall that by the definition of the one-sided limit, f : R — R is continuous from the right if,
for every a € R and every € > 0, there is a § > 0 such that |f(z) — f(a)| < € for every x > a where
|z —al < 0.

Proof. So suppose that f is continuous from the right and consider any a € R. Let V' be neighbor-
hood of f(a) in R. Then there is a basis element (¢,d) of R that contains f(a) and is a subset of
V. Hence ¢ < f(a) < d, so let e = min[f(a) — ¢,d — f(a)] so that clearly e > 0 and if |y — f(a)| <,
then y € (¢, d) so that also y € V. Now, since f is continuous from the right, there is a § > 0 such
that |f(x) — f(a)| < € for every & > a where |z —a| < §. So let U = [a,a + §) which is clearly a
basis element of R, and contains a so that it is a neighborhood of a.

Now consider any y € f(U) so that there is an € U where y = f(x). If x = a then clearly
|f(z) — f(a)] = |f(a) — f(a)] = |0] = 0 < e so that f(x) € V. If © # a then it has to be that x > a
and also that |z —a|] = x —a < § since U = [a,a + §). It then follows that |f(z) — f(a)| < € so
that again f(x) € V. Hence in both cases y = f(z) € V, which shows that f(U) C V since y was
arbitrary. We have thus shown part (4) of Theorem 18.1, from which the topological continuity of
f follows. O
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(b) We claim that only constant functions are continuous from R to R,.

Proof. First, it was shown in Theorem 18.2 part (a) that constant functions are always continuous
regardless of the topologies. Hence we must show that any continuous function from R to R, is
constant. So suppose that f is such a function. Now consider any real x where z # 0. Clearly if
f(z) = f(0) then f is a constant function since x was arbitrary. So suppose that this is not the case
so that f(z) # f(0). Without loss of generality we can assume that f(0) < f(z). So consider the
basis element B = [f(0), f(z)) of Ry, which clearly contains f(0) but not f(x).

Since f is continuous and B is both open and closed by Lemma 18.7.1, it follows from the definition
of continuity and from Theorem 18.1 part (3) that f~!(B) must be both open and closed in R.
However the only sets that are both open and closed in R are @ and R itself by Lemma 18.7.2. Thus
either f~1(B) = @ or f~1(B) = R. It cannot be that f~1(B) = @ since we have that f(0) € B so
that 0 € f~!(B). Hence it must be that f~1(B) = R, but then we would have z € f~!(B) so that
f(z) € B, which we know it not the case. We therefore have a contradiction so that it must be that
f(z) = f(0) so that f is constant. O

Lastly, we claim that the only functions that are continuous from R, to R, are those that are
continuous and non-decreasing from the right. For a function f : R — R this means that for every
x € R and every € > 0 there is a 6 > 0 such that |f(y) — f(z)] < e and f(y) > f(z) for every
r<y<xz+§4.

Proof. First we show that such functions are in fact continuous. So suppose that f is continuous
and non-decreasing from the right and consider any real z. Let V' be any neighborhood of f(z) so
that there is a basis element B = [c,d) containing f(x) such that B C V. Let e = d — f(x) so that
€ > 0 since f(z) < d. Hence there is a § > 0 such that < y < z + ¢ implies that |f(y) — f(z)| < €
and f(y) > f(z). We then have that U = [z, x + 0) is a basis element and therefore an open set of
R, that contains z. Consider any z € f(U) so that z = f(y) for some y € U. Thenz <y <z 4+
so that z = f(y) > f(z) and |z — f(z)| = |f(y) — f(z)| < e. Tt then follows that 0 < z — f(z) < €
so that ¢ < f(z) < z < f(z) + € = d, and hence z € [¢,d) = B. Thus also z € V since B C V. This
shows that f(U) C V since z was arbitrary, and hence that f is continuous by Theorem 18.1.

Now we show that a continuous function must be continuous and non-decreasing from the right by
showing the contrapositive. So suppose that f is not continuous and non-decreasing from the right.
Then there exists a real z and an € > 0 such that, for any § > 0, there is a z < y < = + § where
fly) < f(z) or |f(y) — f(x)] > e. Clearly we have that V = [f(z), f(z) + €) is basis element and
therefore open set of Ry that contains f(z). Consider any neighborhood U of z so that there is a
basis element B = [a,b) containing x where B C U. Then z < b so that 6 = b —xz > 0. It then
follows that there is a * < y < x4+ § = b such that f(y) < f(z) or |f(y) — f(x)| > e. Clearly
we have that y € B so that also y € U and f(y) € f(U). However, if f(y) < f(z) then clearly
f(y) ¢ V. On the other hand if f(y) > f(x) then it has to be that | f(y) — f(z)| > €. Then we have
that f(y) — f(x) > 0 so that f(y) — f(z) = |f(y) = f(x)] = ¢, and hence f(y) > f(x) + ¢ so that
again f(y) ¢ V. This suffices to show that f(U) is not a subset of V, which shows that f is not
continuous by Theorem 18.1 since U was an arbitrary neighborhood of x. O

Exercise 18.8
Let Y be an ordered set in the order topology. Let f,g: X — Y be continuous.

(a) Show that the set {z | f(z) < g(x)} is closed in X.
(b) Let h: X — Y be the function

h(z) = min{f(z),g(x)} .

Show that h is continuous. [Hint: Use the pasting lemma.]
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Solution:
(a) First let C = {x € X | f(z) < g(x)} so that we must show that C is closed in X.

Proof. We prove this by showing that the complement X — C'is open in X. So first let S be the set
of all y € Y where y has an immediate successor, and denote that successor by y + 1. Then clearly
y + 1 is well defined for all y € S. Now define

Asy={z€Y |z>y} Acy={z€eY |z<y+1}

for y € S. As these are both rays in the order topology Y, they are both basis elements and therefore
open. It then follows that f~*(A4,) and g~'(A<,) are both open in X since f and g are continuous.
Hence their intersection U, = f~'(A-,) N g~ '(A<,) is also open in X.

Similarly the rays
Boy={2€Y[z>y} Bey={2€Y[z<y}

for y € Y are also open so that the intersection V, = f~1(Bs,) N g !(B<y) is open in X. Then

clearly the union of unions
p=Ju,ulJV,
yeS yey

is also open in X. We claim that X — C = D so that the complement is open in X and hence C' is
closed as desired.

(C) First consider any x € X — C' so that clearly f(z) > g(x). If g(z) has an immediate successor
g(x) 4+ 1 then g(x) € S and we have f(x) € A5y so that 2 € f71(Asg)). We also have that
g(x) € Ay(a) since g(x) < g(v) + 1, and hence x € g*I(A<g(x)). It then follows that x € Uy, and
hence (J, 5 Uy and = € D since g(z) € S. If g(z) does not have an immediate successor then there
must be a y € Y where g(z) <y < f(z). We then have that clearly f(z) € B, and g(z) € B<y so
that z € f~*(Bsy) and @ € g~!(B<,). Thus z € V,, so that = € Uyey Vy and z € D. This shows
that X — C C D since either way x € D and = was arbitrary.

(D) Now suppose that # € D. If z € (J,gU, when there is a y € S where z € U,. Hence
z € fY(Asy) and z € g7'(A<y) so that f(x) € As, and g(z) € A<y. From this it follows that
f(x) >y and g(z) <y+1. Then it has to be that g(x) < y so that f(z) >y > g(z). If z € U,y Vy
then there is ay € Y where z € V,,. Hence z € f~1(B,) and z € g~!(B<,) so that f(z) € B>, and
g(x) € By. It then clearly follows that f(x) >y and g(x) < y so that f(z) >y > g(z). Therefore
in either case we have f(z) > g(z) so that x € X — C. This of course shows that X — C D D since
x was arbitrary. O

(b)

Proof. Let A={z e X | f(z) < g(zx)}and B= {z € X | g(x) < f(x)}, which are clearly both closed
by part (a). It is easy to see that X = AU B. First, clearly X D A U B since both A C X and
B C X. Then, for any x € X, it has to be that either f(z) < g(z) or f(z) > g(z) since < is a
total order on Y. In the former case of course x € A, and in the latter z € B so that either way
x € AUB. Hence X C AU B. It is also easy to see that f(z) = g(z) for every z € AN B. For
any such z, we have that € A so that f(z) < g(x), and = € B so that g(x) < f(x). From this it
clearly must be that f(z) = g(x).

Since f and g are continuous, it then follows from the pasting lemma that the function

2) = flz) ze€A
W) {g(x) r€eB
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for x € X is continuous as well. Based on the definitions of A and B it is then easy to see and trivial
to show that h(x) = min {f(x), g(x)} for all x € X, which of course shows the desired result. O

Exercise 18.9

Let {A4} be a collection of subsets of X; let X = J, Aa. Let f : X — Y suppose that f [ A,, is
continuous for each «.

(a) Show that if the collection {A,} is finite and each set A, is closed, then f is continuous.
(b) Find an example where the collection {A,} countable and each A, is closed, but f is not continuous.

(¢) An indexed family of sets {4, } is said to be locally finite if each point  of X has a neighborhood
that intersects A, for only finitely many values of cv. Show that if the family {A,} is locally finite
and each A, is closed, then f is continuous.

Solution:
(a)

Proof. We show using induction that f is continuous for any collection {A,}._,, for any n € Z,
where each A, is closed. This of course shows the desired result since the collection is {A,}"_; for
some n € Z, if it is finite. So first, for n = 1, we have that A; = |J._; Ao = X so that of course
f=f1X=f]A;is continuous.

Now suppose that f is continuous for any collection of size n and suppose we have the collection
{AN"TY of size n+ 1. Let A = [J'_, A,, which is closed by Theorem 17.1 since each A, is

a=1 a=1
closed and it is a finite union, and let B = A, 1 so that B is also closed. We then have that

AUB=U,_jA UA, 11 = UZJ:F} Ay, = X. We know that g = f | B = f | Any1 is continuous.
Considering the set A as a subspace of X, then each A, for @ € {1,...,n} is closed in A by
Theorem 17.2 since they are subsets of A and closed in X. Since by definition |J!!_, 4, = A4, it
follows from the induction hypothesis that f' = f | A is continuous. Clearly also for any z € AN B
we have that © € A and © € B = A1 so that f'(z) = (f | A)(z) = f(z) = (f | Ans1)(2) = g(2).

Then by the pasting lemma the function h : X — Y defined by

o) = flx) z€A
M) {g(x) r€B

is continuous. However, consider any = € X. If x € A then h(z) = f'(z) = (f | A)(x) = f(x).
Similarly if € B then h(z) = g(z) = (f | B)(x) = f(z) as well. This suffices to show that h = f
since x was arbitrary. Thus f is continuous, which completes the induction. O

(b) Consider the standard topology on R and define the countable collection of set {A,} by

(—00,0] n=1
A, =< [1,00) n=2
{1 1] n > 2

n—1’"n-2

for n € Z4. Also define f : R — R by

1 2<0
f(x):{o xiO

for real x. We claim that this collection and function have the desired properties.
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Proof. First, it is trivial to show that the collection covers all of R, i.e. that |J;—, A, = R. It
is also obvious by this point that each A, is closed in the standard topology. Clearly f is not a
continuous function since there is a discontinuity at = 0, which is trivial to prove. Lastly, consider
any n € Zy. If n =1 then for any « € A,, = A; = (—00,0] we have that < 0 and hence f(z) = 1.
Likewise if n = 2 then for any z € A,, = Ay = [1,00) it follows that z > 1 > 0, and hence f(x) = 0.
Lastly, if n > 2 then for any x € A, = [1/(n —1),1/(n — 2)] we have that 0 < 1/(n — 1) < x so
that f(x) = 0 again. Thus in all cases f [ A, is constant and therefore continuous. This shows the
desired properties. O

(¢)

Proof. Consider any € X so that there is a neighborhood U’ of z that intersects a finite subcol-
lection {Ay}y_, of the full collection {A,}. Consider A = |J;'_, A as a subspace of X, from which
it follows from Theorem 17.2 that each Ay is closed in A since it is a subset of A and closed in X.
It is then easy to show that U’ C A. It also follows from part (a) that f | A is continuous with the
domain being the subspace topology on A.

Now consider any neighborhood V' of f(x), noting that of course x € A since x € U’ and U’ C A.
Thus f(z) is in the image of f | A so that there is a neighborhood U, of z in the subspace topology
such that (f [ A)(Ua) C V by Theorem 18.1 since f [ A is continuous. Since Uy is open in the
subspace topology, there is an open set Ux in X where Uy = ANUx. Now let U = U'NUx, which is
open in X since U’ and Ux are both open in X. Then also v € Ux since ¢ € Uy and U4 = ANUx,
and hence x € U since also z € U’ and U = U’ N Ux. Thus U is a neighborhood of z in X.

Let z be any element of f(U) so that z = f(y) for some y € U. Then y € U’ and y € Ux since
U=U'NUx. Then also y € A since U’ C A, and hence y € ANUyx = Uyu. From this it follows that
z2=fly)=(f 1 A)y) € (f | A)(Ua) so that z € V since (f | A)(Ua) C V. Since z was arbitrary,
this shows that f(U) C V, which in turn shows that f is continuous by Theorem 18.1 since V was
an arbitrary neighborhood of f(z) and x was an arbitrary element of X. O

We note that the example in part (b) is not locally finite since any neighborhood of z = 0 intersects
infinitely many A,, in the collection. This fact is easy to see and would be easy to prove formally,
though a bit tedious.

Exercise 18.10

Let f: A— B and g:C — D be continuous functions. Let us define amap f xg: AxC — B x D by
the equation

(f xg)laxc)= f(a) xg(c).

Show that f x g is continuous.

Solution:

Proof. Consider any x X y € A x C and any neighborhood V of (f X g)(z x y) in B x D. Since V is
open in B x D, there is a basis element Up x Up of the product topology that contains (f x g)(z X y)
where Ug x Up C V. Then Up and Up are open in B and D, respectively. Since f is continuous,
we then have that Usq = f~}(Up) is open in A. Likewise Uc = g~ 1(Up) is open in C since g is
continuous. Then the set U = Uy x Ug is a basis element of the product topology A x C' and
therefore open.

Since Up x Up contains (f x g)(z X y) = f(z) X g(y) we have that f(z) € Up and g(y) € Up. From
this it follows that x € f~1(Up) = U4 and y € g~} (Up) = Uc. Therefore x x y € Us x Uc = U so
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that U is a neighborhood of z x y in A x C'. Now consider any w x z € (f x ¢g)(U) so that there is
an &' xy € U =Uy x Us where w x z = (f x g)(a’ xy') = f(2') x g(¢/). Hence w = f(2’) and
¥’ € Uy = f~1(Ugp) so that w = f(a’) € Up. Similarly z = g(y’) and y' € Uc = g~ *(Up) so that
z=g(y") € Up. Thus w x z € Ug X Up so that also w x z € V since Ug x Up C V. This shows
that (f x g)(U) C V since w X z was arbitrary.

This suffices to show that f X g is continuous by Theorem 18.1 as desired. O

Exercise 18.11

Let F: X xY — Z. We say that F' is continuous in each variable separately if for each yy in Y,
the map h : X — Z defined by h(z) = F(x X yo) is continuous, and for each g € X, themap k: Y — Z
defined by k(y) = F(z¢ X y) is continuous. Show that if F' is continuous, then F' is continuous in each
variable separately.

Solution:

Proof. To show that F is continuous in x, consider any yo € Y and define h : X — Z by h(x) =
F(z x yo). Now consider any z € X and any neighborhood V of h(x) = F(x X yp). Then V is
an open set containing h(z) = F(x X yp) so that it is a neighborhood of F(z X yp). Since F is
continuous, this means that there is neighborhood U’ of z X yo in X X Y such that F(U’) C V by
Theorem 18.1. It then follows that there is a basis element Ux x Uy of X X Y containing x X yq
where Ux x Uy C U’. Since X x Y is a product topology, we have that Uy is open in X and Uy
is open in Y. Then, since z X yo € Ux x Uy we have that x € Ux and yg € Uy so that Ux is a
neighborhood of = in X.

So consider any z € h(Ux) so that z = h(x’) for some 2’ € Ux. Then 2’ X yo € Ux x Uy so that
also 2’ X yp in U’ since Ux x Uy C U’. It then also follows that z = h(z') = F(2' x yo) € F(U’)
so that z € V since F(U’) C V. This shows that h(Ux) C V since z was arbitrary. It then follows
that h is continuous by Theorem 18.1.

The proof that F' is continuous in y is directly analogous. O

Exercise 18.12
Let FF: R x R — R by defined by the equation

ry/ (2?2 +9?) ifzxy#0x0.

F(xrxy)=
(@>xy) {O ifexy=0x0.

(a) Show that F' is continuous in each variable separately.
(b) Compute the function g : R — R defined by g(z) = F(x x x).

(¢) Show that F' is not continuous.

Solution:
(a)
Proof. Tt is easy to see that F' is continuous in . For any real y, we generally have that

TYo

h(a) = Fla ) = 5o
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so long as one of x and yg are nonzero. If yp = 0 then z = 0 implies that = X yg = 0 x 0 so that
h(z) = F(0 x 0) = 0 by definition. If z # 0 then we have h(z) = 0/2? = 0 again. Thus h is
the constant function h(z) = 0 and so is continuous when yo = 0. If yo # 0 then y2 > 0 so that
22 + y2 > 0 since also x > 0. Thus the denominator is never zero that the h(zx) is given by the
expression above, which is continuous by elementary calculus. Hence h is always continuous. The
same arguments show that F'is continuous in y as well. O

(b) We clearly have

(c)

Proof. First consider the function f : R — R X R defined simply by f(z) = z x z. This function
is clearly continuous by Theorem 18.4 since it can be expressed as f(z) = f1(z) X f2(z) where the
identical functions fi(z) = fa(x) = x are obviously continuous. Then g = F o f, where g is the
function from part (b) since we have g(z) = F(z x ) = F(f(x)) for any real z. Now, clearly g as
calculated in part (b) has a discontinuity at z = 0 so that it is not continuous. It then follows from
Theorem 18.2 part (¢) that either F or f is not continuous since g = F o f. As we know that the
trivial function f is continuous, it must then be that F' is not as desired. O

Exercise 18.13

Let A C X;let f: A — Y be continuous; let Y be Hausdorff. Show that if f may be extended to a
continuous function g : A — Y, then g is uniquely determined by f.

Solution:

Proof. Suppose that ¢g; and gy are both continuous functions from A to Y that extend f so that
g1(z) = ga(x) = f(z) for all z € A. Clearly gy = go if and only if g;(z) = go(x) for all z € A.
So suppose that this is not the case so that there is an xg € A where g;(zg) # g2(w0). Since Y is
a Hausdorff space and g;1(x¢) and go(x) are distinct, there are disjoint neighborhoods Vi and V4
of g1(x0) and g2(xg), respectively. Then there are also neighborhoods U; and Us of xg such that
g1 (U1) € V1 and ¢o(Usz) C Vo by Theorem 18.1 since both g; and g are continuous.

Now let U = U; N U, so that U is also a neighborhood of xy. Since zy € A, it follows that U
intersects A so that there is a y € U where also y € A by Theorem 17.5. Since y € A we have that
q1(y) = g2(y) = f(y). We also have that y € Uy and y € Us since U = Uy NUs. Thus g1(y) € g1(Ur)
so that f(y) = ¢1(y) € Vi since g1(Uy) C V4. Similarly f(y) = g2(y) € Vs, but then we have that
fly) € ViNVa, which contradicts the fact that V3 and V5 are disjoint! Hence it must be that g; = ga,
which shows uniqueness. O

8§19 The Product Topology

Exercise 19.1

Prove Theorem 19.2
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Solution:

Let C be the collection of sets that are alleged to be a basis for the box or product topologies in
Theorem 19.2.

Proof. We show that C is a basis of the box or product topology using Lemma 13.2. First, it is
easy to see that C is a collection of open sets. Consider any B € C so that B = [[ B, where each
B, € B, (for a finitely many « € J and B, = X, for the rest in the product topology). Since each
B, is a basis element of X, (or X, itself), they are open so that B is a basis element of the box or
product topology by definition and therefore open. Note that the basis for the product topology is
given directly by Theorem 19.1.

Now suppose that U is an any open set of the box topology and consider any x € U. Then it
follows that there is a basis element [],.; U, of the box or product topology containing x where
[IocsUa C U. Thus each U, is an open set of X, (or U, = X,, for all but finitely many « € J for
the product topology). Also z € [[,c; Ua so that = (24)aes Where each x, € Us,. It then follows
that there is basis element B, € B, of X, containing x, where B, C U, (for U, = X, we simply
set B, = X, as well).

Then clearly x € [[,c; Ba and [, ; Ba € C. Consider also any y € [[,c; Ba 50 that y = (ya)aes
where each y, € B,. Then also each y, € U, since B, C U,. This suffices to show that y €

HaeJ U, C U. Since y was arbitrary this shows that HaEJ B, C U. Therefore C is a basis of the
box topology by Lemma 13.2. O

Exercise 19.2

Prove Theorem 19.3.

Solution:

Proof. The basis of the box or product topologies on ] A, is the collection of sets [[ Vi, where each
V, is open in A, and, in the case of the product topology, V,, = A, for all but finitely many o € J
(by Theorem 19.1). Denote this basis collection by C. By Lemma 16.1, the collection

Ba={Bn[[A«|BeB}

is a basis of the subspace topology on [] An, where B is the basis of [[ X,,. To prove that [] A, is
a subspace of [[ X4, it therefore suffices to show that C = B4.

(C) First consider any element B € C so that B =[]V, for open sets V, in A, (and V,, = A, for all
but finite many « € J for the product topology). For each a € J, we then have that V,, = U, N A,
for some open set U, in X, since A, is a subspace of X,. Note that this is true even for those «
where V,, = A, in the product topology since then V,, = A, = X, N A,. In fact, for these a we
need to choose U, = X, as will become apparent. We then have the following:

zeBerec|][Va
S Vae J(x, €Vy)
SVa e J(x, €Uy NAL)
SVa e J(xy €Uy ANzy € Ay)
SVa e J(xy, € Uy) AVa € J(zy € Ay)

@erUa/\erAa
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sre (HUQ) n (HAQ) :

Since U, = X, for all but a finitely many a € J for the product topology, we have that [[U, is
a basis element of [[ Xy, i.e. [[U, € B. This shows that B € By so that C C By since B was
arbitrary.

(D) Now suppose that B € By so that B = Bx N ][] A, for some basis element Bx € B of [[ X,.
We then have that Bx = [[U, where each U, is an open set of X, (and U, = X, for all but
finitely many « € J for the product topology). Then let V,, = U, N A, for each a € J, noting
that V, = X, N Ay, = A, when U, = X,. Following the above chain of logical equivalences in
reverse order then shows that B =[]V, so that B € C since clearly each V,, is open in the subspace
topology A,. Hence C D B4 since B was arbitrary. O

Exercise 19.3

Prove Theorem 19.4.

Solution:

Proof. Suppose that z and y are distinct points of [[ X,. Then = = (z,) and y = (y.) where each
Za, Yo € Xo, and there must be a 8 where x5 # ys since x # y. Thus x3 and yg are distinct points
of Xz, so that there are neighborhoods W, and W, of xg and yg, respectively, that are disjoint since
Xg is a Hausdorff space. So define the sets

Ua:{Wx a=0 Vaz{Wy a=[
Xo a#p Xo a#p

so that clearly = € [[U, and y € [[V,. Then since each U, and V,, are open, we have that [] U,
and [[ V, are both basis elements of [[ X, and therefore open. Note that this is true for both the
box and product topologies since, in the case of the latter, U, and V,, are not all of X, for only one
a, namely a = 8. Thus [[ U, is a neighborhood of 2 and []V,, is a neighborhood of y in [] X,.

We also assert that [[ U, and [] V., are disjoint, which of course completes the proof that [] X, is
Hausdorff. To see this, suppose to the contrary that there is a z in both [[U, and [[V,. Then
z = (zq) and in particular we would have that z3 € Ug = W, and 23 € Vg = W,. But then
zg € W, N W, which contradicts the fact that W, and W, are disjoint! So it must be that in fact
[1U. and ]V, are disjoint. O

Exercise 19.4

Show that (X3 x -+ x X,,_1) x X,, is homeomorphic to X; x --- x X,,.

Solution:

Proof. First we note that since we are dealing with finite products, the box and product topologies
are the same; we shall find it most convenient to use the box topology definition. Also, as there
are no intervals involved here, we use the traditional tuple notation using parentheses. So define
fXix o xX, = (X1 x-xX,21) x X, by

flay, o xn1) = (1,0 Tpe1) s ) -
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It is obvious that this is a bijection, and it is trivial to prove. Also obvious and trivial to prove
based on the definition of f is that f(A; x -+ x A4,,) = (41 X -+- X Ap—1) X A,, when each Ay C X.

First we show that f is continuous by showing that the inverse image of every basis element in
(X1 %+ x X,—1) x X, isopen in X7 X --- x X,,. So consider any basis element C of (X7 x --- x
X,—1) x X, and let U = f~1(C) so that of course f(U) = C and U C X; X --- X X,,. We then
have that C = V'’ x V,, where V' is open in X7 X --- x X,, 1 and V,, is open in X,, by the definition
of the box/product topology. Now consider any « € U so that z = (z1,...,2,) and we have that
f(x) = ((z1,...,2pn-1),2n) € f(U) = C. Hence 2’ = (x1,...,2yp-1) € V' and z,, € V,,. Since V'
is open in X3 X --- X X,,_1 there is a basis element C’ containing 2’ that is a subset of V’. By the
definition of the box topology, we then have that C’ = V; x --- x V;,_1 where each V}, is open in X}.

We then have that B = Vi x --- x V,, is a basis element of X; x --- x X, and also clearly B
contains z since (z1,...,2,-1) = 2’ € ¢’ = Vi X --- x V,_1 and x, € V,,. Now suppose that
y=(Y1,-.-,Yn) € B so that each y;, € Vi. Then we have that y' = (y1,...,yn—1) € C’ so that also
y' € V' since ¢! C V'. Since also of course y, € V,, we have that (v',y,) € V' xV,, = C. Also
clearly f(y) = (v',yn) € C = f(U) so that y € U. Since y was arbitrary this shows that B C U,
which suffices to show that U is open since z was arbitrary. This completes the proof that f is
continuous.

Next we show that f~! is continuous, which is a little simpler. Let B be any basis element of
X1 x---x X, so that B=U; x --- x U, where each Uy, is open in X} by the definition of the box
topology. Then we have that f(B) = (Uy X -+ x U,—1) X U,. By the definition of the box topology,
we then have that U’ = Uy x --- x U,,_1 is a basis element of X; x --- x X,,_1 and is therefore open.
Since U, is also open, we have that f(B) = U’ x U, is a basis element of (X; x -+ x X,,_1) x X,
by the definition of the box/product topology, and is therefore open. Since f(B) = (f~1)~1(B) is
the inverse image of B under f~!, this shows that f~! is also continuous.

We have shown that both f and f~! are continuous, which proves that f is a homeomorphism by
definition. ]

Exercise 19.5

One of the implications stated in Theorem 19.6 holds for the box topology. Which one?

Solution:

Example 19.2 gives a function f that is not continuous in the box topology even though all of its
constituent functions f, are continuous. Hence the only implication that can be generally true in
the box topology is that f being continuous implies that each f, is continuous. A proof of this is
straightforward.

Proof. As in Theorem 19.6 suppose that f: A — [] X, be given by

acJ
f(a) = (fa(a))ae.]a

where f, : A — X, for each o € J. Here [] X,, has the box topology. Suppose that f is continuous
and consider any 8 € J. We show that fs is continuous, which of course shows the desired result.

So let V be any open set of X3 and define
B, = V. a=p
Xo a#p.

Then, since each B, is clearly open in X, we have that B = [][ B, is a basis element of the box
topology by definition and is therefore open. Hence U = f~1(B) is open in A since f is continuous.
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We claim that U = f5 L(V), which shows that fs is continuous since U is open in A and V was an
arbitrary open set of Xg.

(C) If x € U = f~Y(B) then of course f(x) € B so that each f,(z) € B, since f(x) = (fo(2))acs
and B = [[ B,. In particular fz(z) € Bg =V so that z € fﬁ_l(V). Hence U C fﬁ_l(V) since x was
arbitrary.

D) Ifzxe fgl(V) then fg(z) € V = Bg. Since of course every other f,(z) € X, = B, we have
that f(z) € [[ Bo = B. Hence x € f~1(B) = U so that fﬁ_l(V) C U since z was arbitrary. O

Exercise 19.6

Let x1,X2, ... be a sequence of the points of the product space [[ X,. Show that the sequence converges
to the point x if and only if the sequence 7, (x1), To(X2), ... converges to m,(x) for each a. Is this fact
true if one uses the box topology instead of the product topology?

Solution:

Proof. (=) First suppose that the sequence x1,Xa,... converges to x and consider any 5. Also
suppose that U is any neighborhood of mg(x). Define

Ba:{U a=4
Xo a#p

so that B = [] B, is a basis element of [] X, since each B,, is open. Note that B is a basis element
of both the box and product topologies since possibly B, # X, for only one a (i.e. for « = 3). We
also clearly have that x € B so that B is a neighborhood of x in [ X,. Since the sequence x1,Xa, ...
converges to x, we have that there is an N € Z, where x,, € B for all n > N. So consider any such
n > N so that x,, € B = [[ B,. Hence m,(x,) € B, for all «, and in particular ng(x,) € Bg = U.
This suffices to show that the sequence mg(x1), mg(x2), . . . converges to mg(x) as desired since U was
an arbitrary neighborhood.

(<) Now suppose that the sequence 7, (X1), 7o (X2), ... converges to m,(x) for every a. Let U be
any neighborhood of x in [[ X,. Then there is a basis element B = [[U, of [[ X, where x € B
and B C U. Since [] X, is the product topology, each U, is open but only a finite number of them
are different from X,. Suppose then that J is the index set of a and that I C J is the finite subset
where U, = X,, for all a ¢ I.

Then for any § € I we have that mg(x) € Ug since x € B = [[U,, hence U is a neighborhood of
mg(x). Then, since mg(x1), m3(X2), ... converges to mg(x), there is an Ng € Z; where m3(x,) € Ug
for all n > Ng. So let N = maxqaer No, noting that this exists since [ is finite. Consider any n > N
and any a € J. If @ € I then we have that n > N > N, so that m,(x,) € Uy. If @ ¢ J then
of course we have that m,(x,) € X, = U,. Hence either way we have that m,(x,) € U, so that
x, € [[Us = B and hence also x,, € U since B C U. Since n > N was arbitrary and U was an
arbitrary neighborhood of x, this shows that x1,xs,... converges to x as desired. O

As noted there, the forward direction of the preceding proof works for the product or the box
topology. However, then reverse direction was proved only for the product topology, with the
critical point being where we took max,c; N, which was only guaranteed to exist since [ is finite
in the product topology. The provides a hint as to how to construct a counterexample that proves
that this direction is not generally true for the box topology.
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Proof. Define

{1 j<i
Ti5 = 1 . .
E ]>Z

for i,j € Z,. Now define a sequence xi1,Xso, ... in Hi€Z+ R = R¥ by m;(x;) = ;;. With the box

topology on R¥ we claim that each coordinate sequence 7;(x1), m;(X2), ... converges to 0 but that
the sequence x1,Xa, ... does not converge to the point 0 = (0,0,...).
First, it is easy to see that each coordinate sequence 7;(x1), m;(X2),... converges to 0 since, for

fixed ¢, there is always an N € Z4 large enough such that j > ¢ and m;(x;) = x;; = 1/(j —9) is
small enough to be within any fixed neighborhood of 0 for all j > N. To show that the sequence
X1,X32,... does not converge to 0 though, consider the neighborhood U = [[Uj of 0 where every
U, = (—1,1). We note that clearly U is open in the box topology since each Uy is a basis element
of R and therefore open. For any N € Z, we then have that 7y (xy) = xyn = 1 so that clearly
7N (xn) ¢ (—1,1) = Uy and hence xy ¢ [[Ux = U. This suffices to show that the sequence does
not converge, but it does not even come close to converging since there are actually no points in the
sequence that are even in this quite large neighborhood of 0! O

Exercise 19.7

Let R* be the subset of R“ consisting of all sequences that are “eventually zero,” that is all sequences
(z1,x2,...) such that z; # 0 for only finitely many values of . What is the closure of R* in R% in the
box and product topologies? Justify your answer.

Solution:

First we claim that R*° is dense in R“ in the product topology in the sense that its closure is all of
R«.

Proof. We show that any point of R¥ is in R¥. So consider any point = = (21, 72, ...) € R* and any
neighborhood U of 2. Then there is a basis element B = [[U,, containing « where B C U. By the
definition of the product topology each U, is open and U,, = R for all but finitely many values of
n. So let I be a finite subset of Z; such that U, = R for all n ¢ I and U, is merely just open for
nel.

Consider now the sequence y = (y1,y2,...) defined by

_Jmn mel
Tl0 ner

for n € Zy. Since I is finite clearly y € R*. Also y,, = 2, € U,, when n € I since B = [[U,
contains x. We also have y, = 0 € R = U,, when n ¢ I so that either way y, € U, and hence
y € [[Un = B. Thus also y € U since B C U. Since U was an arbitrary neighborhood and U
intersects R> (with y being a point in the intersection), this shows that 2 € R> by Theorem 17.5.
This of course shows the desired result since z was any element of R¥. O

For the box topology, we claim that R is already closed.

Proof. We show this by showing that any point not in R* is not a limit point of R> so that R>
must already contain all its limit points. So consider any x = (1, x2,...) ¢ R so that z,, # 0 for
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infinitely many values of n. Now define the sets

(-1,1) zp, =0
Un =1 (21/2,22,) 2, >0
2z, 2n/2) x, <0

for n € Z,. Clearly each U, is a basis element of R and is therefore open. Also clearly each x,, € U,.
It therefore follows that B = [[ U, is a basis element of R“ and is therefore open, and that = € B.
Hence B is a neighborhood of .

Then, for any y = (y1,¥ys,...) € B we have that each y,, € U,,. For infinitely many n € Z, we then
have that x,, # 0 and hence z,, > 0 or x,, < 0. In the former case y, € U, = (z,/2,2x,) so that
0 < x,,/2 < yp. In the latter case y,, € U, = (2,2, /2) so that y, < z,/2 < 0. Hence either way
yn # 0 so that y ¢ R since this is true for infinitely many n. Since y € B was arbitrary, this shows
that B cannot not intersect R>°. Therefore x is not a limit point of R* since B is a neighborhood
of x. [

Exercise 19.8

Given sequences (21, g, ...) and (b1, bs,...) of reals numbers with a; > 0 for all i, define h : R¥ — R¥
by the equation

h((.’EhCEQ, .. )) = (alxl + bl,agl'g + bz, .. ) .

Show that if R is given the product topology, & is a homeomorphism of R* with itself. What happens
if R“ is given the box topology?

Solution:

Lemma 19.8.1. Consider the spaces [[ Xo and [[Ya in the box topologies over the index set J. If
f:1]Xa = [1Ya is defined by

f((#a)aecs) = (fa(xa))aeJ
and each fn : Xo — Yo is continuous, then f is continuous.

Proof. Consider any basis element B = [[V, in [[ Y, so that each V,, is open in Y, since we are
in the box topology. For each a € J then define U, = f;!(V,), which is open in X, since f, is
continuous. Hence the set U = [ U, is a basis element of [ X,, in the box topology and is therefore
open. We claim that U = f~1(B), which shows that f is continuous since U is open and B was
arbitrary.

(C) Consider any x € U = [[U,. Then, for any a € J, we have z, € U, = f;1(V,) so that
f(zo) € V,. Hence f(x) = (fa(%a))acs € [[Va = B so that x € f~!(B). this shows that
U C f~1(B) since x was arbitrary.

(D) Now consider any x € f~!(B) so that f(x) € B = [[ V. and hence each f,(x,) € Vi, by the
definition of f. Then z,, € f;!(Va) = U, so that clearly x € [[U, = U. Since x was arbitrary this
shows that f~(B) C U as well. O

Main Problem.
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Proof. First note that clearly h(x) = (hi(x), ha(x),...) for x € R¥, where each h; : RY — R is
defined by

hi(x) = a;m;(x) + b; .

This can further be broken down as h;(x) = fi(mi(x)) = (fi o m;)(x), where each f; : R — R is
defined by f;(z) = a;x +b;. As discussed in the proof of Theorem 19.6, each 7; is continuous and we
have that each f; is continuous by elementary calculus, noting that this is true whether each a; > 0
or not. It then follows from Theorem 18.2 part (c¢) that each f; o m; = h; is continuous. Then we
have that & is continuous by Theorem 19.6 since each coordinate function is continuous and we are
using the product topology.

Now define the functions g; : R — R by g;(z) = (x—b;)/a; for i € Z, noting that this is defined since
each a; > 0. Define also the functions k; : R¥ — R by k; = g; o m;, and finally define £ : R¥ — R¥
by k(x) = (k1(x), k2(x),...). Now again we have that each 7; and g; are continuous by the proof of
Theorem 19.6 and elementary calculus. Hence k; = g; o m; and k are continuous by Theorem 18.2
part (c), and Theorem 19.6, respectively, as before.

Now consider any x = (z1, 2, ...) € R¥ so that we have, for any i € Z.,
ki(h(x)) = [gi o mi](h(x)) = gi(mi(h(x))) = gi(hi(x))

= gi([fi o m](x)) = gi(fi(mi(x))) = gi(fi(w:))
~ filwg) = b (awi+bi) — b agw

Therefore
k(h(x)) = (k1(h(x)), k2(h(x)),...) = (z1,22,...) = X.
We also have that
hi(k(x)) = [fi o mi](k(x)) = fi(mi(k(x))) = fi(ki(x))
= fi(lgi o m](x)) = fi(g9i(mi(x))) = fi(gi(w:))

i*bi
:a,;glv(xi)eri:a,; (l‘ > +b7:(x77b1)+b7

for each ¢ € Z, so that
h(k(x)) = (h1(k(x)), ha(k(x)),...) = (1, x2,...) = X.

Since x was arbitrary, it thus follows from Lemma 2.1 that h is bijective and k = h~!. Since we have
already shown that h and k = h~! are continuous, this suffices to prove that h is a homeomorphism
as desired. O

We claim that h is also a homeomorphism in the box topology.

Proof. First, h is still a bijection as the proof of this above does not depend on the topology at all.
However, Theorem 19.6 was used in the proofs that h and A~! are continuous, and we know that
this theorem is not generally true for the box topology. On the other hand A can be formulated as
h(x) = (fi(x1), fo(x2),...), where as before each f;(x) = a;x 4+ b;. Since each f; is continuous by
elementary calculus, it follows from Lemma 19.8.1 that h is continuous in the box topology. The
same argument applies to the inverse function h~! since h=1(x) = (g1(x1), g2(z2),...) and each g;
is continuous. O
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Exercise 19.9

Show that the choice axiom is equivalent to the statement that for any indexed family {As},; of
nonempty sets, with J # 0, the cartesian product

I] 4.
aeJ

is not empty.

Solution:

Proof. For the following denote the collection {Aq}, ., by A.

(=) First suppose that the choice axiom is true. Then by Lemma 9.2 there exists a choice function

c: A— U A

AeA

where ¢(A) € A for each A € A, noting that this is true since A is a collection of nonempty
sets. Then consider, set x, = ¢(A4,) for each o € J so that z, = ¢(4,) € A,. Therefore clearly
X = (Zo)act € [[ Aa so that [] A, is not empty.

(<) Now suppose that [] . ; Aa is nonempty for any indexed family {A,},c; of nonempty sets
when J # @. Let A be a collection of disjoint nonempty sets where A # @. Then the {A} ,_ 4 is a
nonempty family of nonempty sets. Hence [] . 4 A is nonempty so that there is an x = (r4)4eu €
[Taca A, and thus 24 € A for every A € A. Now let C = {xa},. 4 so that clearly C C [JA.
Consider any A € A so that x4 € C and x4 € A, and hence x4 € C N A. Suppose that y e CN A
so that y € C' and hence there is a B € A where y = . We also have that xp =y€ A. If B# A
then xp € B and xp € A, which is not possible since B and A are disjoint as they are distinct
elements of A. So it must be that B = A and hence y = xg = 4. Since y was arbitrary, this shows
that C'N A has only a single element x 4. This suffices to show the choice axiom. O

Exercise 19.10

Let A be a set; let {X,}
functions f, : A — X,.

wcy be an indexed family of spaces; and let {f.},.,; be an indexed family of

(a) Show there is a unique coarsest topology T on A relative to which each of the functions f, is
continuous.

(b) Let
Sp = {fgl(Uﬁ) | Us is open in XB} ,

and let S = JSg. Show that S is a subbasis for 7.
(c) Show that a map g : Y — A is continuous relative to 7 if and only if each map f,, o g is continuous.
(d) Let f: A— ][ X, be defined by the equation

f(a’) = (foz(a))aEJ;

let Z denote the subspace f(A) of the product space [| X,. Show that the image under f of each
element of 7 is an open set of Z.
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Solution:
(a)

Proof. Let C be the collection of topologies on A relative to which each of the functions f, is
continuous. Clearly C is nonempty as the discrete topology is in C since every subset of A is open in
it so that f,(V,,) is always open when V,, is open in X,. Let 7 = [ C, which is a topology on A by
what was shown in Exercise 13.4 part (a). We claim that this is the unique coarsest topology such
that each f, is continuous relative to it. To see this suppose that 7" is any topology in such that
each f, is continuous relative to it, hence 7' € C. Then, for any open U € T = (| C we of course
have that U € T’ since 7’ € C. Hence T C T’ since U was arbitrary so that 7 is courser than 7,
noting that it could of course be that 7 = T as well. Since 7’ was artbitary, this shows the desired
result.

Of course it also must be that 7 is unique since, for any other 7' that is a coarsest element of C,
we just showed above that 7 C 7’ since 7' € C. But also 7 D T’ since 7' must be coarser than T
since T € C. This shows that 7 = 7’ so that T is unique since 7’ was arbitrary. This also follows
from the more general fact that any smallest element in an order or partial order is always unique,
and inclusion is always at least a partial order. O

(b)

Proof. We show that C from part (a) is exactly the set of topologies on A that contain the subbasis
S. That is, we show that 7’ € C if and only if S C 7’ when 7’ is a topology on A. Since the
coarsest topology 7 from part (a) is defined as [ C, this shows that 7 is the topology generated
from the subbasis S by Exercise 13.5.

(=) Suppose that T’ € C so that every f, is continuous relative to 7’. Now consider any subbasis
element S € S so that § = fEI(Ug) for some B € J and some open set Ug in Xg. Then fz is
continuous relative to 7’ so that S is open with respect to 7', and hence S € 7’. This shows that
S C T since S was arbitrary, hence 7' contains S.

(<) Now suppose that 7' is a topology on A that contains S so that S C 7. Consider any « € J
and any open set U, of X,. Then clearly f,'(U,) is in S, so that it is also clearly in & = |JSs.
Hence also f;*(U,) € T’ since S C T'. Therefore f, !(U,) is open with respect to 7', which shows
that f, is continuous relative to 7' since U, was an arbitrary open set of X,. Since a € J was also
arbitrary, this shows that every f, is continuous relative to 7’ so that 7’ € C by definition. O

()

Proof. (=) Suppose that g : Y — A is continuous relative to 7. Counsider any « € J and any open
set U, of X,. Then f,1(U,) is open with respect to T since f, is continuous relative to 7 since
every f, is. It then follows that ¢g=1(f;1(Uys)) is open in Y since g is continuous relative to 7.
From Exercise 2.4 part (a) we have that ¢71(f;1(Us)) = (fa 0 g) 1(Us), which shows that f, og
is continuous since U, was an arbitrary open set of X,. Since a € J was arbitrary, this shows the

desired result.

(<) Now suppose that every f, o g is continuous and consider any open set U of A with respect to
T. Then by part (b) we have that U is an arbitrary union of finite intersections of subbasis elements
f1(U,) for a € J and open U, in X,. It then follows from Exercise 2.2 parts (b) and (c) that
g~ Y(U) is an arbitrary union of finite intersections of sets g~ 1(f,1(U,)). Again we have that each
g N N (Uy)) = (faog) 1 (Uys) by Exercise 2.4 part (a) so that each of these sets is open in Y since
every f, o g is continuous. Hence g~1(U) is open as well since it is the arbitrary union of finite
intersections of these open sets and Y is a topological space. Since U was an arbitrary open set of

A with respect to 7T, this shows that ¢ is continuous relative to T as desired. O
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(d)

Proof. Suppose that U is any open set of A with respect to 7. Consider any y = (Yo )acs € f(U)
so that there is an a € U where f(a) =y. Since a € U and U is open in A, we have that there is a
basis element B4 containing a where B4 C U. It then follows from part (b) that this basis element
is a finite intersection of subbasis elements, hence B4 = (3¢, fﬁfl(Ug)7 where I C J is finite and
each Ug is open in X3. Now define

V., = UB aecl
XB OL¢I

so that clearly the set B, = [[ V4, is a basis element of [] X, in the product topology by Theorem 19.1
since [ is finite. We then have that Bz = ZN DB, is a basis element of the subspace Z by Lemma 16.1.

Now, we have that a € U and U C A so that a € A as well. It then follows that y = f(a) € f(A) = Z.
For 8 € I, we also have that a € fﬁ_l(Ug) since the basis element Ba = (¢, fﬁ_l(U/g) contains a.
Hence f3(a) € Ug. Since of course every other f,(a) € X, when a ¢ I, we have that f,(a) € V, for
all @ € J and thus y = f(a) = (fa(a))acs € [[ Vo = Bp. We therefore have that y € ZN B, = Bz
so that Bz contains y.

Lastly, consider any z = (24)acs € Bz = ZN B,. Then z € Z = f(A) so that thereisan z € A
where f(z) = (fo())acs = z and hence each f,(z) = z,. We also have that z € B, = [[V,
so that z, € V, for every a € J. In particular fg(zx) = 23 € Vg = Ug for all § € I so that
x € f;l(Ug). Therefore z € (¢, f,;l(Ug) = By so that also € U since B4 C U. Then we have
that z = f(z) € f(U). Since z was arbitrary this shows that Bz C f(U).

We have thus shown that By is a basis element of the subspace Z that contains y where Bz C f(U).
Since y was an arbitrary element of f(U), this suffices to show that f(U) is open in the subspace Z
as desired. ]

8§20 The Metric Topology
Exercise 20.1
(a) In R™, define

d'(x,y)=lz1 — 1|+ + |20 — yn| -

Show that d’ is a metric that induces the usual topology of R™. Sketch the basis elements under d’
when n = 2.

(b) More generally, given p > 1, define

n 1/p
d'(x,y) = [Z |zi — yi|p]
i=1

for x,y € R™. Assume that d’ is a metric. Show that it induces the usual topology on R™.

Solution:

Lemma 20.1.1. If x and y are real and x,y > 0 then P < yP if and only if x <y, for all integers
p=>1
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Proof. First, if x = 0 then of course
r<ye i<y li<yP 0P <y? o af <y?

for any p > 1, so assume it what follows that > 0. We show this by induction on p. First, for
p = 1 we clearly have that 2P = x and yP = y so that of course the biconditional holds. Now suppose
that P < yP if and only if z < y. Suppose that & < y so that 2P < yP follows by the induction
hypothesis. We also have that y > 0 since 0 < < y so that y? > 0. Then

P < yP
x-2P <az-y? (since z > 0)
ol <z-oyP <y-yf (since z < y and y* > 0)

Pt < Pt

Now suppose that it is not true that x < y so that x > y. It then follows from the induction
hypothesis that P > yP. Then we have

af > yP
x-aP >x-yP (since z > 0)
x-axP >a-yP >y-yf (since z > y and y” > 0 since y > 0)

$p+1 > yp+1 .

Hence by the contrapositive we have that zP™! < yP*! implies that z < y. This completes the
induction. O

Corollary 20.1.2. If x and y are real and x,y > 0 then /P < y*? if and only if x < y, for all
integers p > 1.

Proof. Consider any p > 1 and let u = 2'/? and v = y'/P. Then clearly we have u,v > 0 since
x,y > 0. We then have by Lemma 20.1.1 that

uw <P s u<w
(xl/p)p < (yl/p)p o gt/P < yt/r

r<ye /P <yl/r
which is of course the desired result. O

Lemma 20.1.3. For any n,p € Z, and a finite sequence (J}i)?zl where each x; > 0,

Proof. For every n € Z, we show this by induction on p. For p =1 we clearly have

n n n n p

b _ —
doal=) <) wi=|) a)
i=1 i=1 i=1 =1

Now suppose that the hypothesis is true for p. Then we have

(&) (&) &)
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n n n
> <Z xi> <Z xf) (by the induction hypothesis since Z x; > 0)
i=1 i=1 i=1
n n
=> D @l

i=1 j=1

—Z TiT p—¢-z:9£z

J#i

_prJrl—'—Zle P

i=1 j#i
>3
i=1
since each :cia:f > 0 so that the double sum is as well. This completes the induction. O

Main Problem.

(a) First, the basis elements of the metric topology induced by d’ are open intervals in R, open
diamonds in n = 2, open octahedrons for n = 3, and the higher dimensional analogues for n > 3. A
sketch of the ball By (0 x 0,1) in R? is shown below:

Now we show that d’ is a metric and induces the usual topology of R".

Proof. Tt is easy to see that d’ meets the properties required of a metric. Clearly d’'(x,y) > 0 since
each |x; — y;] > 0, and d’'(x,y) = 0 if and only if each z; = y; so that x =y. Also it is obvious that
d'(x,y) = d'(y,x) since each |x; — y;| = |y; — x;|]. For the triangle inequality we simply have that

d'(x,z) =

|z — zil

IV

1

(3

(lzi — yil + lyi — 2il) (since each |z; — 2| < |z; — yi + |yi — 2i)

|zi — yz|+Z|y1 zi

-

i=1

HM:
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=d'(x,y)+d(y.2).
We now show that the metric topology induced by d’ is the same as that induced by the square metric
p, which shows the desired result since the square metric induces the standard product topology
on R™ by Theorem 20.3. First consider any x € R™ and any ¢ > 0. Let § = € and consider any
y € By (x,0). Suppose also that j is an index in {1,...,n} where

p(x,y) = max {[x1 —y1|,-- -, |[Tn — Ynl} = 2; —y;| -

Since y € By (x,9), we have

dx,y) =3 Joi—yil <6 =e
=1

=yl + ) |z — vl < e

i#]
|z — 5 <6—Zlfri—yi| <e
i#]
plx.y) < e

since of course Ei# |z; — ;| > 0. Therefore y € B,(x, €), which shows Bg (x,9) C B,(x,€) so that
the metric topology of d’ is finer the the metric topology of p by Lemma 20.2.

Now again consider and x € R™ and € > 0, and this time let § = ¢/n. Consider any y € B,(x, )
and again suppose also that j is an index in {1,...,n} where

p(x,y) =max{|zy —y1|,...,|Tn — ynl} = |2 — Y] .

We then have

lz; —y;| = p(x,y) <d=¢/n
nlz; —y;| <e.

We also have
d'(x,y) =Y | — il
i=1

n
< lzj— il (since each |z; — yi| < [a; — y;l)
i=1

=n|z; — yjl
<€

so that y € Bg/(x,¢€). Hence B,(x,0) C By (x,¢€) so that the metric topology of p is also finer than
that of d’ again by Lemma 20.2. Therefore it must be that the two topologies are equal since each
is finer than the other. O

(b) Let d denote the metric defined in part (a), that is

n

d(x,y) = Z |lzi — il -

i=1
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First we show that the metric topology induced by d’ is finer than that induced by p. So consider
any x € R™ and € > 0. Let 6 = € and suppose that y € By (x,d) so that

n 1/17
d(x,y) = (Zmyﬁ’) <d=c¢€.

=1

Suppose that j is an index in {1,...,n} where
p(x,y) = max{|z1 —yil,...,|Tn — yul} = |z; — y;| -
Then
n
2 —yil” <oy —yil" + > i —wil” = |wi — il
i#j i=1
so that, by Corollary 20.1.2, we have

n 1/17
(lzj — yj|p)1/p < <Z |lzs — yﬁ’) <e

=1
lzj —yj| <e
p(x,y) <e.

Therefore y € B,(x,€) so that By (x,0) C B,(x,¢€). This suffices to show that the metric topology
induced by d’ is finer than that induced by p by Lemma 20.2.

Now we show that the metric topology induced by d is finer than that induced by d’. So again
consider any x € R™ and € > 0. Again let § = € and suppose that y € By(x,0) so that

n

d(X7Y):Z|$i_yi|<6:€'

i=1

Then, since each |z; — y;| > 0, we have by Lemma 20.1.3 that

n n p
Z s —yil” (Z |i — yi|>

i=1 i=1

(Smwr) <[ ()T

n
d(x,y) <Y lwi—yil <e,
=1

IN

IN

where we have used Corollary 20.1.2 in the second step. Thus y € By (x,¢€) so that By(x,0) C
Bg(x,€). This of course shows that the metric topology induced by d is finer than that induced by
d’ by Lemma 20.2 again.

Thus we have shown that the metric topology induced by d’ is finer than that induced by p, and
also that that induced by d is finer than that induced by d’. But it was shown in part (a) and
Theorem 20.3 that those induced by d and p are the same topology, which is is the usual product
topology on R™. Hence if 7, denotes this usual product topology, we have

T =T, Ta CTa=T, =Ty

So it must be that the metric topology induced by d’ is this topology as well as desired.
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Exercise 20.2
Show that R x R in the dictionary order topology is metrizable.

Solution:

Proof. In what follows let

d(z,y) = min {|z —y[, 1}

be the standard bounded metric on R, noting that this is a metric by Theorem 20.1. Now define
the function d : R? x R? — R by

d(x,y) = ! L # Y
7 Ci(x27y2) 1 =Y1-

We claim that this is a metric on R? that induces the dictionary order topology.
First we show that d is a metric on R2. Clearly d(x,y) > 0 since both 1 > 0 and d(z2,y2) > 0 since d

is a metric. Moreover if x =y then z; = y; and 25 = 5 so that d(x,y) = d(z2, y2) = 0. Conversely
if d(x,y) = 0 then clearly d(x,y) # 1 so that it must be that z, = y; and d(x,y) = d(z2,y2) = 0 so
that zo = yo since d is a metric. From this it follows that x = y since 1 = y; and x5 = ¥y, which

shows property (1) of a metric.

It is also obvious that d(x,y) = d(y, x) since if x1 # y; then d(x,y) =1 =d(y,x). If x1 = 25 then
d(x,y) = d(z2,y2) = d(ys2,z2) = d(y,x) since d is a metric. This shows property (2) of a metric.
Lastly, consider x, y, and z in R2.

Case: x1 # z1. Then d(x,z) = 1 and it must be that either y; # x1 or y; # z1 since otherwise we
would have that 1 = y; = z1. Thus either d(x,y) = 1 or d(y,z) = 1 and hence
d(x,y) +d(y,z) > 1 = d(x,2)

since both d(x,y) > 0 and d(y,z) > 0.

Case: 1 = z1. Then d(x,2z) = d(x2, 22). If y1 = x1 then ;1 = y; = 21 so that

).
d(sz) = (anZQ) <

(w2, y2) + d(y2, 22) = d(x,¥) + d(y, 2)

since d is a metric. If y; # x1 then y; # 21 = 21, and hence d(x,y) = d(y,z) = 1 so that
d(x,2) = d(13,2) <1<2=1+1=d(x,y) +d(y,z)

since d is the bounded metric so that it is always at most 1.

Thus in all cases we have shown property (3) of a metric.

In what follows let < denote the dictionary order on R?. To show that d induces the dictionary
order topology, first consider any point x € R? and any basis element B of the dictionary order
topology that contains x. Then of course B = (a,b), where a < x < b since the dictionary order
has no largest or smallest elements in R%2. Now define

1 T = a2
Og =
\372 —a2| Ty # a2

and

1 Lﬂgzbg
Op =
|ze — ba| 2 # ba,
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and let 6 = min {1, d,,dp}. Clearly the set By(x,d) is a basis element of the topology induced by d,
and we claim that x € Bg(x,d) C B.

That x € Bg(x,9d) is obvious. So now consider any y € By(x,0) so that d(x,y) < é < 1. Hence it
cannot be that x; # y; by definition, since d(x,y) = 1 in that case, and so z; = y1. If 29 = as
then it has to be that a; < x; since otherwise it would not be the case that a < x. Thus we have
a1 < x1 =1y so that a <y.

On the other hand if x5 # as then it must be that a; < y; since otherwise we would have 1 = y1 < a1
so that x < a. If a; < y; = x1 then of course a < y so assume that a; = y; = x1. The
it must be that as < x5 since a < x, and so |rg —as| = z3 — as. Then, since z; = y1, we
have that d(z2,y2) = d(x,y) < § < 1 so it must be that d(x,y) = d(z2,y2) = |z2 — y2|- Also
0o = |2 — ag| = xo — ag since x9 # as. Hence we have |1y — yo| = d(x,y) < § < §4 = 23 — ag, from
which it readily follows that as < y2 so that again a < y.

Therefore in all cases a < y. Analogous arguments show that y < b so that y € (a,b) = B, which
shows that Bg(x,d) C B as desired since y was arbitrary. This shows that the topology induced by
d is finer than the dictionary order topology by Lemma 13.3.

Now again suppose that x € R?, and that ¢ > 0 and x’ € R? such that By(x’,€’) is an arbitrary
basis element of the metric topology induced by d that contains x. It was shown after the definition
of a metric topology in the text that there is another ball Bg(x, €) centered at x such that Bg(x,¢€) C
By(x',€"). Let 6 = min {1, ¢} and define a = 21 x (x2—3J) and b = x1 X (x2+4). Set B = (a, b), which
is clearly a basis element of the dictionary order topology. So consider any y € B so that a <y < b.
Clearly it must be that a; = y; = by = x1 since otherwise we would have that y < aor b <y. From
this it follows that ag = 29 —0 < y2 < T2+ = by so that —0 < ya —x2 < § and hence |z3 — yo2| < 0.
Moreover, since y; = x; and § < 1, it follows that d(x,y) = d(z2,%2) = |12 — 9| < § < e
This shows that y € By(x,¢), which shows that B C By(x,¢) C By(x',€¢') since y was arbitrary.
This proves that the dictionary order topology is finer than the topology induced by d again by
Lemma 13.3.

Since each is finer than the other the topologies must be the same, which shows that the dictionary
order topology is metrizable as desired. O

Exercise 20.3
Let X be metric space with metric d.

(a) Show that d: X x X — R is continuous.
(b) Let X’ denote a space having the same underlying set as X. Show that if d : X/ x X’ — R is
continuous, then the topology of X’ is finer than the topology of X.

One can summarize the result of this exercise as follows: If X has a metric d, then the topology induced
by d is the coarsest topology relative to which the function d is continuous.

Solution:

(a) We use Theorem 18.1 part (4) to show that d is continuous. So consider any z; X z2 € X x X
and any neighborhood V of z = d(x1,x2), noting that ¥V C R since R is the range of d. Since V is
open in R, there is a basis element B = (a,b) containing z where B C V. Hence a < z < b. Now let
e =min{(z — a)/2, (b — z)/2}, noting that € > 0 since z > a and b > z. Next define U; = By(x1,¢)
and Uy = By(x2,€) so that they are both basis elements and therefore open sets of the metric space
X. It then follows that U = U; x Us is a a basis element and therefore an open set of the product
space X x X. Clearly we have that x1 € By(x1,¢) = Uy and 29 € By(xa, €) = Uy so that U contains
x1 X w2 and so is a neighborhood of 1 X xs.
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We claim that d(U) C B. To see this, consider any w € d(U) so that thereis a y; xy2 € U = Uy x Uy
such that w = d(y1,y2). Therefore y1 € Uy = Bg(x1,€) so that d(y1,x1) < €, and similarly
d(y2,x2) < € since yo € Uy = Bg(xa,€). Then, since d is a metric, we have

< d(z1,y1) +d(y1, 72)
<d(xy,y1) + d(y1, y2) + d(y2, z2)
=d(y1, 1) + d(y1, y2) + d(ya, T2)

d
d

<e+w+e
z<w+2e<w+2z—a)2=w+z—a
a<w.
Similarly, we have
w=d(y1,y2) < d(y1,71) +d(z1,Y2)
< d(y1,z1) +d(z1,72) + d(72,y2)
=d(y1,z1) + d(z1,22) + d(y2, T2)
<et+z+e
w<z+2<z4+20b—2)/2=2+b—2
w<b.

We therefore have that ¢ < w < b so that w € (a,b) = B. This of course shows that d(U) C B
since w was arbitrary. Moreover, we have that B C V so that clearly d(U) C V, which completes
the proof of Theorem 18.1 part (4) so that d is continuous.

(b) Let U be any open set of X and consider any z € U. Then clearly there is a basis element By(y, €),
for some € > 0 and y € U, of the metric topology X that contains x and where By(y,€) C U. Now,
since d is continuous with respect to X’ x X', it follows from Exercise 18.11 that the function
dy,(z) = d(y, z) is a continuous function from X’ to R. Since clearly the interval (—oo,€) is open in
R, it then follows that the set

dy ' ((—00,€)) = {2 € X" | dy(2) <€} = {2 € X | d(y,2) < ¢} = Ba(y,e)

is also open in X’. Thus By(y,€) is an open set in X’ containing x such that By(y,e) C U. This
shows that U is also open in X’ by Exercise 13.1 since the point x € U was arbitrary. This suffices
to show the desired result.

Exercise 20.4
Consider the product, uniform, and box topologies on R,

(a) In which topologies are the following functions from R to R continuous?

ft)

(t,2t,3t,...),
(t7 t? t? : ')7
h(t) = (t, 3t, it,...).

<

—~
~

~—
I

(b) In which topologies do the following sequences converge?

wi = (1,1,1,1,...), x1 = (1,1,1,1,...),
wy = (0,2,2,2,...), x2=0(0,3,%,%,...),
wsz = (0,0,3,3,...), x3 = (0,0,3,%,...),
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Y1 = (17030,0> . ')? Z1 = (17170’0’ )’
y2:(%7%70307 )7 ZQZ(%,é,(LO, )a
Y3:(%7%7%707 )7 Z3:(%7%70707 )7

Solution:

Lemma 20.4.1. Suppose that X is a metric space with metric d. If U is an open set of X containing
a point x then there is a ball By(x,€) centered at x that is contained in U.

Proof. The main part of this proof was given after the definition of a metric topology in the text,
but we repeat it here for completeness.

By the definition of the metric topology, there is a § > 0 and y € X such that the basis element
By(y,0) contains x and is contained in U. Let € = § — d(z,y) so that d(z,y) = 0 — €, noting that
e > 0 since x € By(y,0) so that d(z,y) < . Then, for any z € By(z,€), we have that d(z,z) < €
and so

d(z,y) <d(z,z) +d(z,y) =d(z,2) +d—e<e+d—€e=0

since d is a metric. Hence z € By(y,d) so that By(z,€) C By(y,d) C U as desired since z was
arbitrary. O

Lemma 20.4.2. Suppose that X is a topological space and'Y and Y’ are topological spaces on the
same set, and that Y’ is finer than Y. Suppose also that f : X — Y so that of course it is also a
function from X toY'. We assert the following:

(1) If f is continuous with respect to Y’ then it is also continuous with respect to Y .

(2) If f is not continuous with respect to Y then it is also not continuous with respect to Y.

(8) If a sequence in' Y' converges to a point yo, then it also converges to yo in'Y .

(4) If a sequence in'Y does not converge to a point yo, then it also does not converge to yo in' Y.
(5) If a sequence in'Y does not converge at all, then it also does not converge at all in Y.

(6) If Y is a Hausdorff space, then so isY'.

Proof. For assertion (1) suppose that f is continuous with respect to Y’ and let U be any open set
of Y. Since Y’ is finer than Y, it follows that U is also open in Y’. Then, since f is continuous
with respect to Y’ we have that f~(U) is open in X, which suffices to show that f is continuous
with respect to Y since U was an arbitrary open set. Assertion (2) follows immediately from the
contrapositive of (1).

Regarding (3), suppose that a sequence (y1,¥s,...) converges to yo in Y’ and let U be any neigh-
borhood of 3y in Y. Then U is also open in Y’ since it is finer than Y, hence U is a neighborhood
of yo in Y’. Thus there is an N € Z such that z,, € U for all n > N, since the sequence converges
to yo in Y’. Since U was an arbitrary neighborhood of Y, this shows that the sequence converges
to yo in Y. Assertion (4) follows immediately from the contrapositive of (3). Assertion (5) then
immediately follows from (4) since, if a sequence does not converge at all in Y then for any point
yo € Y, it does not converge to yo. Then it also does not converge to yo in Y’ by (4). Since yo was
arbitrary, this shows that it does not converge at all in Y.
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For (6), suppose that Y is a Hausdorff space and let « and y be distinct points of Y’ so that they
are of course also points of Y. Hence there are neighborhoods U and V of « and y, respectively, in
Y that are disjoint. Since Y’ is finer than Y, we have that U and V are also open sets of Y’ and
thus are disjoint neighborhoods of z and y in Y’ as well. This suffices to show that Y’ is Hausdorff
as desired. O

Main Problem.

(a) Regarding whether or not the functions are continuous in the various topologies, we claim the
following:

‘Product Uniform Box

f Yes No No
g Yes Yes No
h Yes Yes No

Proof. First, the functions f, g, and h can all be considered as special cases of the more general
function

s(t) = (sn(t))nez, »

where each s, (t) = a,t, and «,, =n for f, a,, =1 for g, and «,, = 1/n for h.

Clearly each s, is continuous for the three «,, by elementary calculus so that s is continuous in the
product topology by Theorem 19.6 for all three «,,. We can show that s is mot continuous in the
box topology for all three cv, with a single example. Consider the set B = Hnez+(—1/n2, 1/n?),
which is clearly a basis element of the box topology and so is open. Similar to Example 19.2, if s
were continuous then there would be an interval (—d, ) about the point 0 such that s((—6,0)) C B,
where of course & > 0. This would of course mean that

50((—=6,6)) = (—and, a,d) C (—1/n% 1/n?)
for all n € Z. However, since clearly there is an n € Z large enough that
n35 > n?5 > nd > 1,
we have that
né >4 >4d/n> 1/n2,
and hence for all three functions we have that a,,d > 1/n? so that
50((—8,8)) = (—and, and) ¢ (~1/n%,1/n%).

This shows that s cannot be continuous with respect to the box topology for all three c,.

Next we show that f is not continuous in the uniform topology. First, suppose that p is the metric
that induces the uniform topology, i.e.

ﬁ(X7y) ::SUF){d(xn’yn)‘ n e Z4,}.

Now consider the basis element and open set B;(0, 1) in the uniform topology. If f were continuous
then there would be a § > 0 such that

f((=8,8)) = ] (=on,on) C B5(0,1).

nely
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Clearly there is an n € Z large enough such that n > 1/§ so that dn > 1. Then consider the point
x € R defined by

0 m#n+1
Ty =
on m=n-+1.

We then have of course that —(n+1)d <0 < nd = z,,41 < (n+1)d so that z,,41 € (—(n+1)J, (n+
1)d). It then follows that x € f((—d,d). However, we also have that d(én,0) = max {|dn —0],1} =
max {dn, 1} = 1 since én > 1. Hence it is not true that p(x,0) < 1 so that x ¢ B;(0,1). Thus

f((=9,6)) ¢ B5(0,1) so that f is not continuous in the uniform topology.

Next we show that g and h are continuous in the uniform topology at the same time, which we
show using Theorem 18.1 part (4). Consider any real u and any neighborhood V of x = g(u) (or
x = h(u)) in the uniform topology. Then by Lemma 20.4.1 there is an € > 0 such that the basis
element Bj(x,€) is a subset of V. Now consider the basis element and open set U = By(u,€/2),
where d denotes the usual metric on R. Obviously U contains u but we also claim that g(U) C V
(or h(U) C V), thereby completing the proof.

So consider any y € g(U) (or y € h(U)) so that there is some v € U such that y = g(v) (or y = h(v))
In the case of g we have that x = g(u) = (u,u,u,...), which is to say that x,, = u for all n € Z..
Similarly y, = v for all n € Z, since y = g(v). Now, since v € U = By(u, €/2), we have that

A(Yn, Tn) < d(Yn, zn) = d(v,u) < €/2
for all n € Z4. From this it follows that

ply,x) =sup {d(yn,z,) | n €Zy } <€/2 <.

Likewise in the case of h we have that z,, = u/n and y, = v/n for all n € Z; since x = h(u) and
y = h(v). We therefore have that

vV —u
A(Yn, Tn) < d(Yn, Tn) = [Yn — Tn| = v/ —u/n| =

1 1 ¢/2

= — — :7d
o=l = d(v,u) <

<e¢/2

n =

for all n € Z since every n > 1. Hence again

ply,x) =sup {d(yn, ) [ n €Zy } <€/2 <.

Therefore for both functions we have p(y,x) < € so that y € Bj;(x,€). This shows that g(U) C
Bj(x,€) CV (or h(U) C Bs(x,€) C V) as desired since y was arbitrary. O

(b) First we note that, since R is a Hausdorff space, R¥ is as well in both the box and product topolo-
gies by Theorem 19.4. Therefore the uniform topology on R* is also Hausdorff by Lemma 20.4.2
part (6) since it is finer than the product topology. It then follows from Theorem 17.10 that if any
of the sequences converge in any of the three topologies, then they converge to a unique point.

Regarding whether the sequences converge in the various topologies then, we claim

‘Product Uniform Box

w Yes No No
X Yes Yes No
y Yes Yes No
Z Yes Yes Yes
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Proof. Now, regarding the w sequence, each element in the sequence is defined as

W, = (wml, Wn,2, Wn,3, - - ) s

where

for n,m e Z,.

First we show that the w sequence converges to the point 0 in the product topology. So consider
any neighborhood U of 0 in the product topology so that there is a basis element B containing O
where B C U. Then B = H:f:l B,, where each B,, is open and B, is all of R for all but finitely
many values of m. Let J then be a finite subset of Z where each B, = R for m ¢ J. Of course we
also have that 0 € B,, for all m € Z, since B contains 0.

Then J has a largest element NV since it is a finite set of positive integers. Now consider any n > N+1
and any m € Zy. If m € J then we have that m < N < N +1 < n since N is the largest element of
J, and hence wy, , = 0 € By,. If m ¢ J then of course B, = R so that of course wy, ,, € R = By,
regardless of whether w,, ,, = 0 or w, , = n. Hence either way we have wy, ,, € B;,, which shows
that w,, € anozl B,, = B since m was arbitrary. Thus also w,, € U since B C U. Since n > N + 1
was arbitrary and U was an arbitrary neighborhood of 0, this shows that the sequence converges to
0 as desired.

Next we show that the w sequence does not converge in the uniform topology. It suffices to show that
the sequence does not converge to 0, since if it converged to any other point x, then by Lemma 20.4.2
part (3) it would also converge to x in the product topology since it is coarser than the uniform
topology. However, this would violate the fact that the sequence converges to 0 in the product
topology (just shown above), and so cannot also converge to x # 0 since the convergence point is
unique as noted above.

So consider the neighborhood Bj5(0,1) of 0 in the uniform topology. We claim that no elements of
the sequence are in this neighborhood so that it clearly cannot converge to 0. So consider any n € Z
so that we clearly have w,, = n > 1> 0. Therefore d(wp p,0) = |wpn — 0] = [Wppn| = Wpp > 1,
from which it follows that it has to be that (i(wmn, 0) = 1. This of course implies that

p(Wy, 0) = sup {d(wy,m,0) |meZy} >1.
Hence it is not true that p(w,,0) < 1 so that w,, ¢ B5(0,1). This shows the desired result since n
was arbitrary.

It then follows that the w sequence also does not converge at all in the box topology by Lemma 20.4.2
part (5) since it is finer than the uniform topology.

Regarding the x sequence, the definition is that each

Xp = (xml, Tn,2,Tn,3,-- ) R

where

0 m<n
Tn,m =
' 1/n m>n

forn,m e Z.

First we show that this sequence converges to 0 in the uniform topology, which is of course is the
unique convergence point. So consider any neighborhood U of 0 in the uniform topology so that by
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Lemma 20.4.1 there is an € > 0 where B;(0,¢) C U. Then there is a positive integer N large enough
so that N > 2/e so that, for any n > N we have 1/n < 1/N < ¢/2. Next consider any such n > N
and any m € Z,. Since x,, , is either 0 or 1/n we have that |z, .| = Zn,m < 1/n so that

d(xn,ma O) < d(xn,ma O) = |xn,m - 0| = |33n,m| = Tn,m < 1/” < 6/2-

Thus, since m was arbitrary, it follows that
p(xn,0) = sup {d(zy,m,0) [meZi} <e/2<e,

and hence x,, € B;(0,¢). Thus also x,, € U since B;(0,¢) C U. Since n > N was arbitrary as was
the neighborhood U, this shows that the sequence converges to 0 as desired.

Since it is coarser than the uniform topology, it follows that the x sequence also converges to 0 in
the product topology as well by Lemma 20.4.2 part (3).

Next we show that the x sequence does not converge in the box topology, for which it suffices to
show that it does not converge to 0. Again, this is because, if it were to converge to some other point
y # 0 in the box topology, then it would also converge to y in the uniform topology since it is coarser
(Lemma 20.4.2 part (3)), but this would violate the fact that it converges to the unique point 0 by
what was just shown. So consider the basis element and open set of the box topology U = [~ , U,
where each U, = (=1/n,1/n). Clearly U contains 0 so that it is a neighborhood of 0. We claim
that no element of the sequence is in U, which of course suffices to show that it cannot converge to
0. So consider any n € Z and so that =, , = 1/n > 1/n so that =, , ¢ (—1/n,1/n) = U,. From
this it follows that x,, ¢ [[ -, U, = U. Since n was arbitrary this shows no element of the sequence
is in U so that the sequence cannot converge to 0.

Regarding the y sequence, it is defined as

Yn = (yn,la Yn,2,Yn,35 - - ) )

where

{1/n m<n
Yn,m =
0 m>n

for n,m € Z4. Since Yy, is always either 0 or 1/n, the same argument that shows that the x
sequence converges to 0 in the uniform topology shows that the y sequence does as well. Of course
this also mean that it converges to 0 in the product topology as well since it is coarser. Similarly,
the same argument that shows that the x sequence does not converge in the box topology applies
to y as well since we have that y, , = ., = 1/n for all n € Z.

Now, the z sequence is defined by

Zp = (Zn,lv Zn,2y%n,3; - - ) ,

where

1/n m<2
Zn,m =
’ 0 m > 2

forn,m e Z.

We show that this sequence converges to 0 in the box topology. So consider any neighborhood U of
0 in the box topology so that there is a basis element B = [[°_, By, containing 0 where B C U.
Of course then each B, is open in R and 0 € B,,,. Considering the standard topology of R using
the metric topology basis, there is then an €¢; > 0 such that By(0,€1) C By by Lemma 20.4.1 since
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By is open and contains 0. Likewise there is an €3 > 0 where By(0, €2) C Bs. So set € = min {e1, €2}
so that of course there is a positive integer N large enough that N > 1/e. Then, for any n > N
we have that n > N > 1/e so that 1/n < € < €1, and similarly 1/n < € < e3. Now consider any
m € Zy. If m < 2 then of course either m =1 or m = 2 so that, either way, we have

d(zZn,m,0) = |znm — 0] = [znm| =11/n| =1/n < e < ey

so that 2z, m € B4(0,€n) C By,. If m > 2 then we clear have z,,, =0 € B,, as well. Since m was
arbitrary, this shows that z, € [[~_, By, = B C U. This shows that the sequence converges to 0
since n > N was arbitrary and U was any neighborhood of 0.

Of course this also shows that the z sequence converges to 0 in the uniform and product topologies
as well by Lemma 20.4.2 part (3) since they are both coarser than the box topology. O

Exercise 20.5

Let R*° be the subset of R“ consisting of all sequences that are eventually zero. What is the closure of
R in R“ in the uniform topology? Justify your answer.

Solution:

Let I&ieno‘ce the subset of R“ consisting of all sequences that converge to zero. We then claim
that R° = RY, i.e. the closure of R* is R?.

Proof. (C) We show this by contrapositive. So suppose that x ¢ R? so that the sequence x does not
converge to zero. Then there is a neighborhood V of 0 in the standard topology on R such that, for
any N € Z,, there is an n > N where x,, ¢ V. It also follows from Lemma 20.4.1 that there is an
€ > 0 such that B4(0,e) C V. So let § = min {¢, 1} and consider the set B;(x,d), which is clearly a
neighborhood of x in the uniform topology. Also suppose that y is any element of R* so that y is
eventually zero. Then there must be an N where y,, = 0 for all n > N. From before we have that
there is a specific n > N where x,, ¢ V so that also x,, ¢ B4(0,€), and thus

d(Yn,xn) = d(0,2,) = d(z,,0) > €>4.

Then we have that both d(y,,z,) > ¢ and 1 > ¢ so that

d(Yn, n) = min {d(yn, xn),1} > 4.

From this it clearly follows that

5y, %) = sup {d(yn, 2n) | n € Z} = 6

so that y ¢ Bj(x,d). Since y was arbitrary, this shows that B;(x,d) does not intersect R*°. This
in turn shows that x is not a limit point of R*. Now, clearly also x cannot be eventually zero since
then it would converge to zero, hence x ¢ R either. Therefore x cannot be in the closure of R*.
Hence by the contrapositive we have that R>° C R?.

(D) Now consider any x € R” so that the sequence x converges to zero. Consider any neighborhood
U of x in the uniform topology so that, by Lemma 20.4.1, there is an € > 0 such that B;(x,¢e) C U.
Now, since Bg(0, ¢/2) is a neighborhood of 0, it follows that there is an N € Z, where x,, € Bq(0,€/2)
for all n > N since x converges to 0. Now define the sequence y where

D n<N
=l0 m>N
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for n € Z,. Clearly y is eventually zero so that y € R*>.
We also claim that y € U. To see this consider any n € Z. If n < N then clearly y,, = x,, so that

A(Yn, Tn) < d(Yn,xn) = d(xp,z,) =0 < €/2.

If n > N then y,, = 0 and we have from before that z,, € By(0,¢/2) and hence

d(Yn, tn) < d(Yn, vn) = d(0,2,) = d(7,,0) < €/2.

Hence it follows that

ply,x) =sup {d(yn,zn) [N E€Z1} <€/2<e

so that y € B5(x,€) C U. This shows that y € R® NU. If y = x then of course x =y € R™ itself.
If y # x then we have shown that x is a limit point of R since U was an arbitrary neighborhood.
Thus either way y € R® so that R>® D R? since x was arbitrary. O

Lastly, we note that R™ is a proper subset of its closure R = R since, for example, the sequence
x defined by z,, = 1/n for all n € Z, clearly converges to zero so is in R? but is not eventually zero
so is not in R*°.

Exercise 20.6
Let p be the uniform metric on R*. Given x = (z1,z2,...) € R¥ and given 0 < € < 1, let
Ux,e)=(x1 —€,x14+€) X X (T — €, Ty +€) X -+ .

(a) Show that U(x,€) is not equal to the e-ball B;(x,€).
(b) Show that U(x,€) is not even open in the uniform topology.
(¢) Show that

Bs(x,¢) = | JU(x,6).

0<e

Solution:
(a)

Proof. We show that B;(x,¢€) is not a subset of U(x, €), which of course suffices to show that they
cannot be equal. To this end we define the point y in R¥ by

1
yn:mn+e<1—)
n

for any n € Z,. Then, for any such n, we clearly have that

n>1
—n<-1<0

1
-1<-——<0 (since n > 0)
n

1
0<1--x<1
n
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1
0§e<1)<e (since € > 0)
n

1
mngxn—l—e(l—)<xn+e
n
Ty — €< Ty <Y, < Tp+e€

so that y,, € (z,—¢€,x,+€). Since n was arbitrary, this shows that y € Hff:l(l’n*@ Tn+e) = U(x,e€).
However, again for any n € Z,, it was shown that z,, <y, so that

1 1
d(yn,xn)—ynxn|—ynxn—xn+e<1> xn—e<1> .
n n

1
O§6(1—><e<1
n

0 <d(yn,xn) <e<1

It was shown above that

so that

d(yny xn) = min {d(yna In)a 1} = d(yna -Tn) .

We then clearly have

1 1

n—oo n— oo n—oo

so that

ﬁ(YaX) = Ssup d(ymxn) =€>¢€
neZy

since the sequence y is clearly monotonically increasing. This shows that y ¢ Bj(x,¢€) so that
Bj;(x,€) cannot be a subset of U(x,¢). O

(b)

Proof. Let y be the point in R* defined in part (a) so that we know that y € U(x,¢€). Now if U(x, ¢)
were open in the uniform topology then there would be a basis element Bj(y,d) that is contained in
U(x,€). We shall show that any such basis element cannot be contained within U(x, €), from which
the desired result follows.

So consider any J > 0 so that there is an n € Z, large enough that n > ¢/J. Then we have
S €
n> -
1
1
0> e— (since both 6 > 0 and n > 0)
n
1
—€e—=+6>0
n
1
e—€e—+J>¢
n

1
Tptell——]+d>x,+e€
n

Yn+0 >z, +e.
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Now define the point z by
{ym m#n
Zm =

[t td) gy,

It then follows that z, + € < z, < y, + . The fact that x, + ¢ < z, means that of course
Zp & (T — €, xp +€) sothat z ¢ [[°_, (2 — €, 2 +€) = U(x,€). However, for m # n we have that

d(Zmyym) = d(ymvym) =0

and so d(zm, ym) = 0 as well. For m = n we have
Imte=x,+e<zm =2, <Yn+0=yn+9
T + €= Ym < Zm — Ym < 0

1
zm+e—xm—e(l—n)<2m—ym<5

1
0<eée—<zm—Yn <90
n

|2m — Ym| < 0
J(Zm, ym) < d(ZWL?ym) <4.

From these facts it follows that

ﬁ(Z7Y) = sup J(Z’ﬂuy'rn) = J(z’n/?yn) < 5
meZy

so that z € B;(y,d). This shows that B;(y,d) is not a subset of U(x,€), which shows the desired
result as explained before. O

(c)

Proof. (C) Let y be any element of B;(x,€) so that p(y,x) < e. Then there is a § where p(y,x) <

d < € since the reals are order-dense. For any n € Z it must be that d(y,,x,) < d < e < 1 since p

is the supremum of these. From this it has to be that d(y,, z,) = d(yn, z,) < ¢ so that

d(yn;xn) = |yn - mn‘ <
—0<Yp—Tp <9
Ty —0 < Yp <xp+0.
Hence y,, € (2, —0,x,+06). Since n was arbitrary, this shows thaty € [[°°, (z,—§, z,+0) = U(x, J).
Thus obviously y € (Js.. U(x,d), which shows the desired result.

(D) Now suppose that y € (Js.. U(x,6) so that there is a § < € where y € U(x,0). Consider any
n € Z4 so that we have y,, € (z,, — 0,2y, + 0). Then of course

Tp—0 < Yn<xTp+0d
—0<Yp—Tp <9

so that d(yn,Zn) = |yn — Tn] < § < € < 1 so that it must be that d(y,,zn) = d(yn, zn) < d. Since
n was arbitrary, it follows that

ply,x) = sup {d(yn,n) [n €Ly} <5 <e,

and hence y € Bj(x,¢€). Since y was arbitrary, this shows that Bs(x,e) O Us.  U(x,0), which
completes the proof. O
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Exercise 20.7

Consider the map h : R¥ — R defined in Exercise 8 of §19; give R* the uniform topology. Under what
conditions on the numbers a; and b; is h continuous? a homeomorphism?

Solution:

First some discussion. We know that the product topology is strictly finer than the uniform topology
in R¥, and the that box topology is strictly finer than the uniform topology. By Lemma 20.4.2
part (1), when the topology on the range of a function becomes coarser, the function remains
continuous. It is similarly easy to show that if the topology on the domain of a function becomes
finer, it also remains continuous. However, nothing can be said for sure if the range becomes finer
and/or the domain becomes coarser.

It was shown in Exercise 19.8 that h is a homeomorphism (for a; > 0 as in the exercise) if both the
domain and range have the product topology, or if they both have the box topology. By what was just
discussed then, h is at least continuous with box topology on the domain, and the uniform topology
on the range, or likewise with the uniform topology on the domain and the product topology on the
range. However, the relative “fineness” of these topologies does not allow us to conclude anything
about whether h is continuous or a homeomorphism when both the domain and range are the
uniform topologies, which is unfortunately what we are interested in.

In fact, we claim that A is continuous with the uniform topology as the domain and range if and
only if the set of numbers {a;},;, is bounded (and of course each a; > 0).

Proof. (=) We show this direction by contrapositive. So suppose that {a;} is not bounded. We
then show that h is not continuous by showing the negation of Theorem 18.1 part (4). So consider
the point 0 and the neighborhood V' = Bj;(h(0),1) in the uniform topology. Consider also any
neighborhood U of 0 so that by Lemma 20.4.1 there is an € > 0 where B;(0,¢) C U. Now define
the point x € R by z; = ¢/2 for all ¢ € Z. Then, for any i € Z, we have

d(xi,0) < d(2i,0) = |w; — 0] = [z:] = |e/2] = €/2
so that clearly
p(x,0) = sup {d(z;,0) |i € Z1} < €/2 <,

and hence x € B;(0,€) so that also x € U. Then clearly h(x) € h(U).

Now, since the a; coefficients are unbounded, there is a specific i € Z,, where a; > 2/¢ regardless
of how small € is. We then have that
€ 2e€
d(hi(x:), hi(0)) = d(aiz; + bs, b)) = |agzs + by — bi| = |asx;| = a; || = aig > 3= 1,
€

from which we have d(h;(x;),h;(0)) =1 and so
p(h(x), h(0)) = sup {d(h(z;), hi(0)) | i € Zy} > 1.

Then of course h(x) ¢ B5(h(0),1) = V. This shows that A(U) ¢ V, which in turn shows that h is
not continuous, since U was an arbitrary neighborhood of 0.

(<) Now suppose that the coefficients a; are bounded so that there is a real @ where 0 < a; < a
for all i € Z,. Consider any x € R“ and any neighborhood V of h(x) in the uniform topology.
Then there is an € > 0 where B;(h(x),e) C V by Lemma 20.4.1. So let § = min {¢/2a, 1}, noting
that § > 0 since both € > 0 and a > 0. Then U = B;(x, ) is of course a neighborhood of x in the
uniform topology. We claim that h(U) C V.
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To see this, suppose that z € h(U) so that there is a y € U where z = h(y). Then p(y,x) <0 <1

since y € U, from which it follows that each d(y;,z;) < § <1, and hence

Ay, z;) = dys, x) = |yi — x| < 9.

‘We then have that

d(hi(yi), hi(xs)) < d(hi(yi), hi(x:)) = d(aiys + b, aixy + b;) = |agy; + by — a;x; — by
= layy; — aixs| = |ai(ys — x4)| = ai|lys — x| < alys — x4
< ad < ae/2a=¢/2

for each ¢ € Z. From this it follows that

Pz, h(x)) = p(h(y), h(x)) = sup {dlha(i), ha(w:)) | i € Zy} < e/2 < e

so that z € B5(h(x),€) C V. Since z was arbitrary, this shows that f(U) C V, which shows that h
is continuous by Theorem 18.1 part (4) since V' was an arbitrary neighborhood. O

The function h is a homeomorphism if and only if there are real a,a¢ > 0 where 0 < ag < a; < a
for all i € Z.

Proof. First, it was just shown that h is continuous if and only if {a;} is bounded above. It was
shown in Exercise 19.8 that h is bijective (so long as each a; > 0) and that its inverse function h~!
has the same form as h:

hy) = (ciyi + di)icz.,

where each ¢; = 1/a; and d; = —b;/a,;. Since the topologies of the domain and range of h~! are
both the uniform topology, as with h, it follows that the same conditions on ¢; and d; will make
h~! continuous. That is to say that h~! is continuous (and thus A is a homeomorphism) if and only
if also {¢;} = {1/a;} is bounded above. Of course {1/a;} being bounded above means that {a;}
cannot get arbitrarily close to zero and so must have some nonzero lower bound ag. O

Exercise 20.8

Let X be the subset of R“ consisting of all sequences x such that Y 27 converges. Then the formula

oo 1/2
d(x.y) = [Zm - y>]

=1

defines a metric on X. (See Exercise 10) On X we have the three topologies it inherits from the box,
uniform, and product topologies on R“. We have also the topology given by the metric d, which we call
the (2-topology. (Read “little ell two.”)

(a) Show that on X, we have the inclusions

box topology O ¢2-topology D uniform topology .

(b) The set R* of all sequences that are eventually zero is contained in X. Show that the four topologies
that R* inherits as a subspace of X are all distinct.

(¢) The set

H= ] [0,1/n]

nely
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is contained in X; it is called the Hilbert cube. Compare the four topologies that H inherits as a
subspace of X.

Solution:

Lemma 20.8.1. Suppose that (a1,as,...) and (b1, bs,...) are two real sequences that converge to a
and b, respectively. Then, if a, < b, for everyn € Z,, then a < b.

Proof. Suppose to the contrary that a > b, and let ¢ = (a — b)/2 so that clearly ¢ > 0. Since
(a1, as,...) converges to a there is an N, € Z, where |a, — a| < € for all n > N,. Similarly there is
an Ny € Z, where |b, — b| < € for all n > Ny, since (b,,) converges to b. So let N = max {N,, Ny}
and consider any n > N. Then n > N > N, so that |a, — a| < ¢ and hence

—e<a,—a<e¢
a—e<ap<a-+e

a——<a
9 n

a+b
2

< ap .

Analogously, we have that n > N > N, so that |b, — b| < € and so

—e<b,—b<e
b—e<b,<b+e

-b
by < bt 2

a+b
b, .
< 2

Therefore we have b, < (a 4+ b)/2 < a,, which contradicts the supposition that b, > a,. So it has
to be that in fact a < b as desired. O

Corollary 20.8.2. Suppose that Y a, and > b, are two real series that converge to a and b,
respectively. Then, if ap, < b, for everyn € Z,, then a < b.

Proof. Since we have that a,, < b, for every n € Z, it follows that we have

n n
Sp = a; gzbz:tn
1 =1

1=

for any n € Z, for the partial sums. Then we have by definition of series that
oo oo
a= 2;@” znlingosn Snli)n;otn = 2:1()” =b
n= n=

by Lemma 20.8.1, as desired. O

The following is a corollary of Lemma 20.4.1:

Corollary 20.8.3. Suppose that X is a subspace of metric space Y with metric d. If U is open in the
subspace topology on X and contains x, then there is a ball By(x,€) inY such that X NBy(z,e) C U.
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Proof. Consider open U in X and any x € U. Then there is an open set V in Y such that
U = X NV by the definition of the subspace topology. Then of course x € X and = € V since
x € U. Tt then follows that there is an € > 0 such that By(x,¢) C V by Lemma 20.4.1. Now consider
any y € X N By(x,€) so that y € X and y € By(x,€). Then also y € V since By(z,¢) C V. Hence
y € X NV = U, which shows that X N By(z,€) C U as desired since y was arbitrary. O

Definition 20.8.4. If (x1,x2,...) is a sequence whose series Y x; converges, we define the partial
series starting at n € Z4 as

[e’s} o] n—1
g T; = § Tq — E T,
i=n i=1 i=1

where we adopt the standard convention that Zf:a x; =0 when b < a. According to this the partial
series starting at n =1 is just the series itself as expected.

Lemma 20.8.5. If (z1,22,...) is a series of non-negative real numbers such that the series Y x;
converges, then the sequence of partial series defined by

%)
Pn = E £
i=n

is mon-increasing and converges to zero. Also each p, > 0.

Proof. Since the terms are all non-negative, clearly the sequence of partial sums is non-decreasing.
Thus we have

n n+1
PBLE DI
3 i=1

n n+1

—inz—zmi
i i=1
o n+1
ZM-Z%ZZ%—Z%
z:io =1
Z T > Z x;

i=n+1 i=n+2

DPnt1 = Dnt2

for any n € Zy. Of course we also have
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Together these show that the sequence of partial series is non-increasing. Also, since the series of
partial sums is non-decreasing, we have that that the infinite sum cannot be less than any of the
partial sums, that is

00 n—1
in > sz
i=1 i=1

o] n—1

in — Z ZT; Z 0

i=1 i=1

pn >0

for any n € Zy.

To show that the sequence of partial series converges to zero, consider any € > 0. We know that the
sequence of partial sums converges to the infinite sum by the definition of a series. Hence there is
an N € Z such that

n 0

Su -S| <
i=1 i=1

|_pn+1| <€

Ipni1] <e

|pn+1 - 0| <e€

for all n > N, and hence |p, — 0] < € for all n > N + 1. This of course shows convergence to zero
as desired. ]

Main Problem.
(a)

Proof. First we show that the ¢2-topology is finer than the topology inherited from the uniform
topology using Lemma 20.2 since they are both metric topologies. So consider any x € X and let
B = XN Bj(x,¢€) for any e > 0, which is of course a basis element of the subspace topology inherited
by the uniform topology. Then the set C = By(x,€/2) (where d is the metric defined above for the
£2-topology instead of the usual metric on R) is a basis element of the ¢?-topology. We claim that
x € C' C B, which completes the proof that the £2-topology is finer.

First, it is obvious that x € C. Now counsider any y € C = By(x,¢/2). Then we have that

o

1/2
d(y,x) = [Z(yi - xi)Q] <€/2

i=1
For n € Z4 let

n

Sp = Z(yl - xi)Q

=1

be the partial sums of the infinite sum Y (y; —x;)?. Clearly each term in the sum is non-negative so
that the sequence of partial sums is non-decreasing. It then follows that s, < 3 (y; — x;)? for any
n € Z4+. We clearly then have, for any n € Z,, that

n

n—1 [e%s}
|yn - xn|2 = (yn - 3371)2 < Z(yl - xi)z + (yn - xn)z = Z(yl - zi)z =5, < Z(yl - xi)Q
=1

=1 i=1
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since again each term is non-negative. Hence by Corollary 20.1.2 we have

1/2 > 1/2
v =l = [lom = 2al*] " < [Zm - >] <e/2.

i=1

It then follows that

Z_)(yna :En) < p(ywuxn) = |yn - xn| < 6/27
where we have let p and p denote the standard metric and standard bounded metric, respectively,
on R. Since this is true for any n € Z, it follows that
Py, %) = SUp By, 2a) | m € 2y} < €/2 < €

so that y € Bs(x,¢€). Thus clearly y € X N Bs(x,¢) = B so that C C B as desired since y was
arbitrary.

Now we show that the topology inherited from the box topology is finer the ¢2-topology using
Lemma, 13.3. So consider any x € X and any basis element B containing x of the £2-topology. Then
by Lemma 20.4.1 there is an € > 0 where B4(x,€) C B since B is of course open. Now consider the
set

c=Xn H By (z;,€/V2H1)
€Ly

where again p denotes the usual metric on R. Then clearly C is a basis element of the subspace
topology inherited by the box topology and contains x, noting that clearly each e/v2i+1 > 0. We
claim that C C Bg(x,€) C B, which shows the desired result.

To see this suppose that y € C so that y € X and y € [[ Bp(z,€¢/V2+1). Then, for any i € Z,
we have that

p(yi, i) = lyi — x| < ¢/V2iH1
is true. It then follows from Lemma 20.1.1 that

(v~ 2:)? = s — il < (e/V2T)

Since this is true for any ¢ € Z, we have by Corollary 20.8.2 that

T )

i=1 i=1 i=1 i=1
00 i o0 i 0 1
1 1 1 1
_ 2 ) 2 T A T
2 (1) -6 -6 -6
=2 i=0
1 1 1
2 2
= —1—=| = 2—1——
e R R
_€
2

since >"(1/2)" is a geometric series. It then follows from Corollary 20.1.2 that

oo

d(y,x) = [Z(yi - xi)2] - < (i)m - % <e

i=1

so that y € By(x,€). Since y was arbitrary, this shows that C' C By(x,€) C B as desired, thereby
completing the proof. O
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(b)

Proof. Since relative topological “fineness” is preserved when inherited by subspace topologies
(which is trivial to show), we have from part (a) and what was shown in the text that

box topology O £*-topology D uniform topology O product topology

on R>®. To show that they are all distinct, it then suffices to show that each of the box, ¢?, and
uniform topologies (or more properly the subspace topologies inherited from them) have open sets
that are not open in the ¢2, uniform, and product topologies, respectively.

First we show that the inherited box topology has an open set that is not open in the inherited
#2-topology. Consider the set U = R* N HneZ+ (—1,1/n), which is clearly a basis element and open

set in the inherited box topology. We show that U is not open in the inherited £2-topology using
the contrapositive of Corollary 20.8.3. So consider the point 0, which is clearly contained in U and
any € > 0 and the arbitrary ball By(0,¢) of X. Of course, there is positive integer N large enough
that N > 2/e, and hence 1/N < €/2.

Now, consider the sequence x defined by

S 0 n#N
" le/2 n=N

for n € Z,. Clearly x is eventually zero so that x € R*> since z,, = 0 for all n > N 4+ 1. We also
clearly have

oo

1/2 oo 1/2 172
o= [0 =[Sut] =[G)] =5

i=1
so that x € B4(0,¢€). Therefore x € R* N B;(0,€). However, we have that 1/N < ¢/2 = zy so that
zn ¢ (—=1,1/N), and hence x & [],cz, (—1,1/n). From this clearly x ¢ U so that R> N Bq(0,¢)

cannot be a subset of U. Since the ball B4(0, ¢) was arbitrary, this shows that U is not open in the
inherited ¢2-topology as desired.

Next we show that there is an open set in the inherited £2-topology that is not open in the inherited
uniform topology. So consider the set U = R> N B4(0, 1), which is clearly open in the inherited ¢2-
topology. We show that U is not open in the inherited uniform topology, again by the contrapositive
of Corollary 20.8.3. Consider the point 0, clearly in U, and any € > 0 so that Bj;(0, €) is an arbitrary
ball in the uniform topology on R¥. Now clearly there is an N € Z, large enough that N > (2/¢)2.
It then follows from Corollary 20.1.2 that VN > 2/e.

Now define the sequence x by

_Je/2 n<N
"0 n>N

for n € Z,, so that clearly x € R*. Then clearly we have
P(2n,0) < p(zn,0) = [¢/2 = 0] = |¢/2| = ¢/2

for any n < N, where again p and p are the standard and standard bounded metrics on R, respec-
tively. If n > N clearly

P(20,0) < p(x,,0) =|0—0] =0 =0 < ¢/2.
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Hence it follows that
p(x,0) = sup {p(zn,0) |n € Z1} < €/2<e
so that x € B;(0,€). Therefore of course x € R* N B;(0, ¢). However, we also have

~ 1/2 00 1/2 N 21/2
w0 =[S0 = [S4] -5 0)]

i=1

Il
=R
|
Il
2

Y

2

2 (f) -1

€ \2

since VN > 2/e. Therefore clearly x ¢ B;(0,1) so that x ¢ U. It follows that R> N B;(0, €) cannot

be a subset of U. Since B;(0,¢€) was an arbitrary ball, this shows that U is not open in the uniform
topology as desired.

Lastly we show that there is an open set in the inherited uniform topology that is not open in the
inherited product topology. So let U = R* N B;(0, 1), which is clearly open in the inherited uniform
topology. We show that U is not open in the inherited product topology using the definition of
a basis. Consider any basis element B of the inherited product topology that contains 0 so that
B =R*®nN HnEZ+ B,,, where each B,, is open in R and B,, # R for only finitely many n € Z,. Then
clearly there is an N € Z, where By = R, and clearly we have 0 € B, for all n € Z.

So define the sequence x by

o 0 n#N
" 11 n=N

for n € Z,. Clearly x € R* since x, = 0 for all n > N 4+ 1. For any n € Z, we have that
2, =0€ B, ifn# N,and z, =1 € R = B, for n = N. Hence clearly x € [[ B, so that
x € R® N][] B, = B as well. However, we clearly have that

p(an,0) = oy =0l =1 -0 = 1| =1>1
so that p(zy,0) = min {p(zy,0),1} =1 > 1. Then it has to be that
p(x,0) = sup {p(z,0) | n € Z4} > 1

so that x ¢ B;(0,1) and hence x ¢ U. This shows that B is not a subset of U, which shows that U
is not open in the inherited product topology since B was an arbitrary basis element. O

(c) First, we note that H is contained in X by the comparison test since the series > (1/n)? converges.
Then, again since relative topological “fineness” is preserved when inherited by subspace topologies,
we know that

box topology D ¢2-topology D uniform topology O product topology

on H. We claim, however, that the inherited box topology is distinct from the other three, which
are all the same.

Proof. First we show that the inherited box topology has an open set that is not open in the

inherited ¢2-topology, in a very similar way to how this was shown in part (b). Consider the set

U= HN]],cz, (—1,1/n), which is clearly a basis element and open set in the inherited box topology.
+
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We show that U is not open in the inherited £2-topology using the contrapositive of Corollary 20.8.3.
So consider the point 0, which is clearly contained in U and any € > 0 and the arbitrary ball By(0, €)
of X. Of course, there is positive integer N large enough that N > 2/¢, and hence 1/N < ¢/2.

Now, consider the sequence x defined by

S 0 n# N
" 11/N n=N
for n € Z,. Clearly x € H since each z,, € [0,1/n]. We also clearly have
o 1/2 o 1/2
d(X,O): [Z(x20)2‘| = [Z$?‘| = [I%]1/2:IN:1/N§6/2<6
i=1 i=1

so that x € By(0,¢€). Therefore x € H N By(0,¢). However, we have that xny = 1/N so that
zn ¢ (=1,1/N), and hence x ¢ [], ¢z, (—1,1/n). From this clearly x ¢ U so that H N Ba(0,¢)
cannot be a subset of U. Since the ball By(0, ¢) was arbitrary, this shows that U is not open in the
inherited ¢2-topology as desired.

To show that the other three topologies are the same on H, it suffices to show that the inherited
product topology is finer than the inherited ¢2-topology, which we do using Lemma 13.3. So consider
any x € H and any basis element B of the inherited ¢?-topology that contains x. It then follows
from Corollary 20.8.3 that there is an € > 0 where B’ = H N B4(x,€) C B since of course B is open.
Now, by Lemma 20.8.5 the sequence of partial series p,, = > = (1/i)? converges to zero so that
there is an N € Z, where p,, = |p,| = |pn — 0| < €2/2 for all n > N since each p,, is non-negative
(also by Lemma 20.8.5). In particular pyy1 = Y = v, (1/i)* < €2/2. So define the following sets:

o By(zn,€/V2N) n< N
TR n>0

for n € Z,, where again p is the usual metric on R. Clearly C' = HN]] C, is a basis element in the
inherited product topology that contains x. We now claim that C' C B’ C B, which shows that the
inherited product topology is finer by Lemma 13.3 since B was an arbitrary basis element.

To see this, consider any y € C so that y € H and y € [[C,. Now, for any n < N, we have that
Yn € Cp = Bp(xn,€/V2N) so that |y, — 2,| < €/V2N. It then follows from Lemma 20.1.1 that

( )2 | |2<( € )2 62
n — ITn = |Yn — Tn Y = Sar
Y Y AN IN

Since this is true of each n < N, we clearly have that

N N 2 2 2
_ .2<ZL:NL:1
D (i — ) 2N " VaN T 2

i=1
Now, for any n > N we have that of course that y € H = [[[0,1/n] so that y,, € [0,1/n]. Similarly
x € H so that z,, € [0,1/n]. Then both 0 <y, <1/n and 0 < x, <1/n so that
0<z,<1/n
0>—-x,>-1/n
Yn = Yn — Tn = Yn — 1/n
Unzyn 2 yn —an Zyn —1/n=20-1/n=—1/n.
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Hence |y, — 2| < 1/n, from which it follows that (y, —n)2 = [yn — 2n|” < (1/n)? by Lemma 20.1.1.
Since this it true for any n > N, it follow from either Lemma 20.8.1 or Corollary 20.8.2 that

o] 00 1 2 62

2
DINUEESEDY () <<
i=N-+1 1=N+1

We then have, from the definition of partial series (Definition 20.8.4), that

[eS) N 0 2 2

€ €
d (wi—w)? = (i—w)+ ) Wi—m)? <5 +5=¢
i=1 i=1 i=N+1

Then Corollary 20.1.2 means that

oo

1/2
d(y,x) = lZ(yi - xi)Z] < (62)1/2 =€

=1

so that y € By(x,€), and hence clearly y € H N By(x,¢) = B’. Since y was arbitrary, this shows
that C C B’ C B as desired. O

Exercise 20.9

Show that the euclidean metric d on R™ is a metric, as follows: If x,y € R" and ¢ € R, define

X+y:(xl+yl7"'axn+yn)a
cx = (cxy,...,Cx,) ,

Xy =aiy+ -+ Ty

(a) Show that x-(y+2z) = (x-y) + (x-z).

(b) Show that |x-y| < ||x]| [|y|l. [Hint: If x,y # 0, let a = 1/||x|| and b = 1/ ||y||, and use the fact
that ||jax £ by|| > 0.]

(c¢) Show that [|x +y| < |Ix|| + |ly]]. [Hint: Compute (x+y) - (x+y) and apply (b).]
(d) Verify that d is a metric.

Solution:

First we show some basic properties of these operations that will be useful:

Lemma 20.9.1. For any x,y € R" and a € R, we assert the following:

(1) The dot product is commutative, that is X -y =y - X.
(2) 0-x=0.

(3) x|l =0 if and only if x = 0.

(4) Ilx[l =0

(5) x-x = ||x|*

(6) llax|[ = lal x|
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Proof. For assertion (1) clearly

n n
xy =Y mw =Y v =y x
=1 =1

by the definition of the dot product. Regarding (2), we clearly have

0~xi0~zii00.
i=1 i=

For (3) first suppose that x # 0 so that that there is an i € {1,...,n} where x # 0 so that clearly
z3 > 0. Then we have

n
||X||:Zx?:ZfE?'i‘ZCU?:JCi—FZx?2xi+0:xi>0
i=1

i=k ik itk

since each term in the sum 3, x? is non-negative so that the overall sum is as well. Thus of course
Ix|| # 0. This shows the forward implication by contrapositive. For the reverse direction, suppose
that x = 0 so that

n 1/2 n 1/2
Ix|| = [|o]| = [ZOQ] = ZO] =[0]"*=0.
=1 1=1

Assertion (4) is fairly obvious from the definition. Clearly each z7 > 0 since it is a square, so that
>t x? >0 as well. It then follows from Corollary 20.1.2 that

n 1/2
i=1

as desired. Assertion (5) is also easy to show:

by definition.
For part (6) we have by definition that

n 1/2 n 1/2 n 1/2 n 1/2
naxn[zmi)?] [z] [z] ~ [ [zx%] ol
i=1 i=1 = i=1

as desired. 0

Main Problem.
(a)

Proof. By definition we have that

y+z=01+21,-- - Yn +VUn)
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so that clearly

n

x-(y+z) =Y wilyi+2) = (@iyi+wiz) =Y wyi+ Yy vz = (x-y) + (x-2)
=1 =1 =1

i=1
as desired. O
(b)
Proof. First, if x = 0 then clearly by Lemma 20.9.1 parts (2) and (3)
Ix-y[=10-y|=10[=0<0=0]yll = [0yl =[xl llyll -
Similarly if y = 0 then by all parts of Lemma 20.9.1
x-y[=[x-0[=0-x[=[0]=0=<0=|x]0=|x][lo] = x|yl -

So in what follows assume that x,y # 0. Then by Lemma 20.9.1 part (3) we have that ||x|| and ||y]]
are both nonzero so that a = 1/||x|| and b = 1/ ||y|| are defined. Then, by Lemma 20.9.1 part (4),
we of course have

lax + by| > 0.
Since clearly
ax £ by = (az1 £ by1,...,az, £ by,)

by the definition of the operations, we have

[Z(axi + by;)?

=1

1/2
= |lax £ by|| > 0.

It then follows from Lemma 20.1.1 that

n

Z(ami +by)> > 02 =0

i=1

(a®2? 4 2abx;y; + b?y?) > 0

1
aQZx? iQabeiyq; —i—bzzzyi2 >0
i=1 i=1 i=1
2 2
a® ||x||” £ 2ab(x - y) + 0 [ly]|* > 0
2 2
+2ab(x - y) > —a® [|x[|” — b* |y |

s

2 2
xy o Xl
2 2 2
RSN X"yl
Xy
= {lyll —
Xy
=l lyll —
Fx-y < [yl -

Hence we have that both x -y < ||x|| ||ly|l and —x -y < ||x]|| ||ly|| so that x -y > — ||x]| ||y||. Hence

—Ixliyl < x-y < [x[Hlyll

so we can conclude that |x - y| < ||x|| ||y]l as desired. O
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()
Proof. We have

Ix+yl*=x+y) (x+y) (by Lemma 20.9.1 part (5))
=(x+y) x+x+y)y (by part (a))
=x-(x+y)+y- - (x+y) (by Lemma 20.9.1 part (1))
=X X+X-y+y - x+ty-y (by part (a))
= Ix|P+x-y+y-x+]yl’ (by Lemma 20.9.1 part (5))
= |xIP+x-y+x-y+ |yl (by Lemma 20.9.1 part (1))
< I+ Il Iyl + [l L+ I (by part (b))
= [l + 2 Iy [l + Iy [I*
= (Il + [lyl)?-

The desired result that |x 4+ y| < ||x|| + ||y then follows from Corollary 20.1.2. O

(d)
Proof. First recall that the euclidean metric on R" is defined as
d(x,y) =[x =y -
Then part (1) of the definition of a metric follows directly from Lemma 20.9.1 since of course
d(x,y) =[x =yl =0.
We also have that x = y if and only if x —y = 0, which is true if and only if
d(xy) =[x =yl =0

by Lemm